Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 379
Filter
1.
Mycoses ; 67(8): e13776, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39086009

ABSTRACT

OBJECTIVES: The investigation of Candida auris outbreaks is needed to provide insights into its population structure and transmission dynamics. We genotypically and phenotypically characterised a C. auris nosocomial outbreak occurred in Consorcio Hospital General Universitario de Valencia (CHGUV), Spain. METHODS: Data and isolates were collected from CHGUV from September 2017 (first case) until September 2021. Thirty-five isolates, including one from an environmental source, were randomly selected for whole genome sequencing (WGS), and the genomes were analysed along with a database with 335 publicly available genomes, assigning them to one of the five major clades. In order to identify polymorphisms associated with drug resistance, we used the fully susceptible GCA_003014415.1 strain as reference sequence. Known mutations in genes ERG11 and FKS1 conferring resistance to fluconazole and echinocandins, respectively, were investigated. Isolates were classified into aggregating or non-aggregating. RESULTS: All isolates belonged to clade III and were from an outbreak with a single origin. They clustered close to three publicly available genomes from a hospital from where the first patient was transferred, being the probable origin. The mutation VF125AL in the ERG11 gene, conferring resistance to fluconazole, was present in all the isolates and one isolate also carried the mutation S639Y in the FKS1 gene. All the isolates had a non-aggregating phenotype (potentially more virulent). CONCLUSIONS: Isolates are genotypically related and phenotypically identical but one with resistance to echinocandins, which seems to indicate that they all belong to an outbreak originated from a single isolate, remaining largely invariable over the years. This result stresses the importance of implementing infection control practices as soon as the first case is detected or when a patient is transferred from a setting with known cases.


Subject(s)
Antifungal Agents , Candida auris , Candidiasis , Cross Infection , Disease Outbreaks , Drug Resistance, Fungal , Genotype , Phenotype , Whole Genome Sequencing , Humans , Spain/epidemiology , Cross Infection/microbiology , Cross Infection/epidemiology , Candidiasis/microbiology , Candidiasis/epidemiology , Antifungal Agents/pharmacology , Candida auris/genetics , Candida auris/drug effects , Drug Resistance, Fungal/genetics , Microbial Sensitivity Tests , Mutation , Male , Fluconazole/pharmacology , Female , Echinocandins/pharmacology , Middle Aged , Candida/genetics , Candida/drug effects , Candida/classification , Candida/isolation & purification
2.
New Microbiol ; 47(2): 152-156, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39023524

ABSTRACT

Herein, we aimed to investigate the antifungal susceptibility pattern of Candida auris clinical strains in our setting Bahrain Oncology Center-King Hamad University Hospital-Bahrain. C. auris strains isolated from different clinical specimens in the Microbiology Laboratory from October-2021 to November-2022 were evaluated. Species-level identification of fungi was performed by MALDI-TOF (Bruker, Germany). Minimum inhibitory concentration (MIC) was determined either by E-test strips or by MICRONAUT MIC system based on CDC guidelines for C. auris antifungal interpretation. Fluconazole, amphotericin-B, voriconazole, and caspofungin susceptibility data of the clinical strains were analyzed. A total of 40 clinical isolates were included: 25% were blood culture isolates, 65% were urinary, and 10% were soft tissue isolates. Only 29 strains could be tested for amphotericin-B and 32 for voriconazole. Overall resistance pattern was as follows: 100% resistance to fluconazole, 2.5% resistance to caspofungin, and 0% resistance to amphotericin b. Median voriconazole MIC was 0.015 ug/ml (min 0.08, max= 0.064 ug/ml). We had no fluconazole-sensitive strain and only one caspofungin-resistant strain. A single isolate (2.5%), which was associated with candidemia, demonstrated resistance to two antifungal agents: fluconazole and caspofungin. No triple or quadruple drug resistant strain existed.


Subject(s)
Antifungal Agents , Candida auris , Candidiasis , Drug Resistance, Fungal , Hospitals, University , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Humans , Candidiasis/microbiology , Candida auris/drug effects , Female , Male , Adult , Voriconazole/pharmacology , Middle Aged , Tertiary Care Centers , Tertiary Healthcare , Caspofungin/pharmacology , Candida/drug effects , Candida/isolation & purification
3.
Mycoses ; 67(7): e13765, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988310

