Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.981
Filter
1.
Front Cell Infect Microbiol ; 14: 1391758, 2024.
Article in English | MEDLINE | ID: mdl-38716194

ABSTRACT

Campylobacter jejuni, a Gram-negative bacterium, is one of the most common causes of foodborne illness worldwide. Its adhesion mechanism is mediated by several bacterial factors, including flagellum, protein adhesins, lipooligosaccharides, proteases, and host factors, such as surface glycans on epithelial cells and mucins. Fungal lectins, specialized carbohydrate-binding proteins, can bind to specific glycans on host and bacterial cells and thus influence pathogenesis. In this study, we investigated the effects of fungal lectins and protease inhibitors on the adhesion of C. jejuni to model biotic surfaces (mucin, fibronectin, and collagen) and Caco-2 cells as well as the invasion of Caco-2 cells. The lectins Marasmius oreades agglutinin (MOA) and Laccaria bicolor tectonin 2 (Tec2) showed remarkable efficacy in all experiments. In addition, different pre-incubations of lectins with C. jejuni or Caco-2 cells significantly inhibited the ability of C. jejuni to adhere to and invade Caco-2 cells, but to varying degrees. Pre-incubation of Caco-2 cells with selected lectins reduced the number of invasive C. jejuni cells the most, while simultaneous incubation showed the greatest reduction in adherent C. jejuni cells. These results suggest that fungal lectins are a promising tool for the prevention and treatment of C. jejuni infections. Furthermore, this study highlights the potential of fungi as a rich reservoir for novel anti-adhesive agents.


Subject(s)
Bacterial Adhesion , Campylobacter jejuni , Lectins , Protease Inhibitors , Campylobacter jejuni/drug effects , Campylobacter jejuni/physiology , Campylobacter jejuni/metabolism , Humans , Caco-2 Cells , Bacterial Adhesion/drug effects , Lectins/metabolism , Lectins/pharmacology , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Fungi/drug effects , Mucins/metabolism , Epithelial Cells/microbiology , Fibronectins/metabolism
2.
BMC Microbiol ; 24(1): 156, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724913

ABSTRACT

BACKGROUND: To establish a method to induce Campylobacter jejuni colonization in the intestines of C57BL/6 mice through antibiotic-induced microbiome depletion. RESULTS: Fifty-four female C57BL/6 mice were divided into the normal, control, and experimental groups. The experimental group was administered intragastric cefoperazone sodium and sulbactam sodium (50 mg/mL) for 2 days; then, the experimental and control mice were intragastrically administered 200 µL C. jejuni, which was repeated once more after 2 days. Animal feces were collected, and the HipO gene of C. jejuni was detected using TaqMan qPCR from day 1 to day 14 after modeling completion. Immunofluorescence was used to detect intestinal C. jejuni colonization on day 14, and pathological changes were observed using hematoxylin and eosin staining. Additionally, 16S rDNA analyses of the intestinal contents were conducted on day 14. In the experimental group, C. jejuni was detected in the feces from days 1 to 14 on TaqMan qPCR, and immunofluorescence-labeled C. jejuni were visibly discernable in the intestinal lumen. The intestinal mucosa was generally intact and showed no significant inflammatory-cell infiltration. Diversity analysis of the colonic microbiota showed significant inter-group differences. In the experimental group, the composition of the colonic microbiota differed from that in the other 2 groups at the phylum level, and was characterized by a higher proportion of Bacteroidetes and a lower proportion of Firmicutes. CONCLUSIONS: Microbiome depletion induced by cefoperazone sodium and sulbactam sodium could promote long-term colonization of C. jejuni in the intestines of mice.


Subject(s)
Anti-Bacterial Agents , Campylobacter Infections , Campylobacter jejuni , Cefoperazone , Feces , Gastrointestinal Microbiome , Mice, Inbred C57BL , RNA, Ribosomal, 16S , Sulbactam , Animals , Campylobacter jejuni/drug effects , Campylobacter jejuni/growth & development , Female , Anti-Bacterial Agents/pharmacology , Cefoperazone/pharmacology , Feces/microbiology , Campylobacter Infections/microbiology , Mice , Gastrointestinal Microbiome/drug effects , Sulbactam/pharmacology , RNA, Ribosomal, 16S/genetics , Intestines/microbiology , Colon/microbiology , Colon/pathology , Disease Models, Animal , Intestinal Mucosa/microbiology , Intestinal Mucosa/drug effects , DNA, Bacterial/genetics , DNA, Ribosomal/genetics
3.
Arch Microbiol ; 206(6): 260, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38744718

