Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.360
Filter
1.
Acad Emerg Med ; 31(5): 425-455, 2024 May.
Article in English | MEDLINE | ID: mdl-38747203

ABSTRACT

The fourth Society for Academic Emergency Medicine (SAEM) Guidelines for Reasonable and Appropriate Care in the Emergency Department (GRACE-4) is on the topic of the emergency department (ED) management of nonopioid use disorders and focuses on alcohol withdrawal syndrome (AWS), alcohol use disorder (AUD), and cannabinoid hyperemesis syndrome (CHS). The SAEM GRACE-4 Writing Team, composed of emergency physicians and experts in addiction medicine and patients with lived experience, applied the Grading of Recommendations Assessment Development and Evaluation (GRADE) approach to assess the certainty of evidence and strength of recommendations regarding six priority questions for adult ED patients with AWS, AUD, and CHS. The SAEM GRACE-4 Writing Team reached the following recommendations: (1) in adult ED patients (over the age of 18) with moderate to severe AWS who are being admitted to hospital, we suggest using phenobarbital in addition to benzodiazepines compared to using benzodiazepines alone [low to very low certainty of evidence]; (2) in adult ED patients (over the age of 18) with AUD who desire alcohol cessation, we suggest a prescription for one anticraving medication [very low certainty of evidence]; (2a) in adult ED patients (over the age of 18) with AUD, we suggest naltrexone (compared to no prescription) to prevent return to heavy drinking [low certainty of evidence]; (2b) in adult ED patients (over the age of 18) with AUD and contraindications to naltrexone, we suggest acamprosate (compared to no prescription) to prevent return to heavy drinking and/or to reduce heavy drinking [low certainty of evidence]; (2c) in adult ED patients (over the age of 18) with AUD, we suggest gabapentin (compared to no prescription) for the management of AUD to reduce heavy drinking days and improve alcohol withdrawal symptoms [very low certainty of evidence]; (3a) in adult ED patients (over the age of 18) presenting to the ED with CHS we suggest the use of haloperidol or droperidol (in addition to usual care/serotonin antagonists, e.g., ondansetron) to help with symptom management [very low certainty of evidence]; and (3b) in adult ED patients (over the age of 18) presenting to the ED with CHS, we also suggest offering the use of topical capsaicin (in addition to usual care/serotonin antagonists, e.g., ondansetron) to help with symptom management [very low certainty of evidence].


Subject(s)
Alcoholism , Emergency Service, Hospital , Humans , Alcoholism/complications , Vomiting/drug therapy , Vomiting/chemically induced , Vomiting/therapy , Adult , Substance Withdrawal Syndrome/drug therapy , Cannabinoids/therapeutic use , Cannabinoids/adverse effects , Benzodiazepines/therapeutic use , Syndrome , Marijuana Abuse/complications , Male , Female , Cannabinoid Hyperemesis Syndrome
2.
Anal Chim Acta ; 1306: 342621, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692790

ABSTRACT

BACKGROUND: In vivo solid-phase microextraction (SPME) is a minimally invasive, non-exhaustive sample-preparation technique that facilitates the direct isolation of low molecular weight compounds from biological matrices in living systems. This technique is especially useful for the analysis of phytocannabinoids (PCs) in plant material, both for forensic purposes and for monitoring the PC content in growing Cannabis spp. plants. In contrast to traditional extraction techniques, in vivo SPME enables continuous tracking of the changes in the level of PCs during plant growth without the need for plant material collection. In this study, in vivo SPME utilizing biocompatible C18 probes and liquid-chromatography coupled to quadrupole time-of flight mass spectrometry (LC-Q-TOF-MS) is proposed as a novel strategy for the extraction and analysis of the acidic forms of five PCs in growing medicinal cannabis plants. RESULTS: The SPME method was optimized by testing various parameters, including the extraction phase (coating), extraction and desorption times, and the extraction temperature. The proposed method was validated with satisfactory analytical performance regarding linearity (10-3000 ng/mL), limits of quantification, and precision (relative standard deviations below 5.5 %). The proposed method was then successfully applied for the isolation of five acidic forms of PCs, which are main components of growing medicinal cannabis plants. As a proof-of-concept, SPME probes were statically inserted into the inflorescences of two varieties of Cannabis spp. plants (i.e., CBD-dominant and Δ9-THC-dominant) cultivated under controlled conditions for 30 min extraction of tetrahydrocannabinolic acid (Δ9-THCA), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), cannabiviarinic acid (CBVA), and tetrahydrocannabivarinic acid (THCVA). SIGNIFICANCE AND NOVELTY: The results confirmed that the developed SPME-LC-Q-TOF-MS method is a precise and efficient tool that enables direct and rapid isolation and analysis of PCs under in vivo conditions. The proposed methodology is highly appealing option for monitoring the metabolic pathways and compositions of multiple PCs in medicinal cannabis at different stages of plant growth.