ABSTRACT

BACKGROUND: Candida auris, a multidrug-resistant fungal pathogen, has received considerable attention owing to its recent surge, especially in South America, which coincides with the ongoing global COVID-19 pandemic. Understanding the clinical and microbiological characteristics of outbreaks is crucial for their effective management and control. OBJECTIVE: This retrospective observational study aimed to characterize a C. auris outbreak at a Peruvian referral hospital between January 2021 and July 2023. METHODS: Data were collected from hospitalized patients with positive C. auris culture results. Microbiological data and antifungal susceptibility test results were analysed. Additionally, infection prevention and control measures have been described. Statistical analysis was used to compare the characteristics between the infected and colonized patients. RESULTS: Thirty-three patients were identified, mostly male (66.7%), with a median age of 53 years. Among them, 18 (54.5%) were colonized, and 15 (45.5%) were infected. Fungemia was the predominant presentation (80%), with notable cases of fungemia in tuberculosis patients with long-stay devices for parenteral anti-tuberculosis therapy. Seventy-five percent of the isolates exhibited fluconazole resistance. Echinocandins were the primary treatment, preventing fungemia recurrence within 30 days. Infected patients had significantly longer hospital stays than colonized patients (100 vs. 45 days; p = .023). Hospital mortality rates were 46.7% and 25% in the infected and fungemia patients, respectively. Simultaneous outbreaks of multidrug-resistant bacteria were documented. CONCLUSIONS: This study underscores the severity of a C. auris outbreak at a referral hospital in Peru, highlighting its significant impact on patient outcomes and healthcare resources. The high prevalence of fluconazole-resistant isolates, leading to prolonged hospital stay and high mortality rates, particularly in cases of fungemia, underscores the critical need for effective infection prevention and control strategies.


Subject(s)
Antifungal Agents , Candida auris , Candidiasis , Disease Outbreaks , Humans , Peru/epidemiology , Middle Aged , Male , Female , Retrospective Studies , Adult , Candidiasis/epidemiology , Candidiasis/microbiology , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Aged , Candida auris/drug effects , COVID-19/epidemiology , Microbial Sensitivity Tests , Cross Infection/epidemiology , Cross Infection/microbiology , Candida/drug effects , Candida/isolation & purification , Candida/classification , Referral and Consultation
4.
PLoS Pathog ; 20(7): e1012362, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976759

ABSTRACT

Filamentous cell growth is a vital property of fungal pathogens. The mechanisms of filamentation in the emerging multidrug-resistant fungal pathogen Candida auris are poorly understood. Here, we show that exposure of C. auris to glycerol triggers a rod-like filamentation-competent (RL-FC) phenotype, which forms elongated filamentous cells after a prolonged culture period. Whole-genome sequencing analysis reveals that all RL-FC isolates harbor a mutation in the C2H2 zinc finger transcription factor-encoding gene GFC1 (Gfc1 variants). Deletion of GFC1 leads to an RL-FC phenotype similar to that observed in Gfc1 variants. We further demonstrate that GFC1 mutation causes enhanced fatty acid ß-oxidation metabolism and thereby promotes RL-FC/filamentous growth. This regulation is achieved through a Multiple Carbon source Utilizer (Mcu1)-dependent mechanism. Interestingly, both the evolved RL-FC isolates and the gfc1Δ mutant exhibit an enhanced ability to colonize the skin. Our results reveal that glycerol-mediated GFC1 mutations are beneficial during C. auris skin colonization and infection.


Subject(s)
Candida auris , Candidiasis , Fungal Proteins , Mutation , Candidiasis/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Candida auris/genetics , Candida auris/metabolism , Mice , Animals , Glycerol/metabolism , Adaptation, Physiological , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Fungal , Humans
5.
Euro Surveill ; 29(29)2024 Jul.
Article in English | MEDLINE | ID: mdl-39027938

ABSTRACT

BackgroundThe COVID-19 pandemic and the emergence of Candida auris have changed the epidemiological landscape of candidaemia worldwide.AimWe compared the epidemiological trends of candidaemia in a Greek tertiary academic hospital before (2009-2018) and during the early COVID-19 (2020-2021) and late COVID-19/early post-pandemic (2022-2023) era.MethodsIncidence rates, species distribution, antifungal susceptibility profile and antifungal consumption were recorded, and one-way ANOVA or Fisher's exact test performed. Species were identified by MALDI-ToF MS, and in vitro susceptibility determined with CLSI M27-Ed4 for C. auris and the EUCAST-E.DEF 7.3.2 for other Candida spp.ResultsIn total, 370 candidaemia episodes were recorded during the COVID-19 pandemic. Infection incidence (2.0 episodes/10,000 hospital bed days before, 3.9 during the early and 5.1 during the late COVID-19 era, p < 0.0001), C. auris (0%, 9% and 33%, p < 0.0001) and fluconazole-resistant C. parapsilosis species complex (SC) (20%, 24% and 33%, p = 0.06) infections increased over time, with the latter not associated with increase in fluconazole/voriconazole consumption. A significant increase over time was observed in fluconazole-resistant isolates regardless of species (8%, 17% and 41%, p < 0.0001). Resistance to amphotericin B or echinocandins was not recorded, with the exception of a single pan-echinocandin-resistant C. auris strain.ConclusionCandidaemia incidence nearly tripled during the COVID-19 era, with C. auris among the major causative agents and increasing fluconazole resistance in C. parapsilosis SC. Almost half of Candida isolates were fluconazole-resistant, underscoring the need for increased awareness and strict implementation of infection control measures.