ABSTRACT

Campylobacter jejuni is known to enter a viable but non-culturable (VBNC) state when exposed to environmental stresses. Microarray and quantitative real-time polymerase chain reaction (qPCR) analyses were performed to elucidate the genes related to the induction of the VBNC state. The C. jejuni NCTC11168 strain was cultured under low-temperature or high-osmotic stress conditions to induce the VBNC state. mRNA expression in the VBNC state was investigated using microarray analysis, and the gene encoding peptidoglycan-associated lipoprotein, Pal, was selected as the internal control gene using qPCR analysis and software. The three genes showing particularly large increases in mRNA expression, cj1500, cj1254, and cj1040, were involved in respiration, DNA repair, and transporters, respectively. However, formate dehydrogenase encoded by cj1500 showed decreased activity in the VBNC state. Taken together, C. jejuni actively changed its mRNA expression during induction of the VBNC state, and protein activities did not always match the mRNA expression levels.


Subject(s)
Bacterial Proteins , Campylobacter jejuni , Gene Expression Regulation, Bacterial , Campylobacter jejuni/genetics , Campylobacter jejuni/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Microbial Viability , Osmotic Pressure , Stress, Physiological , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Gene Expression Profiling
4.
J Biomed Sci ; 31(1): 45, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693534

ABSTRACT

Campylobacter jejuni is a very common cause of gastroenteritis, and is frequently transmitted to humans through contaminated food products or water. Importantly, C. jejuni infections have a range of short- and long-term sequelae such as irritable bowel syndrome and Guillain Barre syndrome. C. jejuni triggers disease by employing a range of molecular strategies which enable it to colonise the gut, invade the epithelium, persist intracellularly and avoid detection by the host immune response. The objective of this review is to explore and summarise recent advances in the understanding of the C. jejuni molecular factors involved in colonisation, invasion of cells, collective quorum sensing-mediated behaviours and persistence. Understanding the mechanisms that underpin the pathogenicity of C. jejuni will enable future development of effective preventative approaches and vaccines against this pathogen.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Virulence Factors , Campylobacter jejuni/pathogenicity , Campylobacter jejuni/physiology , Humans , Campylobacter Infections/microbiology , Quorum Sensing
5.
Biomed Res Int ; 2024: 2929315, 2024.
Article in English | MEDLINE | ID: mdl-38572169

ABSTRACT

Background: Rattus norvegicus (R. norvegicus) population plays a significant role in the spread of numerous diseases in urban environments. The present study is aimed at investigating the presence of Campylobacter jejuni (C. jejuni), C. coli, Clostridium difficile (C. difficile), C. difficile toxigenic, and C. perfringens in R. norvegicus captured from urban areas of Tehran, Iran. Methods: From October 2021 to October 2022, 100 urban rats were trapped in 5 different districts of Tehran, Iran. The genomic DNA was extracted from fecal samples, and the presence of C. jejuni, C. coli, C. perfringens, and C. difficile species was evaluated using PCR assay. Moreover, PCR was used to assess the toxicity of C. difficile isolates. Results: Overall, 30% (n = 30/100) of fecal samples were positive for zoonotic pathogens. Based on the PCR on hippuricase (hipO), glycine (gly), CIDIF, and phospholipase C (plc) genes, C. perfringens and C. difficile were isolated from 18.2% (n = 14/77) and 5.2% (n = 4/77) of male rats. The highest frequency of C. perfringens and C. jejuni was 25% (n = 5/20) related to the south of Tehran. Toxigenic C. difficile was not detected in all regions. Conclusion: According to the findings, rats are the main reservoirs for diseases. Therefore, rodent control coupled with the implementation of surveillance systems should be prioritized for urban health.


Subject(s)
Campylobacter jejuni , Clostridioides difficile , Animals , Male , Rats , Clostridium perfringens , Clostridioides difficile/genetics , Campylobacter jejuni/genetics , Iran , Intestines , Feces
6.
Biochem Biophys Res Commun ; 710: 149859, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38581948