Subject(s)
Cannabinoids , Cannabis , Liquid Chromatography-Mass Spectrometry , Solid Phase Microextraction , Cannabinoids/analysis , Cannabis/chemistry , Liquid Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods
3.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731449

ABSTRACT

Cannabis sativa L. (hemp) is a herbaceous plant rich in cannabinoids with a long history of use in pain treatment. The most well-characterized cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC), garnered much attention in chemotherapy-induced peripheral neuropathy (CIPN) treatment. However, few studies have investigated the biological benefits and mechanism of hemp extract on CIPN. In the present study, hemp extract (JG) rich in cannabinoids was extracted by supercritical fluid carbon dioxide extraction (SFCE). The antinociceptive efficacy was evaluated using a paclitaxel-induced peripheral neuropathy (PIPN) rat model based on behavioral tests. Further omics-based approaches were applied to explore the potential mechanisms. The results showed that JG decreased mechanical allodynia, thermal hyperalgesia, and inflammatory cytokines in PIPN rats significantly. Transcriptome analysis identified seven key genes significantly regulated by JG in PIPN model rats, mainly related to the neuroactive ligand-receptor interaction pathway, PPAR signaling pathway, and cAMP signaling pathway. In metabolomic analysis, a total of 39 significantly altered metabolites were identified, mainly correlated with pentose and glucuronate interconversions and the glycerophospholipid metabolism pathway. Gut microbiota analysis suggested that increased community Lachnoclostridium and Lachnospiraceae_UCG-006 in PIPN rats can be reversed significantly by JG. In conclusion, hemp extract exhibited antinociceptive effects on PIPN. The analgesic mechanism was probably related to the regulation of inflammation, neuroactive ligand-receptor interaction pathway, sphingolipid metabolism, etc. This study provides novel insights into the functional interactions of Cannabis sativa L. extract on PIPN.


Subject(s)
Analgesics , Cannabis , Neuralgia , Paclitaxel , Plant Extracts , Animals , Cannabis/chemistry , Neuralgia/chemically induced , Neuralgia/drug therapy , Neuralgia/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rats , Analgesics/pharmacology , Analgesics/chemistry , Paclitaxel/adverse effects , Male , Metabolomics , Disease Models, Animal , Hyperalgesia/drug therapy , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Cannabinoids/pharmacology , Multiomics
4.
BMJ Case Rep ; 17(4)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688569

ABSTRACT

SummaryCannabis use is legalised in many countries. We present a patient in their 40s who complained of recurrent abdominal pain and associated nausea and vomiting. The patient was previously seen in various hospitals, treated symptomatically, and discharged with a diagnosis of non-specific abdominal pain. The patient had a chronic history of smoking cannabis and nicotine and drinking alcohol. Abdominal examination revealed no masses, and abdominal X-ray was normal. Blood tests and gastroduodenoscopy revealed no obvious aetiology. Intravenous fluids, together with antiemetics and proton pump inhibitors, were administered. The patient also received counselling and was advised to stop cannabis use. At discharge, the patient was well and asked to come back for review in 2 weeks, and, thereafter monthly for a period of 6 months after stopping cannabis use. The patient reported no recurrent symptoms despite continued cigarette and alcohol use. A suspected cannabinoid hyperemesis syndrome (CHS) became a consideration. Awareness of cannabis-related disorders such as CHS may assist in avoiding costly hospital workups.