Subject(s)
Antifungal Agents , COVID-19 , Candidemia , Drug Resistance, Fungal , Fluconazole , Microbial Sensitivity Tests , SARS-CoV-2 , Tertiary Care Centers , Humans , Candidemia/epidemiology , Candidemia/drug therapy , Candidemia/microbiology , Greece/epidemiology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , COVID-19/epidemiology , Tertiary Care Centers/statistics & numerical data , Fluconazole/pharmacology , Fluconazole/therapeutic use , Candida parapsilosis/drug effects , Candida parapsilosis/isolation & purification , Incidence , Candida auris/drug effects , Candida/drug effects , Candida/isolation & purification , Adult , Male , Female , Middle Aged , Aged , Pandemics , Candidiasis/epidemiology , Candidiasis/drug therapy , Candidiasis/microbiology
6.
Emerg Microbes Infect ; 13(1): 2377584, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38989545

ABSTRACT

INTRODUCTION: Drug resistance to echinocandins, first-line drugs used to treat Candida auris infection, is rapidly emerging. However, the accumulation of mutations in genes other than FKS1 (before an isolate develops to resistance via FKS1 mutations), remains poorly understood. Methods: Four clinical cases and 29 isolates associated with the incremental process of echinocandin resistance were collected and analyzed using antifungal drug susceptibility testing and genome sequencing to assess the evolution of echinocandin resistance. FINDINGS: Six echinocandin minimum inhibitory concentration (MIC)-elevated C. auris strains and seven resistant strains were isolated from the urinary system of patients receiving echinocandin treatment. Meanwhile, phylogenetic analyses illustrated that the echinocandin-resistant strains were closely related to other strains in the same patient. Genomic data revealed that the echinocandin-resistant strains had FKS1 mutations. Furthermore, three categories (ECN-S/E/R) of non-synonymous mutant SNP genes (such as RBR3, IFF6, MKC1, MPH1, RAD2, and MYO1) in C. auris appeared to be associated with the three-stage-evolutionary model of echinocandin resistance in C. glabrata: cell wall stress, drug adaptation, and genetic escape (FKS mutation). INTERPRETATION: Echinocandin-resistant C. auris undergoes spatial and temporal phase changes closely related to echinocandin exposure, particularly in the urinary system. These findings suggest that FKS1 mutations mediate an evolutionary accumulation of echinocandin resistance followed by modulation of chromosome remodelling and DNA repair processes that ultimately lead to FKS1 hot spot mutations and the development of drug resistance. This study provides an in-depth exploration of the molecular pathways involved in the evolution of Candida auris echinocandin resistance.


Subject(s)
Antifungal Agents , Candida auris , Candidiasis , Drug Resistance, Fungal , Echinocandins , Fungal Proteins , Microbial Sensitivity Tests , Mutation , Phylogeny , Humans , Echinocandins/pharmacology , Antifungal Agents/pharmacology , Drug Resistance, Fungal/genetics , Candidiasis/microbiology , Candidiasis/drug therapy , Fungal Proteins/genetics , Fungal Proteins/metabolism , Candida auris/genetics , Candida auris/drug effects , Evolution, Molecular , Male , Female , Glucosyltransferases/genetics , Candidiasis, Invasive
7.
BMC Microbiol ; 24(1): 269, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030474

ABSTRACT

Candida auris (C. auris) is a yeast that has caused several outbreaks in the last decade. Cell wall chitin plays a primary role in the antifungal resistance of C. auris. Herein, we investigated the potential of chitinase immobilized with UiO-66 to act as a potent antifungal agent against C. auris. Chitinase was produced from Talaromyces varians SSW3 in a yield of 8.97 U/g dry substrate (ds). The yield was statistically enhanced to 120.41 U/g ds by using Plackett-Burman and Box-Behnken design. We synthesized a UiO-66 framework that was characterized by SEM, TEM, XRD, FTIR, a particle size analyzer, and a zeta sizer. The produced framework had a size of 70.42 ± 8.43 nm with a uniform cubic shape and smooth surface. The produced chitinase was immobilized on UiO-66 with an immobilization yield of 65% achieved after a 6 h loading period. The immobilization of UiO-66 increased the enzyme activity and stability, as indicated by the obtained Kd and T1/2 values. Furthermore, the hydrolytic activity of chitinase was enhanced after immobilization on UiO-66, with an increase in the Vmax and a decrease in the Km of 2- and 38-fold, respectively. Interestingly, the antifungal activity of the produced chitinase was boosted against C. auris by loading the enzyme on UiO-66, with an MIC50 of 0.89 ± 0.056 U/mL, compared to 5.582 ± 0.57 U/mL for the free enzyme. This study offers a novel promising alternative approach to combat the new emerging pathogen C. auris.