ABSTRACT

Penicillin-binding protein 2 (PBP2) plays a key role in the formation of peptidoglycans in bacterial cell walls by crosslinking glycan chains through transpeptidase activity. PBP2 is also found in Campylobacter jejuni, a pathogenic bacterium that causes food-borne enteritis in humans. To elucidate the essential structural features of C. jejuni PBP2 (cjPBP2) that mediate its biological function, we determined the crystal structure of cjPBP2 and assessed its protein stability under various conditions. cjPBP2 adopts an elongated two-domain structure, consisting of a transpeptidase domain and a pedestal domain, and contains typical active site residues necessary for transpeptidase activity, as observed in other PBP2 proteins. Moreover, cjPBP2 responds to ß-lactam antibiotics, including ampicillin, cefaclor, and cefmetazole, suggesting that ß-lactam antibiotics inactivate cjPBP2. In contrast to typical PBP2 proteins, cjPBP2 is a rare example of a Zn2+-binding PBP2 protein, as the terminal structure of its transpeptidase domain accommodates a Zn2+ ion via three cysteine residues and one histidine residue. Zn2+ binding helps improve the protein stability of cjPBP2, providing opportunities to develop new C. jejuni-specific antibacterial drugs that counteract the Zn2+-binding ability of cjPBP2.


Subject(s)
Campylobacter jejuni , Peptidyl Transferases , Humans , Penicillin-Binding Proteins/chemistry , Penicillin-Binding Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Ampicillin/pharmacology , Bacterial Proteins
7.
Open Vet J ; 14(3): 759-768, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38682147

ABSTRACT

Background: Poultry is one of the most prominent sources of Campylobacter jejuni, which is also a major means of transmission to people. Campylobacter jejuni contamination in chicken meat comes from chicken feces because it naturally exists in the intestines of chickens. Aim: The purpose of this study is to identify the antibiotic resistance patterns and genes of C. jejuni, which was found in chickens in Pasuruan, Indonesia. Methods: The samples used in this study were 200 contents of the small intestine of broiler chickens from 40 farms in Pasuruan Regency. The enriched sample was streaked on the selective media of modified charcoal cefoperazone deoxycholate agar containing the CCDA selective supplement. Antimicrobial susceptibility test utilizing the Kirby-Bauer diffusion test method in accordance with Clinical and Laboratory Standards Institute standards. The polymerase chain reaction (PCR) method was used to detect the (hipO), which encodes the C. jejuni strain, fluoroquinolone resistance (gyrA), beta-lactam resistance (blaOXA-61), and tetracycline resistance (tetO) genes. Results: The findings revealed a 14% (28/200) prevalence of C. jejuni in the small intestine of broiler chickens. These isolates showed high resistance to enrofloxacin (92.9%). All isolates (100%) were susceptible to amoxicillin-clavulanate. The PCR results showed all C. jejuni isolates (100%) detected the gyrA gene, 96.4% detected the blaOXA-61 gene, and 50% detected the tetO gene. Conclusion: The findings of antimicrobial resistance at a high level from the small intestine of broiler chickens illustrate the potential threat to human health. To lessen the effects now and in the future, coordinated and suitable action is needed, as well as steps to guarantee the poultry industry's economic survival and public health insurance.


Subject(s)
Anti-Bacterial Agents , Campylobacter Infections , Campylobacter jejuni , Chickens , Drug Resistance, Bacterial , Poultry Diseases , Animals , Campylobacter jejuni/drug effects , Campylobacter jejuni/genetics , Campylobacter jejuni/isolation & purification , Chickens/microbiology , Indonesia/epidemiology , Campylobacter Infections/veterinary , Campylobacter Infections/microbiology , Campylobacter Infections/epidemiology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests/veterinary
8.
Sci Rep ; 14(1): 9218, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649444

ABSTRACT

For reducing Campylobacter (C.) in the food production chain and thus the risk to the consumer, the combined application of different measures as a multiple-hurdle approach is currently under discussion. This is the first study to investigate possible synergistic activities in vivo, aiming at reducing intestinal C. jejuni counts by administering (i) bacteriophages (phages) in combination with a competitive exclusion (CE) product and (ii) carvacrol combined with organic acids. The combined application of the two selected phages (Fletchervirus phage NCTC 12673 and Firehammervirus phage vB_CcM-LmqsCPL1/1) and the CE product significantly reduced C. jejuni loads by 1.0 log10 in cecal and colonic contents as well as in cloacal swabs at the end of the trial (33 and 34 days post hatch). The proportion of bacterial isolates showing reduced phage susceptibility ranged from 10.9% (isolates from cecal content) to 47.8% (isolates from cloacal swabs 32 days post hatch) for the Fletchervirus phage, while all tested isolates remained susceptible to the Firehammervirus phage. The use of carvacrol combined with an organic acid blend (sorbic acid, benzoic acid, propionic acid, and acetic acid) significantly reduced Campylobacter counts by 1.0 log10 in cloacal swabs on day 30 only.