Subject(s)
Abdominal Pain , Cannabinoids , Vomiting , Humans , Vomiting/chemically induced , Adult , Abdominal Pain/chemically induced , Male , Cannabinoids/adverse effects , Syndrome , Nausea/chemically induced , Marijuana Abuse/complications , Antiemetics/adverse effects , Cannabinoid Hyperemesis Syndrome
5.
BMC Pregnancy Childbirth ; 24(1): 263, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605299

ABSTRACT

BACKGROUND: Children exposed prenatally to alcohol or cannabinoids individually can exhibit growth deficits and increased risk for adverse birth outcomes. However, these drugs are often co-consumed and their combined effects on early brain development are virtually unknown. The blood vessels of the fetal brain emerge and mature during the neurogenic period to support nutritional needs of the rapidly growing brain, and teratogenic exposure during this gestational window may therefore impair fetal cerebrovascular development. STUDY DESIGN: To determine whether prenatal polysubstance exposure confers additional risk for impaired fetal-directed blood flow, we performed high resolution in vivo ultrasound imaging in C57Bl/6J pregnant mice. After pregnancy confirmation, dams were randomly assigned to one of four groups: drug-free control, alcohol-exposed, cannabinoid-exposed or alcohol-and-cannabinoid-exposed. Drug exposure occurred daily between Gestational Days 12-15, equivalent to the transition between the first and second trimesters in humans. Dams first received an intraperitoneal injection of either cannabinoid agonist CP-55,940 (750 µg/kg) or volume-equivalent vehicle. Then, dams were placed in vapor chambers for 30 min of inhalation of either ethanol or room air. Dams underwent ultrasound imaging on three days of pregnancy: Gestational Day 11 (pre-exposure), Gestational Day 13.5 (peri-exposure) and Gestational Day 16 (post-exposure). RESULTS: All drug exposures decreased fetal cranial blood flow 24-hours after the final exposure episode, though combined alcohol and cannabinoid co-exposure reduced internal carotid artery blood flow relative to all other exposures. Umbilical artery metrics were not affected by drug exposure, indicating a specific vulnerability of fetal cranial circulation. Cannabinoid exposure significantly reduced cerebroplacental ratios, mirroring prior findings in cannabis-exposed human fetuses. Post-exposure cerebroplacental ratios significantly predicted subsequent perinatal mortality (p = 0.019, area under the curve, 0.772; sensitivity, 81%; specificity, 85.70%) and retroactively diagnosed prior drug exposure (p = 0.005; AUC, 0.861; sensitivity, 86.40%; specificity, 66.7%). CONCLUSIONS: Fetal cerebrovasculature is significantly impaired by exposure to alcohol or cannabinoids, and co-exposure confers additional risk for adverse birth outcomes. Considering the rising potency and global availability of cannabis products, there is an imperative for research to explore translational models of prenatal drug exposure, including polysubstance models, to inform appropriate strategies for treatment and care in pregnancies affected by drug exposure.


Subject(s)
Cannabinoids , Perinatal Death , Pregnancy , Mice , Female , Animals , Child , Humans , Cannabinoids/adverse effects , Perinatal Mortality , Ethanol/adverse effects , Fetus/blood supply , Disease Models, Animal , Cerebrovascular Circulation
6.
Curr Biol ; 34(9): 1918-1929.e5, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38636514

ABSTRACT

The insular cortex, or insula, is a large brain region involved in the detection of thirst and the regulation of water intake. However, our understanding of the topographical, circuit, and molecular mechanisms for controlling water intake within the insula remains parcellated. We found that type-1 cannabinoid (CB1) receptors in the insular cortex cells participate in the regulation of water intake and deconstructed the circuit mechanisms of this control. Topographically, we revealed that the activity of excitatory neurons in both the anterior insula (aIC) and posterior insula (pIC) increases in response to water intake, yet only the specific removal of CB1 receptors in the pIC decreases water intake. Interestingly, we found that CB1 receptors are highly expressed in insula projections to the basolateral amygdala (BLA), while undetectable in the neighboring central part of the amygdala. Thus, we recorded the neurons of the aIC or pIC targeting the BLA (aIC-BLA and pIC-BLA) and found that they decreased their activity upon water drinking. Additionally, chemogenetic activation of pIC-BLA projection neurons decreased water intake. Finally, we uncovered CB1-dependent short-term synaptic plasticity (depolarization-induced suppression of excitation [DSE]) selectively in pIC-BLA, compared with aIC-BLA synapses. Altogether, our results support a model where CB1 receptor signaling promotes water intake by inhibiting the pIC-BLA pathway, thereby contributing to the fine top-down control of thirst responses.