Subject(s)
Antifungal Agents , Candida auris , Chitinases , Microbial Sensitivity Tests , Nanoparticles , Chitinases/pharmacology , Chitinases/metabolism , Chitinases/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Nanoparticles/chemistry , Candida auris/drug effects , Candida auris/genetics , Enzymes, Immobilized/chemistry , Talaromyces/drug effects , Talaromyces/chemistry , Talaromyces/enzymology , Drug Resistance, Multiple, Fungal , Hydrolysis , Chitin/chemistry , Chitin/pharmacology
8.
Med Microbiol Immunol ; 213(1): 13, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967888

ABSTRACT

Candida auris is an emerging pathogenic yeast that has been categorized as a global public health threat and a critical priority among fungal pathogens. Despite this, the immune response against C. auris infection is still not well understood. Hosts fight Candida infections through the immune system that recognizes pathogen-associated molecular patterns such as ß-glucan, mannan, and chitin on the fungal cell wall. In this study, levels of ß-glucan and mannan exposures in C. auris grown under different physiologically relevant stimuli were quantified by flow cytometry-based analysis. Lactate, hypoxia, and sublethal concentration of fluconazole trigger a decrease in surface ß-glucan while low pH triggers an increase in ß-glucan. There is no inverse pattern between exposure levels of ß-glucan and mannan in the cell wall architecture among the three clades. To determine the effect of cell wall remodeling on the immune response, a phagocytosis assay was performed, followed by quantification of released cytokines by ELISA. Lactate-induced decrease in ß-glucan leads to reduced uptake of C. auris by PMA-differentiated THP-1 and RAW 264.7 macrophages. Furthermore, reduced production of CCL3/MIP-1⍺ but not TNF-⍺ and IL-10 were observed. An in vivo infection analysis using silkworms reveals that a reduction in ß-glucan triggers an increase in the virulence of C. auris. This study demonstrates that ß-glucan alteration occurs in C. auris and serves as an escape mechanism from immune cells leading to increased virulence.


Subject(s)
Candida auris , Cell Wall , Immune Evasion , beta-Glucans , beta-Glucans/metabolism , Animals , Virulence , Mice , Cell Wall/immunology , Cell Wall/chemistry , Cell Wall/metabolism , Humans , Candida auris/pathogenicity , RAW 264.7 Cells , Candidiasis/microbiology , Candidiasis/immunology , Cytokines/metabolism , Phagocytosis , Macrophages/immunology , Macrophages/microbiology , Mannans/pharmacology , Lactic Acid/metabolism , Disease Models, Animal , THP-1 Cells
9.
Mycopathologia ; 189(4): 65, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990436

ABSTRACT

Candida auris is an emerging multi-drug resistant yeast that can cause life-threatening infections. A recent report clarified the ability of C. auris to form a biofilm with enhanced drug resistance properties in the host skin's deep layers. The formed biofilm may initiate further bloodstream spread and immune escape. Therefore, we propose that secreted chemicals from the biofilm may facilitate fungal pathogenesis. In response to this interaction, the host skin may develop potential defensive mechanisms. Comparative transcriptomics was performed on the host dermal cells in response to indirect interaction with C. auris biofilm through Transwell inserts compared to planktonic cells. Furthermore, the effect of antifungals including caspofungin and fluconazole was studied. The obtained data showed that the dermal cells exhibited different transcriptional responses. Kyoto Encyclopedia of Genes and Genomes and Reactome analyses identified potential defensive responses employed by the dermal cells and potential toxicity induced by C. auris. Additionally, our data indicated that the dominating toxic effect was mediated by ferroptosis; which was validated by qRT-PCR, cytotoxicity assay, and flow cytometry. On the other hand, the viability of C. auris biofilm was enhanced and accompanied by upregulation of MDR1, and KRE6 upon interaction with dermal cells; both genes play significant roles in drug resistance and biofilm maturation, respectively. This study for the first-time shed light on the dominating defensive responses of human dermal cells, microbe colonization site, to C. auris biofilm and its toxic effects. Further, it demonstrates how C. auris biofilm responds to the defensive mechanisms developed by the human dermal cells.


Subject(s)
Antifungal Agents , Biofilms , Candida auris , Ferroptosis , Gene Expression Profiling , Humans , Biofilms/drug effects , Biofilms/growth & development , Candida auris/genetics , Candida auris/drug effects , Antifungal Agents/pharmacology , Ferroptosis/drug effects , Fluconazole/pharmacology , Caspofungin/pharmacology , Skin/microbiology , Host-Pathogen Interactions
10.
Arch Microbiol ; 206(8): 349, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992278

ABSTRACT

Candida auris, a rapidly spreading multi-drug-resistant fungus, is causing lethal infections under certain conditions globally. Baicalin (BE), an active ingredient extracted from the dried root of Scutellaria baicalensis Georgi, exhibits antifungal activity. However, studies have shown the distinctive advantages of Traditional Chinese medicine in combating fungal infections, while the effect of BE, an active ingredient extracted from the dried roots of Scutellaria baicalensis Georgi, on C. auris, remains unknown. Therefore, this study aims to evaluate the potential of BE as an antifungal agent against the emerging multidrug-resistant C. auris. Various assays and models, including microbroth dilution, time growth curve analysis, spot assays, adhesion tests, flocculation test, cell surface hydrophobicity assay, hydrolase activity assays, XTT assay, violet crystal assay, scanning electron microscope (SEM), confocal laser scanning microscope (CLSM), flow cytometry, Live/dead fluorescent staining, reactive oxygen species (ROS), cell wall assay, aggregation assay, porcine skin model, Galleria mellonella larvae (G. mellonella larvae) infection model, and reverse transcription-quantitative polymerase chain reaction (RT-PCR) were utilized to investigate how baicalein suppresses C. auris through possible multifaceted mechanisms. The findings indicate that BE strongly inhibited C. auris growth, adhesion, and biofilm formation. It also effectively reduced drug resistance and aggregation by disrupting the cell membrane and cell wall while reducing colonization and invasion of the host. Transcriptome analysis showed significant modulation in gene expression related to different virulence factors post-BE treatment. In conclusion, BE exhibits significant effectiveness against C. auris, suggesting its potential as a viable treatment option due to its multifaceted suppression mechanisms.