Subject(s)
Bacteriophages , Chickens , Cymenes , Cymenes/pharmacology , Animals , Bacteriophages/physiology , Chickens/microbiology , Campylobacter Infections/prevention & control , Campylobacter Infections/microbiology , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Campylobacter jejuni/virology , Campylobacter jejuni/drug effects , Campylobacter/drug effects , Campylobacter/virology
9.
J Vis Exp ; (204)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38465948

ABSTRACT

This article presents a rapid yet robust protocol for isolating Campylobacter spp. from raw meats, specifically focusing on Campylobacter jejuni and Campylobacter coli. The protocol builds upon established methods, ensuring compatibility with the prevailing techniques employed by regulatory bodies such as the Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) in the USA, as well as the International Organization for Standardization (ISO) in Europe. Central to this protocol is collecting a rinsate, which is concentrated and resuspended in Bolton Broth media containing horse blood. This medium has been proven to facilitate the recovery of stressed Campylobacter cells and reduce the required enrichment duration by 50%. The enriched samples are then transferred onto nitrocellulose membranes on brucella plates. To improve the sensitivity and specificity of the method, 0.45 µm and 0.65 µm pore-size filter membranes were evaluated. Data revealed a 29-fold increase in cell recovery with the 0.65 µm pore-size filter compared to the 0.45 µm pore-size without impacting specificity. The highly motile characteristics of Campylobacter allow cells to actively move through the membrane filters towards the agar medium, which enables effective isolation of pure Campylobacter colonies. The protocol incorporates multiplex quantitative real-time polymerase chain reaction (mqPCR) assay to identify the isolates at the species level. This molecular technique offers a reliable and efficient means of species identification. Investigations conducted over the past twelve years involving retail meats have demonstrated the ability of this method to enhance recovery of Campylobacter from naturally contaminated meat samples compared to current reference methods. Furthermore, this protocol boasts reduced preparation and processing time. As a result, it presents a promising alternative for the efficient recovery of Campylobacter from meat. Moreover, this procedure can be seamlessly integrated with DNA-based methods, facilitating rapid screening of positive samples alongside comprehensive whole-genome sequencing analysis.


Subject(s)
Campylobacter jejuni , Campylobacter , Animals , Horses , Chickens , Food Microbiology , Meat , Campylobacter/genetics , Culture Media
10.
PLoS Negl Trop Dis ; 18(3): e0012018, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38427700

ABSTRACT

Campylobacter causes bacterial enteritis, dysentery, and growth faltering in children in low- and middle-income countries (LMICs). Campylobacter spp. are fastidious organisms, and their detection often relies on culture independent diagnostic technologies, especially in LMICs. Campylobacter jejuni and Campylobacter coli are most often the infectious agents and in high income settings together account for 95% of Campylobacter infections. Several other Campylobacter species have been detected in LMIC children at an increased prevalence relative to high income settings. After doing extensive whole genome sequencing of isolates of C. jejuni and C. coli in Peru, we observed heterogeneity in the binding sites for the main species-specific PCR assay (cadF) and designed an alternative rpsKD-based qPCR assay to detect both C. jejuni and C. coli. The rpsKD-based qPCR assay identified 23% more C.jejuni/ C.coli samples than the cadF assay among 47 Campylobacter genus positive cadF negative samples verified to have C. jejuni and or C. coli with shotgun metagenomics. This assay can be expected to be useful in diagnostic studies of enteric infectious diseases and be useful in revising the attribution estimates of Campylobacter in LMICs.


Subject(s)
Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Campylobacter , Child , Humans , Campylobacter coli/genetics , Polymerase Chain Reaction , Campylobacter Infections/diagnosis , Campylobacter Infections/microbiology , Feces/microbiology
11.
World J Microbiol Biotechnol ; 40(4): 133, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38480610