Subject(s)
Drinking , Insular Cortex , Receptor, Cannabinoid, CB1 , Animals , Receptor, Cannabinoid, CB1/metabolism , Male , Mice , Drinking/physiology , Insular Cortex/physiology , Cannabinoids/metabolism , Cannabinoids/pharmacology , Neurons/physiology , Neurons/metabolism , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Basolateral Nuclear Complex/physiology , Basolateral Nuclear Complex/metabolism
7.
Molecules ; 29(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38611847

ABSTRACT

Central and peripheral mechanisms of the endocannabinoid system (ECS) favor energy intake and storage. The ECS, especially cannabidiol (CBD) receptors, controls adipocyte differentiation (hyperplasia) and lipid accumulation (hypertrophy) in adipose tissue. In white adipose tissue, cannabidiol receptor 1 (CB1) stimulation increases lipogenesis and inhibits lipolysis; in brown adipose tissue, it decreases mitochondrial thermogenesis and biogenesis. This study compared the availability of phytocannabinoids [CBD and Δ9-tetrahydrocannabinol (THC)] and polyunsaturated fatty acids [omega 3 (ω3) and omega 6 (ω6)] in different hemp seed oils (HSO). The study also examined the effect of HSO on adipocyte lipid accumulation by suppressing cannabinoid receptors in adipogenesis-stimulated human mesenchymal stem cells (hMSCs). Most importantly, Oil-Red-O' and Nile red tests showed that HSO induced adipogenic hMSC differentiation without differentiation agents. Additionally, HSO-treated cells showed increased peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to controls (hMSC). HSO reduced PPARγ mRNA expression after differentiation media (DM) treatment. After treatment with HSO, DM-hMSCs had significantly lower CB1 mRNA and protein expressions than normal hMSCs. HSO treatment also decreased transient receptor potential vanilloid 1 (TRPV1), fatty acid amide hydrolase (FAAH), and monoacylglycerol lipase (MGL) mRNAs in hMSC and DM-hMSCs. HSO treatment significantly decreased CB1, CB2, TRPV1, and G-protein-coupled receptor 55 (GPCR55) protein levels in DM-hMSC compared to hMSC in western blot analysis. In this study, HSO initiated adipogenic differentiation in hMSC without DM, but it suppressed CB1 gene and protein expression, potentially decreasing adipocyte lipid accumulation and lipogenic enzymes.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Mesenchymal Stem Cells , Plant Extracts , Humans , Cannabinoids/pharmacology , Cannabidiol/pharmacology , PPAR gamma , Endocannabinoids , Adipose Tissue, Brown , RNA, Messenger
8.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612415

ABSTRACT

The endogenous cannabinoid system (ECS) plays a critical role in the regulation of various physiological functions, including sleep, mood, and neuroinflammation. Phytocannabinoids such as Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinomimimetics, and some N-acylethanolamides, particularly palmitoyethanolamide, have emerged as potential therapeutic agents for the management of sleep disorders. THC, the psychoactive component of cannabis, may initially promote sleep, but, in the long term, alters sleep architecture, while CBD shows promise in improving sleep quality without psychoactive effects. Clinical studies suggest that CBD modulates endocannabinoid signaling through several receptor sites, offering a multifaceted approach to sleep regulation. Similarly, palmitoylethanolamide (PEA), in addition to interacting with the endocannabinoid system, acts as an agonist on peroxisome proliferator-activated receptors (PPARs). The favorable safety profile of CBD and PEA and the potential for long-term use make them an attractive alternative to conventional pharmacotherapy. The integration of the latter two compounds into comprehensive treatment strategies, together with cognitive-behavioral therapy for insomnia (CBT-I), represents a holistic approach to address the multifactorial nature of sleep disorders. Further research is needed to establish the optimal dosage, safety, and efficacy in different patient populations, but the therapeutic potential of CBD and PEA offers hope for improved sleep quality and general well-being.