Subject(s)
Antifungal Agents , Candida auris , Flavanones , Virulence Factors , Flavanones/pharmacology , Virulence Factors/metabolism , Virulence Factors/genetics , Animals , Antifungal Agents/pharmacology , Candida auris/drug effects , Candida auris/genetics , Microbial Sensitivity Tests , Scutellaria baicalensis/chemistry , Candidiasis/drug therapy , Candidiasis/microbiology , Reactive Oxygen Species/metabolism , Swine , Larva/microbiology , Moths/microbiology , Biofilms/drug effects , Plant Extracts/pharmacology , Flavonoids
11.
mBio ; 15(8): e0090824, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39041799

ABSTRACT

Candida auris is an emerging, multidrug-resistant fungal pathogen that poses a significant public health threat in healthcare settings. Despite yearly clinical cases rapidly increasing from 77 to 8,131 in the last decade, surveillance data on its distribution and prevalence remain limited. We implemented a novel assay for C. auris detection on a nationwide scale prospectively from September 2023 to March 2024, analyzing a total of 13,842 samples from 190 wastewater treatment plants across 41 U.S. states. Assays were extensively validated through comparison to other known assays and internal controls. Of these 190 wastewater treatment plants, C. auris was detected in the wastewater solids of 65 of them (34.2%) with 1.45% of all samples having detectable levels of C. auris nucleic-acids. Detections varied seasonally, with 2.00% of samples positive in autumn vs 1.01% in winter (P < 0.0001). The frequency of detection in wastewater was significantly associated with states having older populations (P < 0.001), sewersheds containing more hospitals (P < 0.0001), and sewersheds containing more nursing homes (P < 0.001). These associations are in agreement with known C. auris epidemiology. This nationwide study demonstrates the viability of wastewater surveillance for C. auris surveillance and further highlights the value of wastewater surveillance when clinical testing is constrained. IMPORTANCE: This study highlights the viability of wastewater surveillance when dealing with emerging pathogens. By leveraging an existing framework of wastewater surveillance, we reveal the widespread presence of C. auris in the United States. We further demonstrate that these wastewater detections are consistent with demographic factors relevant to C. auris epidemiology like age and number of hospitals or nursing homes. As C. auris and other pathogens continue to emerge, the low-cost and rapid nature of wastewater surveillance will provide public health officials with the information necessary to enact targeted prevention and control strategies.


Subject(s)
Candida auris , Wastewater , Wastewater/microbiology , United States , Prospective Studies , Candida auris/genetics , Humans , Seasons , Candidiasis/microbiology , Candidiasis/epidemiology
12.
Curr Opin Microbiol ; 80: 102510, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964276

ABSTRACT

Candida auris, a newly emergent fungal species, has been spreading in health care systems and causing life-threatening infections. Intact innate immunity is essential for protection against many invasive fungal infections, including candidiasis. Here, we highlight recent studies exploring immune interactions with C. auris, including investigations using animal models and ex vivo immune cells. We summarize innate immune studies comparing C. auris and the common fungal pathogen Candida albicans. We also discuss how structures of the C. auris cell wall influence immune recognition, the role of soluble host factors in immune recognition, and areas of future study.


Subject(s)
Candida auris , Candidiasis , Immunity, Innate , Humans , Animals , Candidiasis/immunology , Candidiasis/microbiology , Candida auris/immunology , Candida auris/genetics , Candida albicans/immunology , Cell Wall/immunology , Host-Pathogen Interactions/immunology , Candida/immunology
13.
J Clin Microbiol ; 62(7): e0052524, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38888304