ABSTRACT

Campylobacter and Salmonella are the two most prominent foodborne zoonotic pathogens reported in the European Union. As poultry is one of the major sources of these pathogens, it is imperative to mitigate the colonization of these pathogens in poultry. Many strains of lactic acid bacteria (LAB) have demonstrated anti-Salmonella and anti-Campylobacter characteristics to varying degrees and spectrums which are attributed to the production of various metabolites. However, the production of these compounds and consequent antimicrobial properties are highly strain dependent. Therefore, the current study was performed to select a potent LAB and determine its causal attribute in inhibiting Salmonella enterica and Campylobacter jejuni, in-vitro. Six LAB (Lactiplantibacillus plantarum (LP), Lacticaseibacillus casei (LC), Limosilactobacillus reuteri (LR), Lacticaseibacillus rhamnosus (LRh), Leuconostoc mesenteroides (LM) and Pediococcus pentosaceus (PP)) and three serovars of Salmonella enterica (Typhimurium, Enterica and Braenderup) and Campylobacter jejuni were used in the current study. Spot overlays, well diffusion, co-culture and co-aggregation assays against Salmonella and well diffusion assays against Campylobacter jejuni were performed. Organic acid profiling of culture supernatants was performed using HPLC. The results indicated that LRh, LM and PP had the most significant anti-Salmonella effects while LP, LC, LM and PP displayed the most significant anti-Campylobacter effects. Lactic acid and formic acid detected in the culture supernatants seem the most likely source of the anti-Salmonella and anti-Campylobacter effects exhibited by these LAB. In conclusion, Leuconostoc mesenteroides displayed the most significant overall anti-pathogenic effects when compared to the other LAB strains studied, indicating its potential application in-vivo.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Campylobacter , Lactobacillales , Lactobacillus plantarum , Poultry Diseases , Salmonella enterica , Animals , Chickens/microbiology , Salmonella , Campylobacter Infections/microbiology , Poultry Diseases/microbiology
12.
Eur J Clin Microbiol Infect Dis ; 43(5): 895-904, 2024 May.
Article in English | MEDLINE | ID: mdl-38472522

ABSTRACT

PURPOSE: Campylobacter is a frequent cause of enteric infections with common antimicrobial resistance issues. The most recent reports of campylobacteriosis in Italy include data from 2013 to 2016. We aimed to provide national epidemiological and microbiological data on human Campylobacter infections in Italy during the period 2017-2021. METHODS: Data was collected from 19 Hospitals in 13 Italian Regions. Bacterial identification was performed by mass spectrometry. Antibiograms were determined with Etest or Kirby-Bauer (EUCAST criteria). RESULTS: In total, 5419 isolations of Campylobacter spp. were performed. The most common species were C. jejuni (n = 4535, 83.7%), followed by C. coli (n = 732, 13.5%) and C. fetus (n = 34, 0.6%). The mean age of patients was 34.61 years and 57.1% were males. Outpatients accounted for 54% of the cases detected. Campylobacter were isolated from faeces in 97.3% of cases and in 2.7% from blood. C. fetus was mostly isolated from blood (88.2% of cases). We tested for antimicrobial susceptibility 4627 isolates (85.4%). Resistance to ciprofloxacin and tetracyclines was 75.5% and 54.8%, respectively; resistance to erythromycin was 4.8%; clarithromycin 2% and azithromycin 2%. 50% of C. jejuni and C. coli were resistant to ≥ 2 antibiotics. Over the study period, resistance to ciprofloxacin and tetracyclines significantly decreased (p < 0.005), while resistance to macrolides remained stable. CONCLUSION: Campylobacter resistance to fluoroquinolones and tetracyclines in Italy is decreasing but is still high, while macrolides retain good activity.


Subject(s)
Anti-Bacterial Agents , Campylobacter Infections , Campylobacter , Microbial Sensitivity Tests , Humans , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Italy/epidemiology , Female , Male , Adult , Anti-Bacterial Agents/pharmacology , Middle Aged , Young Adult , Adolescent , Aged , Campylobacter/drug effects , Campylobacter/isolation & purification , Child , Child, Preschool , Infant , Feces/microbiology , Drug Resistance, Bacterial , Aged, 80 and over , Infant, Newborn , Campylobacter jejuni/drug effects , Campylobacter jejuni/isolation & purification
13.
Biomolecules ; 14(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38540710

ABSTRACT

Human Campylobacter jejuni infections are of worldwide importance and represent the most commonly reported bacterial enteritis cases in middle- and high-income countries. Since antibiotics are usually not indicated and the severity of campylobacteriosis is directly linked to the risk of developing post-infectious complications, non-toxic antibiotic-independent treatment approaches are highly desirable. Given its health-promoting properties, including anti-microbial and anti-inflammatory activities, we tested the disease-alleviating effects of oral menthol in murine campylobacteriosis. Therefore, human gut microbiota-associated IL-10-/- mice were orally subjected to synthetic menthol starting a week before C. jejuni infection and followed up until day 6 post-infection. Whereas menthol pretreatment did not improve campylobacteriosis symptoms, it resulted in reduced colonic C. jejuni numbers and alleviated both macroscopic and microscopic aspects of C. jejuni infection in pretreated mice vs. controls. Menthol pretreatment dampened the recruitment of macrophages, monocytes, and T lymphocytes to colonic sites of infection, which was accompanied by mitigated intestinal nitric oxide secretion. Furthermore, menthol pretreatment had only marginal effects on the human fecal gut microbiota composition during the C. jejuni infection. In conclusion, the results of this preclinical placebo-controlled intervention study provide evidence that menthol application constitutes a promising way to tackle acute campylobacteriosis, thereby reducing the risk for post-infectious complications.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Enterocolitis , Gastrointestinal Microbiome , Humans , Mice , Animals , Interleukin-10/genetics , Menthol/pharmacology , Menthol/therapeutic use , Campylobacter Infections/complications , Campylobacter Infections/drug therapy , Campylobacter Infections/microbiology , Mice, Inbred C57BL , Enterocolitis/drug therapy , Enterocolitis/microbiology
14.
Poult Sci ; 103(4): 103548, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442560