Subject(s)
Cannabidiol , Cannabinoids , Sleep Wake Disorders , Humans , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Endocannabinoids , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Sleep
9.
J Chromatogr A ; 1722: 464888, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38613932

ABSTRACT

Liquid-liquid chromatography (LLC) is a separation technique that utilizes a biphasic solvent system as the mobile and stationary phases. The components are separated solely due to their different distributions between the two liquid phases. Gradient change in the mobile phase composition during the chromatographic process is a powerful method for improving the resolution of separation or shortening the process time. Gradient elution readily applies to LLC with biphasic solvent systems in which the stationary phase composition remains nearly constant when the mobile phase composition changes. This work proposes a model-based approach to optimize gradients in LLC and circumvent tedious trial-and-error experiments. The solutes' distribution constant depends on the mobile phase composition. Thus, the distribution constants were described as a function of the content of one of the solvents (= modifier) in the mobile phase. The dispersive and mass-transfer effects in the tubing and the column are modeled with a stage model. Only a few experiments are required to determine the model parameters. After the validation of the model and its parameters, the model can be used for LLC gradient optimization. The proposed approach was demonstrated for a gradient LLC separation of a mixture of four cannabinoids. Two different gradient shapes, one-step and linear gradient, were considered. For a pre-selected minimal purity requirement, the gradient was optimized for maximum process efficiency, defined as the product of productivity and yield. An experiment conducted with the optimized gradient conditions was in good agreement with the simulation, showing the potential of the proposed method.


Subject(s)
Cannabinoids , Cannabinoids/isolation & purification , Cannabinoids/chemistry , Cannabinoids/analysis , Chromatography, Liquid/methods , Solvents/chemistry , Models, Chemical
10.
Front Immunol ; 15: 1373435, 2024.
Article in English | MEDLINE | ID: mdl-38601151

ABSTRACT

Introduction: The involvement of endocannabinoid system (ECS) in the inflammatory cascade, and the ability of phytocannabinoids, endocannabinoids and their synthetic analogues to modulate it has become an interesting research area for new therapeutic approaches in inflammatory skin diseases. Cannabidiol (CBD) appears to be the most promising among phytocannabinoids, due to the lack of psychotropic effects and low toxicity profile. Its anti-inflammatory action has been highlighted in different preclinical models, ranging from experimental colitis to arthritis and neuroinflammation. Our aim was to evaluate CBD immune-modulatory effects in peripheral blood mononuclear cells (PBMC) of psoriasis individuals with particular attention to both innate and adaptative immune arms. Methods: We performed in vitro immune functional experiments to analyze CBD action on various immune cells active in psoriatic lesions. Results: The results showed that CBD produced a shift from Th1 to Th2 response, while boosting cytotoxic activity of Natural Killer (NK) cells. Furthermore, it also exerted a potent action on monocyte differentiation as, after CBD treatment, monocytes from psoriatic individuals were unable to migrate in response to inflammatory stimuli and to fully differentiate into mature dendritic cells. Finally, a M2 skewing of monocyte-derived macrophages by CBD also contributed to the fine tuning of the magnitude of immune responses. Conclusions: These data uncover new potential immunomodulatory properties of this cannabinoid suggesting a possible therapeutic action in the treatment of multiple inflammatory skin diseases.


Subject(s)
Cannabidiol , Cannabinoids , Psoriasis , Humans , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Leukocytes, Mononuclear , Psoriasis/drug therapy , Endocannabinoids
11.
J Photochem Photobiol B ; 254: 112902, 2024 May.
Article in English | MEDLINE | ID: mdl-38569457

ABSTRACT

The effect of low artificial Ultraviolet (UV) on the DNA methylation remains controversial. This study addresses how differential photoperiods of UV radiation affect the biochemical and molecular behaviors of Cannabis indica cell suspension cultures. The cell suspensions were illuminated with the compact fluorescent lamps (CFL), emitting a combination of 10% UVB, 30% UVA, and the rest visible wavelengths for 0, 4, 8, and 16 h. The applied photoperiods influenced cell morphological characteristics. The 4 h photoperiod was the most effective treatment for improving biomass, growth index and cell viability percentage while these indices remained non-significant in the 16 h treatment. The methylation-sensitive amplified polymorphism (MASP) assay revealed that the UV radiation was epigenetically accompanied by DNA hypermethylation. The light-treated cells significantly displayed higher relative expression of the cannabidiolic| acid synthase (CBDAS) and delta9-tetrahydrocannabinolic acid synthase (THCAS) genes about 4-fold. The expression of the olivetolic acid cyclase (OAC) and olivetol synthase (OLS) genes exhibited an upward trend in response to the UV radiation. The light treatments also enhanced the proline content and protein concentration. The 4 h illumination was significantly capable of improving the cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) concentrations, in contrast with 16 h. By increasing the illumination exposure time, the activity of the phenylalanine ammonia-lyase (PAL) enzyme linearly upregulated. The highest amounts of the phenylpropanoid derivatives were observed in the cells cultured under the radiation for 4 h. Taken collective, artificial UV radiation can induce DNA methylation modifications and impact biochemical and molecular differentiation in the cell suspensions in a photoperiod-dependent manner.