ABSTRACT

Candida auris is a multidrug-resistant fungal pathogen with a propensity to colonize humans and persist on environmental surfaces. C. auris invasive fungal disease is being increasingly identified in acute and long-term care settings. We have developed a prototype cartridge-based C. auris surveillance assay (CaurisSurV cartridge; "research use only") that includes integrated sample processing and nucleic acid amplification to detect C. auris from surveillance skin swabs in the GeneXpert instrument and is designed for point-of-care use. The assay limit of detection (LoD) in the skin swab matrix was 10.5 and 14.8 CFU/mL for non-aggregative (AR0388) and aggregative (AR0382) strains of C. auris, respectively. All five known clades of C. auris were detected at 2-3-5× (31.5-52.5 CFU/mL) the LoD. The assay was validated using a total of 85 clinical swab samples banked at two different institutions (University of California Los Angeles, CA and Wadsworth Center, NY). Compared to culture, sensitivity was 96.8% (30/31) and 100% (10/10) in the UCLA and Wadsworth cohorts, respectively, providing a combined sensitivity of 97.5% (40/41), and compared to PCR, the combined sensitivity was 92% (46/50). Specificity was 100% with both clinical (C. auris negative matrix, N = 31) and analytical (non-C. auris strains, N = 32) samples. An additional blinded study with N = 60 samples from Wadsworth Center, NY yielded 97% (29/30) sensitivity and 100% (28/28) specificity. We have developed a completely integrated, sensitive, specific, and 58-min prototype test, which can be used for routine surveillance of C. auris and might help prevent colonization and outbreaks in acute and chronic healthcare settings. IMPORTANCE: This study has the potential to offer a better solution to healthcare providers at hospitals and long-term care facilities in their ongoing efforts for effective and timely control of Candida auris infection and hence quicker response for any potential future outbreaks.


Subject(s)
Candida auris , Candidiasis , Sensitivity and Specificity , Humans , Candidiasis/diagnosis , Candidiasis/microbiology , Candida auris/genetics , Infection Control/methods , Epidemiological Monitoring , Skin/microbiology , Limit of Detection , Point-of-Care Systems , Nucleic Acid Amplification Techniques/methods , Molecular Diagnostic Techniques/methods , Candida/isolation & purification , Candida/genetics , Candida/classification
14.
Med Mycol ; 62(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38918058

ABSTRACT

Though echinocandins are the first line of therapy for C. auris candidemia, there is little clinical data to guide the choice of therapy within this class. This was the first study to compare the three echinocandins in terms of efficacy and outcomes for C. auris candidemia. This was a retrospective analysis of 82 episodes of candidemia caused by C. auris comparing outcomes across the three echinocandins. Majority patients in our study were treated with micafungin. Susceptibility rates were the lowest for caspofungin (35.36% resistance), with no resistance reported for the other two echinocandins. When a susceptible echinocandin was chosen, caspofungin resistance was not a factor significantly associated with mortality. Also, when a susceptible echinocandin was used for therapy, the choice within the class did not affect clinical cure, microbiological cure, or mortality (P > 0.05 for all). Failure to achieve microbiological cure (P = 0.018) and receipt of immune-modulatory therapy (P = 0.01) were significantly associated with increased mortality. Significant cost variation was noted among the echinocandins. Considering the significant cost variation, comparable efficacies can be reassuring for the prescribing physician.


This is the first study comparing efficacy of the three echinocandins in C. auris candidemia. The clinical efficacy of the three echinocandins was found to be comparable. Micafungin and anidulafungin had lower minimum inhibitory concentrations. A significant cost variation was noted.


Subject(s)
Antifungal Agents , Candidemia , Caspofungin , Echinocandins , Micafungin , Microbial Sensitivity Tests , Tertiary Care Centers , Humans , India , Echinocandins/therapeutic use , Echinocandins/pharmacology , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Candidemia/drug therapy , Candidemia/mortality , Candidemia/microbiology , Retrospective Studies , Male , Female , Tertiary Care Centers/statistics & numerical data , Middle Aged , Caspofungin/therapeutic use , Caspofungin/pharmacology , Adult , Micafungin/therapeutic use , Micafungin/pharmacology , Treatment Outcome , Aged , Candida auris/drug effects , Drug Resistance, Fungal , Young Adult , Adolescent
15.
Med Mycol ; 62(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38936838

ABSTRACT

Candida auris is an emerging fungal pathogen responsible for healthcare-associated infections and outbreaks with high mortality around the world. It readily colonizes the skin, nares, respiratory and urinary tract of hospitalized patients, and such colonization may lead to invasive Candida infection in susceptible patients. However, there is no recommended decolonization protocol for C. auris by international health authorities. The aim of this study is to evaluate the susceptibility of C. auris to commonly used synthetic and natural antiseptic products using an in vitro, broth microdilution assay. Synthetic antiseptics including chlorhexidine, povidone-iodine, and nystatin were shown to be fungicidal against C. auris. Among the natural antiseptics tested, tea tree oil and manuka oil were both fungicidal against C. auris at concentrations less than or equal to 1.25% (v/v). Manuka honey inhibited C. auris at 25% (v/v) concentrations. Among the commercial products tested, manuka body wash and mouthwash were fungicidal against C. auris at concentrations less than or equal to 0.39% (w/v) and 6.25% (v/v) of products as supplied for use, respectively, while tea tree body wash and MedihoneyTM wound gel demonstrated fungistatic properties. In conclusion, this study demonstrated good in vitro antifungal efficacy of tea tree oil, manuka oil, manuka honey, and commercially available antiseptic products containing these active ingredients. Future studies are warranted to evaluate the effectiveness of these antiseptic products in clinical settings.


Candida auris is an emerging superbug fungus that poses a serious threat to global public health. The excellent antifungal efficacy of natural antiseptics and their commercial hygiene products provide new insights into the development of an alternative decolonization regimen against C. auris.