ABSTRACT

Campylobacter is a major cause of bacterial foodborne diarrhea worldwide. Consumption of raw or undercooked chicken meat contaminated with Campylobacter is the most common causative agent of human infections. Given the high prevalence of contamination in poultry meat and the recent rise of multi-drug-resistant (MDR) Campylobacter strains, an effective intervention method of reducing bird colonization is needed. In this study, the Campylobacter-specific lytic phage CP6 was isolated from chicken feces. Phage CP6 exhibited a broad host range against different MDR Campylobacter isolates (97.4% of strains were infected). Some biological characteristics were observed, such as a good pH (3-9) stability and moderate temperature tolerance (<50 ℃). The complete genome sequence revealed a linear double-stranded DNA (178,350 bp, group II Campylobacter phage) with 27.51% GC content, including 209 predicted open reading frames, among which only 54 were annotated with known functions. Phylogenetic analysis of the phage major capsid protein demonstrated that phage CP6 was closely related to Campylobacter phage CPt10, CP21, CP20, IBB35, and CP220. CP6 phage exerted good antimicrobial effects on MDR Campylobacter in vitro culture and reduced CFUs of the host cells by up to 1-log compared with the control in artificially contaminated chicken breast meat. Our findings suggested the potential of CP6 phage as a promising antimicrobial agent for combating MDR Campylobacter in food processing.


Subject(s)
Bacteriophages , Campylobacter Infections , Campylobacter jejuni , Campylobacter , Humans , Animals , Poultry/microbiology , Chickens/microbiology , Phylogeny , Meat/microbiology , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Anti-Bacterial Agents/pharmacology , Food Microbiology
15.
Microbiol Spectr ; 12(3): e0323223, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38319111

ABSTRACT

Cytolethal distending toxins (CDTs) are released by Gram-negative pathogens into the extracellular medium as free toxin or associated with extracellular vesicles (EVs), commonly known as outer membrane vesicles (OMVs). CDT production by the gastrointestinal pathogen Campylobacter jejuni has been implicated in colorectal tumorigenesis. Despite CDT being a major virulence factor for C. jejuni, little is known about the EV-associated form of this toxin. To address this point, C. jejuni mutants lacking each of the three CDT subunits (A, B, and C) were generated. C. jejuni cdtA, cdtB, and cdtC bacteria released EVs in similar numbers and sizes to wild-type bacteria, ranging from 5 to 530 nm (mean ± SEM = 118 ±6.9 nm). As the CdtAC subunits mediate toxin binding to host cells, we performed "surface shearing" experiments, in which EVs were treated with proteinase K and incubated with host cells. These experiments indicated that CDT subunits are internal to EVs and that surface proteins are probably not involved in EV-host cell interactions. Furthermore, glycan array studies demonstrated that EVs bind complex host cell glycans and share receptor binding specificities with C. jejuni bacteria for fucosyl GM1 ganglioside, P1 blood group antigen, sialyl, and sulfated Lewisx. Finally, we show that EVs from C. jejuni WT but not mutant bacteria induce cell cycle arrest in epithelial cells. In conclusion, we propose that EVs are an important mechanism for CDT release by C. jejuni and are likely to play a significant role in toxin delivery to host cells. IMPORTANCE: Campylobacter jejuni is the leading cause of foodborne gastroenteritis in humans worldwide and a significant cause of childhood mortality due to diarrheal disease in developing countries. A major factor by which C. jejuni causes disease is a toxin, called cytolethal distending toxin (CDT). The biology of this toxin, however, is poorly understood. In this study, we report that C. jejuni CDT is protected within membrane blebs, known as extracellular vesicles (EVs), released by the bacterium. We showed that proteins on the surfaces of EVs are not required for EV uptake by host cells. Furthermore, we identified several sugar receptors that may be required for EV binding to host cells. By studying the EV-associated form of C. jejuni CDT, we will gain a greater understanding of how C. jejuni intoxicates host cells and how EV-associated CDT may be used in various therapeutic applications, including as anti-tumor therapies.