Subject(s)
Cannabinoids , Cannabis , Cannabis/genetics , Cannabis/chemistry , Cannabinoids/pharmacology , Dronabinol/pharmacology , DNA Methylation , Ultraviolet Rays , Cell Proliferation
12.
Plant Mol Biol ; 114(3): 47, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632206

ABSTRACT

Natural Antisense Transcripts (NATs) are a kind of complex regulatory RNAs that play crucial roles in gene expression and regulation. However, the NATs in Cannabis Sativa L., a widely economic and medicinal plant rich in cannabinoids remain unknown. In this study, we comprehensively predicted C. sativa NATs genome-wide using strand-specific RNA sequencing (ssRNA-Seq) data, and validated the expression profiles by strand-specific quantitative reverse transcription PCR (ssRT-qPCR). Consequently, a total of 307 NATs were predicted in C. sativa, including 104 cis- and 203 trans- NATs. Functional enrichment analysis demonstrated the potential involvement of the C. sativa NATs in DNA polymerase activity, RNA-DNA hybrid ribonuclease activity, and nucleic acid binding. Finally, 18 cis- and 376 trans- NAT-ST pairs were predicted to produce 621 cis- and 5,679 trans- small interfering RNA (nat-siRNAs), respectively. These nat-siRNAs were potentially involved in the biosynthesis of cannabinoids and cellulose. All these results will shed light on the regulation of NATs and nat-siRNAs in C. sativa.


Subject(s)
Cannabinoids , Cannabis , RNA, Antisense/analysis , RNA, Antisense/genetics , RNA, Antisense/metabolism , Cannabis/genetics , RNA, Small Interfering/analysis , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Genome, Plant
13.
Biomolecules ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672480

ABSTRACT

Early adversity, the loss of the inhibitory GABAergic interneuron parvalbumin, and elevated neuroinflammation are associated with depression. Individuals with a maltreatment history initiate medicinal cannabis use earlier in life than non-maltreated individuals, suggesting self-medication. Female rats underwent maternal separation (MS) between 2 and 20 days of age to model early adversity or served as colony controls. The prelimbic cortex and behavior were examined to determine whether MS alters the cannabinoid receptor 2 (CB2), which has anti-inflammatory properties. A reduction in the CB2-associated regulatory enzyme MARCH7 leading to increased NLRP3 was observed with Western immunoblots in MS females. Immunohistochemistry with stereology quantified numbers of parvalbumin-immunoreactive cells and CB2 at 25, 40, and 100 days of age, revealing that the CB2 receptor associated with PV neurons initially increases at P25 and subsequently decreases by P40 in MS animals, with no change in controls. Confocal and triple-label microscopy suggest colocalization of these CB2 receptors to microglia wrapped around the parvalbumin neuron. Depressive-like behavior in MS animals was elevated at P40 and reduced with the CB2 agonist HU-308 or a CB2-overexpressing lentivirus microinjected into the prelimbic cortex. These results suggest that increasing CB2 expression by P40 in the prelimbic cortex prevents depressive behavior in MS female rats.


