Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Pol J Microbiol ; 70(3): 339-343, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34584528

ABSTRACT

The present study aimed to evaluate the effectiveness of low-frequency ultrasounds applied to eliminate Campylobacter spp. from water. The strains used in this research were isolated from water contaminated with sewage. Campylobacter coli alone was detected in the samples and used for further research. The reference strain C. coli ATCC 33559 was simultaneously tested. The isolate was exposed to ultrasounds at frequencies of 37 kHz and 80 kHz in a continuous operation device with ultrapure deionized water. After 5 min of sonication, the count of C. coli decreased by 5.78% (37 kHz) and 6.27% (80 kHz), whereas the temperature increased by 3°C (37 kHz), and 6°C (80 kHz). After 30 min of sonication, the death rates of bacterial cells were 40.15% (37 kHz) and 55.10% (80 kHz), whereas the temperature reached the maximum values of 36°C (37 kHz), and 39°C (80 kHz). Sonication at the frequency of 80 kHz reduced the bacterial count from 6.86 log CFU/ml to 3.08 log CFU/ml, whereas the frequency of 37 kHz reduced the bacterial count from 6.75 log CFU/ml to 4.04 log CFU/ml. Despite significant differences (p < 0.05) in the number of C. coli cells, the cell death rate remained at the same level.


Subject(s)
Campylobacter coli/radiation effects , Sonication , Water Microbiology , Water Purification/methods , Colony Count, Microbial , Sound
2.
Curr Microbiol ; 67(3): 333-40, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23636493

ABSTRACT

Control of Campylobacter in the food chain requires a better understanding of the behaviour of the bacteria in relevant environments. Campylobacter species are largely non-pathogenic in poultry, the body temperature of which is 42 °C. However, the bacteria are highly pathogenic in humans whose body temperature is 37 °C. The aim of this study was to examine if switching from commensal to pathogenic behaviour was related to temperature. We examined the growth, motility and invasion of T84 cells by three species of Campylobacter: C. jejuni 81116, C. jejuni M1, C. coli 1669, C. coli RM2228 and C. fetus fetus NC10842 grown at 37 and 42 °C. Our results suggest that C. jejuni isolates grow similarly at both temperatures but some are more motile at 42 °C and some are more invasive at 37 °C, which may account for its rapid spread in poultry flocks and for infection in humans, respectively. C. coli, which are infrequent causes of Campylobacter infections in humans, is less able to grow and move at 37 °C compared to 42 °C but was significantly more invasive at the lower temperature. C. fetus fetus, which is infrequently found in poultry, is less able to grow and invade at 42 °C.


Subject(s)
Campylobacter coli/pathogenicity , Campylobacter coli/radiation effects , Campylobacter fetus/pathogenicity , Campylobacter fetus/radiation effects , Campylobacter jejuni/pathogenicity , Campylobacter jejuni/radiation effects , Campylobacter coli/growth & development , Campylobacter coli/physiology , Campylobacter fetus/growth & development , Campylobacter fetus/physiology , Campylobacter jejuni/growth & development , Campylobacter jejuni/physiology , Cell Line , Endocytosis , Epithelial Cells/microbiology , Humans , Locomotion/radiation effects , Temperature , Virulence
3.
J Food Prot ; 74(4): 565-72, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21477470

ABSTRACT

UV light was investigated for the decontamination of raw chicken, associated packaging, and contact surfaces. The UV susceptibilities of a number of Campylobacter isolates (seven Campylobacter jejuni isolates and three Campylobacter coli isolates), Escherichia coli ATCC 25922, and Salmonella enterica serovar Enteritidis ATCC 10376 in liquid media were also investigated. From an initial level of 7 log CFU/ml, no viable Campylobacter cells were detected following exposure to the most intense UV dose (0.192 J/cm(2)) in liquid media (skim milk subjected to ultrahigh-temperature treatment and diluted 1:4 with maximum recovery diluent). Maximum reductions of 4.8 and 6.2 log CFU/ml were achieved for E. coli and serovar Enteritidis, respectively, in liquid media. Considerable differences in susceptibilities were found between the Campylobacter isolates examined, with variations of up to 4 log CFU/ml being observed. UV treatment of raw chicken fillet (0.192 J/cm(2)) reduced C. jejuni, E. coli, serovar Enteritidis, total viable counts, and Enterobacteriaceae by 0.76, 0.98, 1.34, 1.76, and 1.29 log CFU/g, respectively. Following UV treatment of packaging and surface materials, reductions of up to 3.97, 4.50, and 4.20 log CFU/cm(2) were obtained for C. jejuni, E. coli, and serovar Enteritidis, respectively (P < 0.05). Overall, the color of UV-treated chicken was not significantly affected (P ≥ 0.05). The findings of this study indicate that Campylobacter is susceptible to UV technology and that differences in sensitivities exist between investigated isolates. Overall, UV could be used for improving the microbiological quality of raw chicken and for decontaminating associated packaging and surface materials.


Subject(s)
Chickens/microbiology , Decontamination/methods , Food Contamination/prevention & control , Food Irradiation , Food Packaging/methods , Microbial Viability/radiation effects , Ultraviolet Rays , Animals , Campylobacter coli/growth & development , Campylobacter coli/radiation effects , Campylobacter jejuni/growth & development , Campylobacter jejuni/radiation effects , Colony Count, Microbial , Consumer Product Safety , Dose-Response Relationship, Radiation , Environment , Equipment Contamination/prevention & control , Food Contamination/analysis , Food Microbiology , Food Preservation/methods , Humans , Salmonella enteritidis/growth & development , Salmonella enteritidis/radiation effects
4.
Curr Microbiol ; 62(3): 821-5, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20981547

ABSTRACT

Campylobacter spp. are small, asaccharolytic bacteria exhibiting unique nutritional and environmental requirements. Campylobacter spp. exist as commensal organisms in some animal species, yet are estimated to be the most common causative agents of foodborne illness in humans. C. jejuni is most often associated with poultry, while C. coli are more frequently associated with swine. Temperature has been suggested to trigger potential colonization or virulence factors in C. jejuni, and recent studies have demonstrated temperature-dependent genes are important to colonization. It is possible that temperature-dependent colonization factors are in part responsible for the species-specific colonization characteristics of C. coli also. We determined utilization of 190 different sole carbon substrates by C. coli ATCC 49941 at 37 and 42°C using phenotype microarray (PM) technology. Temperature did affect amino acid utilization. L-asparagine and L-serine allowed significantly (P = 0.004) more respiration by C. coli ATCC 49941 at the lower temperature of 37°C as compared to 42°C. Conversely, L-glutamine was utilized to a significantly greater extent (P = 0.015) at the higher temperature of 42°C. Other organic substrates exhibited temperature-dependent utilization including succinate, D,L-malate, and propionate which all supported active respiration by C. coli to a significantly greater extent at 42°C. Further investigation is needed to determine the basis for the temperature-dependent utilization of substrates by Campylobacter spp. and their possible role in species-specific colonization.


Subject(s)
Campylobacter coli/metabolism , Campylobacter coli/radiation effects , Carbon/metabolism , Temperature , Amino Acids/metabolism , Bacterial Typing Techniques , Carbohydrate Metabolism , Carboxylic Acids/metabolism , Microarray Analysis
SELECTION OF CITATIONS
SEARCH DETAIL