Subject(s)
Bacterial Toxins , Campylobacter jejuni , Extracellular Vesicles , Humans , Campylobacter jejuni/genetics , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Cell Cycle Checkpoints , Extracellular Vesicles/metabolism , Cell Cycle
16.
Microbiologyopen ; 13(1): e1400, 2024 02.
Article in English | MEDLINE | ID: mdl-38375546

ABSTRACT

Campylobacter jejuni is a commensal in many animals but causes diarrhea in humans. Its polysaccharide capsule contributes to host colonization and virulence in a strain- and model-specific manner. We investigated if the capsule and its heptose are important for interactions of strain NCTC 11168 with various hosts and their innate immune defenses. We determined that they support bacterial survival in Drosophila melanogaster and enhance virulence in Galleria mellonella. We showed that the capsule had limited antiphagocytic activity in human and chicken macrophages, decreased adherence to chicken macrophages, and decreased intracellular survival in both macrophages. In contrast, the heptose increased uptake by chicken macrophages and supported adherence to human macrophages and survival within them. While the capsule triggered nitric oxide production in chicken macrophages, the heptose mitigated this and protected against nitrosative assault. Finally, the C. jejuni strain NCTC 11168 elicited strong cytokine production in both macrophages but quenched ROS production independently from capsule and heptose, and while the capsule and heptose did not protect against oxidative assault, they favored growth in biofilms under oxidative stress. This study shows that the wild-type capsule with its heptose is optimized to resist innate defenses in strain NCTC 11168 often via antagonistic effects of the capsule and its heptose.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Humans , Animals , Drosophila melanogaster , Polysaccharides , Heptoses , Chickens , Campylobacter Infections/microbiology , Immunity, Innate
17.
Biochemistry ; 63(5): 688-698, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38382015

ABSTRACT

Campylobacter jejuni is a human pathogen and a leading cause of food poisoning in North America and Europe. The exterior surface of the bacterial cell wall is attached to a polymeric coat of sugar molecules known as the capsular polysaccharide (CPS) that helps protect the organism from the host immune response. The CPS is composed of a repeating sequence of common and unusual sugar residues. In the HS:11 serotype of C. jejuni, we identified two enzymes in the gene cluster for CPS formation that are utilized for the biosynthesis of UDP-α-N-acetyl-d-mannosaminuronic acid (UDP-ManNAcA). In the first step, UDP-α-N-acetyl-d-glucosamine (UDP-GlcNAc) is epimerized at C2 to form UDP-α-N-acetyl-d-mannosamine (UDP-ManNAc). This product is then oxidized by a NAD+-dependent C6-dehydrogenase to form UDP-ManNAcA. In the HS:6 serotype (C. jejuni strain 81116), we identified three enzymes that are required for the biosynthesis of CMP-ß-N-acetyl-d-neuraminic acid (CMP-Neu5Ac). In the first step, UDP-GlcNAc is epimerized at C2 and subsequently hydrolyzed to form N-acetyl-d-mannosamine (ManNAc) with the release of UDP. This product is then condensed with PEP by N-acetyl-d-neuraminate synthase to form N-acetyl-d-neuraminic acid (Neu5Ac). In the final step, CMP-N-acetyl-d-neuraminic acid synthase utilizes CTP to convert this product into CMP-Neu5Ac. A bioinformatic analysis of these five enzymes from C. jejuni serotypes HS:11 and HS:6 identified other bacterial species that can produce UDP-ManNAcA or CMP-Neu5Ac for CPS formation.


Subject(s)
Campylobacter jejuni , Cytidine Monophosphate/analogs & derivatives , Sialic Acids , Uronic Acids , Humans , Polysaccharides , Neuraminic Acids , Sugars , Uridine Diphosphate
18.
Biochemistry ; 63(5): 699-710, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38386885