Subject(s)
Depression , Maternal Deprivation , Receptor, Cannabinoid, CB2 , Stress, Psychological , Animals , Female , Receptor, Cannabinoid, CB2/metabolism , Rats , Depression/metabolism , Stress, Psychological/metabolism , Parvalbumins/metabolism , Behavior, Animal , Rats, Sprague-Dawley , Cannabinoids/pharmacology
14.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673862

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most prevalent and dose-limiting complications in chemotherapy patients. One identified mechanism underlying CIPN is neuroinflammation. Most of this research has been conducted in only male or female rodent models, making direct comparisons regarding the role of sex differences in the neuroimmune underpinnings of CIPN limited. Moreover, most measurements have focused on the dorsal root ganglia (DRG) and/or spinal cord, while relatively few studies have been aimed at characterizing neuroinflammation in the brain, for example the periaqueductal grey (PAG). The overall goals of the present study were to determine (1) paclitaxel-associated changes in markers of inflammation in the PAG and DRG in male and female C57Bl6 mice and (2) determine the effect of prophylactic administration of an anti-inflammatory cannabinoid, cannabigerol (CBG). In Experiment 1, male and female mice were treated with paclitaxel (8-32 mg/kg/injection, Days 1, 3, 5, and 7) and mechanical sensitivity was measured using Von Frey filaments on Day 7 (Cohort 1) and Day 14 (Cohort 2). Cohorts were euthanized on Day 8 or 15, respectively, and DRG and PAG were harvested for qPCR analysis of the gene expression of markers of pain and inflammation Aig1, Gfap, Ccl2, Cxcl9, Tlr4, Il6, and Calca. In Experiment 2, male and female mice were treated with vehicle or 10 mg/kg CBG i.p. 30 min prior to each paclitaxel injection. Mechanical sensitivity was measured on Day 14. Mice were euthanized on Day 15, and PAG were harvested for qPCR analysis of the gene expression of Aig1, Gfap, Ccl2, Cxcl9, Tlr4, Il6, and Calca. Paclitaxel produced a transient increase in potency to produce mechanical sensitivity in male versus female mice. Regarding neuroinflammation, more gene expression changes were apparent earlier in the DRG and at a later time point in the PAG. Also, more changes were observed in females in the PAG than males. Overall, sex differences were observed for most markers at both time points and regions. Importantly, in both the DRG and PAG, most increases in markers of neuroinflammation and pain occurred at paclitaxel doses higher than those associated with significant changes in the mechanical threshold. Two analytes that demonstrated the most compelling sexual dimorphism and that changed more in males were Cxcl9 and Ccl2, and Tlr4 in females. Lastly, prophylactic administration of CBG protected the male and female mice from increased mechanical sensitivity and female mice from neuroinflammation in the PAG. Future studies are warranted to explore how these sex differences may shed light on the mechanisms of CIPN and how non-psychoactive cannabinoids such as CBG may engage these targets to prevent or attenuate the effects of paclitaxel and other chemotherapeutic agents on the nervous system.


Subject(s)
Mice, Inbred C57BL , Paclitaxel , Animals , Paclitaxel/adverse effects , Female , Male , Mice , Cannabinoids/pharmacology , Cannabinoids/administration & dosage , Neuroinflammatory Diseases/drug therapy , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Sex Factors , Hyperalgesia/drug therapy , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Sex Characteristics , Inflammation/drug therapy , Inflammation/metabolism
15.
Molecules ; 29(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38675703

ABSTRACT

While the opioid crisis has justifiably occupied news headlines, emergency rooms are seeing many thousands of visits for another cause: cannabinoid toxicity. This is partly due to the spread of cheap and extremely potent synthetic cannabinoids that can cause serious neurological and cardiovascular complications-and deaths-every year. While an opioid overdose can be reversed by naloxone, there is no analogous treatment for cannabis toxicity. Without an antidote, doctors rely on sedatives, with their own risks, or 'waiting it out' to treat these patients. We have shown that the canonical synthetic 'designer' cannabinoids are highly potent CB1 receptor agonists and, as a result, competitive antagonists may struggle to rapidly reverse an overdose due to synthetic cannabinoids. Negative allosteric modulators (NAMs) have the potential to attenuate the effects of synthetic cannabinoids without having to directly compete for binding. We tested a group of CB1 NAMs for their ability to reverse the effects of the canonical synthetic designer cannabinoid JWH018 in vitro in a neuronal model of endogenous cannabinoid signaling and also in vivo. We tested ABD1085, RTICBM189, and PSNCBAM1 in autaptic hippocampal neurons that endogenously express a retrograde CB1-dependent circuit that inhibits neurotransmission. We found that all of these compounds blocked/reversed JWH018, though some proved more potent than others. We then tested whether these compounds could block the effects of JWH018 in vivo, using a test of nociception in mice. We found that only two of these compounds-RTICBM189 and PSNCBAM1-blocked JWH018 when applied in advance. The in vitro potency of a compound did not predict its in vivo potency. PSNCBAM1 proved to be the more potent of the compounds and also reversed the effects of JWH018 when applied afterward, a condition that more closely mimics an overdose situation. Lastly, we found that PSNCBAM1 did not elicit withdrawal after chronic JWH018 treatment. In summary, CB1 NAMs can, in principle, reverse the effects of the canonical synthetic designer cannabinoid JWH018 both in vitro and in vivo, without inducing withdrawal. These findings suggest a novel pharmacological approach to at last provide a tool to counter cannabinoid toxicity.