Subject(s)
Anti-Infective Agents, Local , Antifungal Agents , Candida auris , Microbial Sensitivity Tests , Anti-Infective Agents, Local/pharmacology , Antifungal Agents/pharmacology , Humans , Candida auris/drug effects , Tea Tree Oil/pharmacology , Honey , Chlorhexidine/pharmacology , Leptospermum/chemistry
16.
J Microbiol Biotechnol ; 34(7): 1365-1375, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-38881183

ABSTRACT

The rise of Candida auris, a multidrug-resistant fungal pathogen, across more than 40 countries, has signaled an alarming threat to global health due to its significant resistance to existing antifungal therapies. Characterized by its rapid spread and robust drug resistance, C. auris presents a critical challenge in managing infections, particularly in healthcare settings. With research on its biological traits and genetic basis of virulence and resistance still in the early stages, there is a pressing need for a concerted effort to understand and counteract this pathogen. This review synthesizes current knowledge on the epidemiology, biology, genetic manipulation, pathogenicity, diagnostics, and resistance mechanisms of C. auris, and discusses future directions in research and therapeutic development. By exploring the complexities surrounding C. auris, we aim to underscore the importance of advancing research to devise effective control and treatment strategies.


Subject(s)
Antifungal Agents , Candida auris , Candidiasis , Drug Resistance, Multiple, Fungal , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Drug Resistance, Multiple, Fungal/genetics , Candidiasis/microbiology , Candidiasis/drug therapy , Candida auris/genetics , Candida auris/drug effects , Virulence , Animals , Candida/drug effects , Candida/genetics , Candida/pathogenicity
17.
Microbiol Spectr ; 12(7): e0354023, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38842332

ABSTRACT

Candida auris, initially identified in 2009, has rapidly become a critical concern due to its antifungal resistance and significant mortality rates in healthcare-associated outbreaks. To date, whole-genome sequencing (WGS) has identified five unique clades of C. auris, with some strains displaying resistance to all primary antifungal drug classes. In this study, we presented the first WGS analysis of C. auris from Bangladesh, describing its origins, transmission dynamics, and antifungal susceptibility testing (AFST) profile. Ten C. auris isolates collected from hospital settings in Bangladesh were initially identified by CHROMagar Candida Plus, followed by VITEK2 system, and later sequenced using Illumina NextSeq 550 system. Reference-based phylogenetic analysis and variant calling pipelines were used to classify the isolates in different clades. All isolates aligned ~90% with the Clade I C. auris B11205 reference genome. Of the 10 isolates, 8 were clustered with Clade I isolates, highlighting a South Asian lineage prevalent in Bangladesh. Remarkably, the remaining two isolates formed a distinct cluster, exhibiting >42,447 single-nucleotide polymorphism differences compared to their closest Clade IV counterparts. This significant variation corroborates the emergence of a sixth clade (Clade VI) of C. auris in Bangladesh, with potential for international transmission. AFST results showed that 80% of the C. auris isolates were resistant to fluconazole and voriconazole, whereas Clade VI isolates were susceptible to azoles, echinocandins, and pyrimidine analogue. Genomic sequencing revealed ERG11_Y132F mutation conferring azole resistance while FCY1_S70R mutation found inconsequential in describing 5-flucytosine resistance. Our study underscores the pressing need for comprehensive genomic surveillance in Bangladesh to better understand the emergence, transmission dynamics, and resistance profiles of C. auris infections. Unveiling the discovery of a sixth clade (Clade VI) accentuates the indispensable role of advanced sequencing methodologies.IMPORTANCECandida auris is a nosocomial fungal pathogen that is commonly misidentified as other Candida species. Since its emergence in 2009, this multidrug-resistant fungus has become one of the five urgent antimicrobial threats by 2019. Whole-genome sequencing (WGS) has proven to be the most accurate identification technique of C. auris which also played a crucial role in the initial discovery of this pathogen. WGS analysis of C. auris has revealed five distinct clades where isolates of each clade differ among themselves based on pathogenicity, colonization, infection mechanism, as well as other phenotypic characteristics. In Bangladesh, C. auris was first reported in 2019 from clinical samples of a large hospital in Dhaka city. To understand the origin, transmission dynamics, and antifungal-resistance profile of C. auris isolates circulating in Bangladesh, we conducted a WGS-based surveillance study on two of the largest hospital settings in Dhaka, Bangladesh.


Subject(s)
Antifungal Agents , Candida auris , Candidiasis , Microbial Sensitivity Tests , Phylogeny , Whole Genome Sequencing , Bangladesh/epidemiology , Humans , Antifungal Agents/pharmacology , Candidiasis/microbiology , Candidiasis/epidemiology , Candida auris/genetics , Candida auris/drug effects , Candida auris/isolation & purification , Drug Resistance, Fungal , Genome, Fungal , Polymorphism, Single Nucleotide , Candida/genetics , Candida/drug effects , Candida/classification , Candida/isolation & purification , Fluconazole/pharmacology , Female
18.
Antimicrob Agents Chemother ; 68(7): e0038124, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38864612

ABSTRACT

Candida auris is an evolving and concerning global threat. Of particular concern are bloodstream infections related to central venous catheters. We evaluated the activity of taurolidine, a broad-spectrum antimicrobial in catheter lock solutions, against 106 C. auris isolates. Taurolidine was highly active with a MIC50/MIC90 of 512/512 mg/L, over 20-fold lower than lock solution concentrations of ≥13,500 mg/L. Our data demonstrate a theoretical basis for taurolidine-based lock solutions for prevention of C. auris catheter-associated infections.