ABSTRACT

Campylobacter jejuni is a Gram-negative pathogenic bacterium commonly found in chickens and is the leading cause of human diarrheal disease worldwide. The various serotypes of C. jejuni produce structurally distinct capsular polysaccharides (CPSs) on the exterior surfaces of the cell wall. The capsular polysaccharide from C. jejuni serotype HS:5 is composed of a repeating sequence of d-glycero-d-manno-heptose and d-glucitol-6-phosphate. We previously defined the pathway for the production of d-glycero-d-manno-heptose in C. jejuni. Here, we elucidate the biosynthetic pathway for the assembly of cytidine diphosphate (CDP)-6-d-glucitol by the combined action of two previously uncharacterized enzymes. The first enzyme catalyzes the formation of CDP-6-d-fructose from cytidine triphosphate (CTP) and d-fructose-6-phosphate. The second enzyme reduces CDP-6-d-fructose with NADPH to generate CDP-6-d-glucitol. Using sequence similarity network (SSN) and genome neighborhood network (GNN) analyses, we predict that these pairs of proteins are responsible for the biosynthesis of CDP-6-d-glucitol and/or CDP-d-mannitol in the lipopolysaccharides (LPSs) and capsular polysaccharides in more than 200 other organisms. In addition, high resolution X-ray structures of the second enzyme are reported, which provide novel insight into the manner in which an open-chain nucleotide-linked sugar is harbored in an active site cleft.


Subject(s)
Campylobacter jejuni , Animals , Humans , Sorbitol/metabolism , Chickens/metabolism , Polysaccharides/metabolism , Cytidine Diphosphate/metabolism , Fructose/metabolism , Polysaccharides, Bacterial/metabolism
19.
Arch Microbiol ; 206(3): 117, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393387

ABSTRACT

Campylobacter jejuni is a foodborne pathogen that causes gastroenteritis in humans and has developed resistance to various antibiotics. The primary objective of this research was to examine the network of antibiotic resistance in C. jejuni. The study involved the wild and antibiotic-resistant strains placed in the presence and absence of antibiotics to review their gene expression profiles in response to ciprofloxacin via microarray. Differentially expressed genes (DEGs) analysis and Protein-Protein Interaction (PPI) Network studies were performed for these genes. The results showed that the resistance network of C. jejuni is modular, with different genes involved in bacterial motility, capsule synthesis, efflux, and amino acid and sugar synthesis. Antibiotic treatment resulted in the down-regulation of cluster genes related to translation, flagellum formation, and chemotaxis. In contrast, cluster genes involved in homeostasis, capsule formation, and cation efflux were up-regulated. The study also found that macrolide antibiotics inhibit the progression of C. jejuni infection by inactivating topoisomerase enzymes and increasing the activity of epimerase enzymes, trying to compensate for the effect of DNA twisting. Then, the bacterium limits the movement to conserve energy. Identifying the antibiotic resistance network in C. jejuni can aid in developing drugs to combat these bacteria. Genes involved in cell division, capsule formation, and substance transport may be potential targets for inhibitory drugs. Future research must be directed toward comprehending the underlying mechanisms contributing to the modularity of antibiotic resistance and developing strategies to disrupt and mitigate the growing threat of antibiotic resistance effectively.


Subject(s)
Campylobacter jejuni , Humans , Campylobacter jejuni/genetics , Transcriptome , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Macrolides/pharmacology , Drug Resistance, Bacterial/genetics
20.
mBio ; 15(3): e0343023, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38323832

ABSTRACT

Campylobacter jejuni is a foodborne pathogen commonly found in the intestinal tracts of animals. This pathogen is a leading cause of gastroenteritis in humans. Besides its highly infectious nature, C. jejuni is increasingly resistant to a number of clinically administrated antibiotics. As a consequence, the Centers for Disease Control and Prevention has designated antibiotic-resistant Campylobacter as a serious antibiotic resistance threat in the United States. The C. jejuni CosR regulator is essential to the viability of this bacterium and is responsible for regulating the expression of a number of oxidative stress defense enzymes. Importantly, it also modulates the expression of the CmeABC multidrug efflux system, the most predominant and clinically important system in C. jejuni that mediates resistance to multiple antimicrobials. Here, we report structures of apo-CosR and CosR bound with a 21 bp DNA sequence located at the cmeABC promotor region using both single-particle cryo-electron microscopy and X-ray crystallography. These structures allow us to propose a novel mechanism for CosR regulation that involves a long-distance conformational coupling and rearrangement of the secondary structural elements of the regulator to bind target DNA. IMPORTANCE: Campylobacter jejuni has emerged as an antibiotic-resistant threat worldwide. CosR is an essential regulator for this bacterium and is important for Campylobacter adaptation to various stresses. Here, we describe the structural basis of CosR binding to target DNA as determined by cryo-electron microscopy and X-ray crystallography. Since CosR is a potential target for intervention, our studies may facilitate the development of novel therapeutics to combat C. jejuni infection.


Subject(s)
Campylobacter jejuni , Campylobacter , Animals , Humans , Campylobacter jejuni/genetics , Cryoelectron Microscopy , Campylobacter/genetics , Anti-Bacterial Agents/metabolism , DNA/metabolism , Bacterial Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...