Subject(s)
Antifungal Agents , Candida auris , Catheter-Related Infections , Microbial Sensitivity Tests , Taurine , Thiadiazines , Thiadiazines/pharmacology , Taurine/analogs & derivatives , Taurine/pharmacology , Catheter-Related Infections/microbiology , Catheter-Related Infections/drug therapy , Catheter-Related Infections/prevention & control , Humans , Antifungal Agents/pharmacology , Candida auris/drug effects , Central Venous Catheters/microbiology , Central Venous Catheters/adverse effects , Candidiasis/microbiology , Candidiasis/drug therapy , Candidemia/microbiology , Candidemia/drug therapy
19.
Med Mycol ; 62(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38877671

ABSTRACT

Candida auris is an emerging fungal pathogen associated with multi-drug resistance rates and widespread outbreaks in hospitals and healthcare units worldwide. Sequencing studies have revealed that different clonal lineages of the fungus seem to be prevalent among distinct geographical sites. The first case of C. auris in Northern Greece was reported in Thessaloniki in October 2022, almost 2 years after the first isolation in Greece (Athens 2019). The Mycology Laboratory of the Medical School of Aristotle University of Thessaloniki stands as the reference laboratory for fungal diseases in Northern Greece and a meticulous search for the yeast, in plenty of suspicious samples, has been run since 2019 in the Lab as well as a retrospective analysis of all its yeasts' collection, back to 2008, with negative results for the presence of C. auris. Here, are presented the findings concerning the outbreak and surveillance of C. auris in Northern Greece, mainly the region of Thessaloniki and the broader area of Macedonia, from October 2022 until August 2023. The isolates from Northern Greece continue to fall in Clade I and present with an almost equal and stable sensitivity profile until now.


The study concerns the outbreak of Candida auris in Northern Greece since October 2022 and the effort for surveillance and epidemiological monitoring. All isolates continue to fall in Clade I and present with an almost equal and stable sensitivity profile till now.


Subject(s)
Candida auris , Candidiasis , Disease Outbreaks , Epidemiological Monitoring , Greece/epidemiology , Humans , Candidiasis/epidemiology , Candidiasis/microbiology , Candida auris/genetics , Candida auris/isolation & purification , Retrospective Studies , Antifungal Agents/pharmacology , Microbial Sensitivity Tests , Male , Drug Resistance, Multiple, Fungal , Candida/isolation & purification , Candida/classification , Candida/genetics , Female
20.
Med Mycol ; 62(6)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935900

ABSTRACT

The World Health Organization (WHO) in 2022 developed a fungal priority pathogen list. Candida auris was ultimately ranked as a critical priority pathogen. PubMed and Web of Science were used to find studies published from 1 January 2011 to 18 February 2021, reporting on predefined criteria including: mortality, morbidity (i.e., hospitalization and disability), drug resistance, preventability, yearly incidence, and distribution/emergence. Thirty-seven studies were included in the final analysis. The overall and 30-day mortality rates associated with C. auris candidaemia ranged from 29% to 62% and 23% to 67%, respectively. The median length of hospital stay was 46-68 days, ranging up to 140 days. Late-onset complications of C. auris candidaemia included metastatic septic complications. Resistance rates to fluconazole were as high as 87%-100%. Susceptibility to isavuconazole, itraconazole, and posaconazole varied with MIC90 values of 0.06-1.0 mg/l. Resistance rates to voriconazole ranged widely from 28% to 98%. Resistance rates ranged between 8% and 35% for amphotericin B and 0%-8% for echinocandins. Over the last ten years, outbreaks due to C. auris have been reported in in all WHO regions. Given the outbreak potential of C. auris, the emergence and spread of MDR strains, and the challenges associated with its identification, and eradication of its environmental sources in healthcare settings, prevention and control measures based on the identified risk factors should be evaluated for their effectiveness and feasibility. Global surveillance studies could better inform the incidence rates and distribution patterns to evaluate the global burden of C. auris infections.


Subject(s)
Antifungal Agents , Candida auris , Candidiasis , Drug Resistance, Fungal , World Health Organization , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candidiasis/microbiology , Candidiasis/epidemiology , Candidiasis/drug therapy , Candida auris/drug effects , Microbial Sensitivity Tests , Candidemia/epidemiology , Candidemia/microbiology , Candidemia/drug therapy , Disease Outbreaks , Candida/drug effects , Candida/classification , Candida/isolation & purification , Incidence
SELECTION OF CITATIONS
SEARCH DETAIL