Subject(s)
Cannabinoids , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB1/metabolism , Animals , Cannabinoids/pharmacology , Cannabinoids/chemistry , Allosteric Regulation/drug effects , Mice , Humans , Indoles/pharmacology , Indoles/chemistry , Male
16.
Scand J Clin Lab Invest ; 84(2): 125-132, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619215

ABSTRACT

This study investigated the effects of hexahydrocannabinol (HHC) and other unclassified cannabinoids, which were recently introduced to the recreational drug market, on cannabis drug testing in urine and oral fluid samples. After the appearance of HHC in Sweden in 2022, the number of posts about HHC on an online drug discussion forum increased significantly in the spring of 2023, indicating increased interest and use. In parallel, the frequency of false positive screening tests for tetrahydrocannabinol (THC) in oral fluid, and for its carboxy metabolite (THC-COOH) in urine, rose from <2% to >10%. This suggested that HHC cross-reacted with the antibodies in the immunoassay screening, which was confirmed in spiking experiments with HHC, HHC-COOH, HHC acetate (HHC-O), hexahydrocannabihexol (HHC-H), hexahydrocannabiphorol (HHC-P), and THC-P. When HHC and HHC-P were classified as narcotics in Sweden on 11 July 2023, they disappeared from the online and street shops market and were replaced by other unregulated variants (e.g. HHC-O and THC-P). In urine samples submitted for routine cannabis drug testing, HHC-COOH concentrations up to 205 (mean 60, median 27) µg/L were observed. To conclude, cannabis drug testing cannot rely on results from immunoassay screening, as it cannot distinguish between different tetra- and hexahydrocannabinols, some being classified but others unregulated. The current trend for increased use of unregulated cannabinols will likely increase the proportion of positive cannabis screening results that need to be confirmed with mass spectrometric methods. However, the observed cross-reactivity also means a way to pick up use of new cannabinoids that otherwise risk going undetected.


Subject(s)
Illicit Drugs , Substance Abuse Detection , Humans , Substance Abuse Detection/methods , Illicit Drugs/urine , Illicit Drugs/analysis , Sweden , Dronabinol/urine , Dronabinol/analysis , Dronabinol/analogs & derivatives , Cannabis/chemistry , Saliva/chemistry , Cannabinoids/urine , Cannabinoids/analysis , Cannabinol/analysis , Cannabinol/urine , Cross Reactions , Immunoassay/methods
17.
Phytochemistry ; 222: 114076, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570005

ABSTRACT

The high value of fiber-type Cannabis sativa L. (hemp) due to its phytochemicals has yet to be fully recognized and leveraged. Besides cannabidiol (CBD), which is the most prevalent non-psychoactive cannabinoid, hemp contains numerous other cannabinoids with unexplored bioactivities, in addition to various compound classes. Previous works have aimed to correlate chemical profiles of C. sativa inflorescences with important parameters, mostly based on experiments under controlled conditions. However, mapping studies that explore the phytochemical diversity of hemp in a more realistic context are crucial to guide decisions at multiple levels, especially in areas where hemp cultivation was recently re-authorized, including Mediterranean countries. In this work, a powerful strategy was followed to map the phytochemical diversity of cultivated hemp in Greece, being the first study of its kind for this environment. A panel of 98 inflorescence samples, covering two harvesting years, eleven geographical regions and seven commonly used EU varieties, were studied using a combination of targeted and untargeted approaches. Quantitative results based on UPLC-PDA revealed relatively constant CBD/THC (total) ratios, while profiling by LC-HRMS effectively probed the phytochemical variability of samples, and led to the annotation of 88 metabolites, including a multitude of minor cannabinoids. Multivariate analysis substantiated a strong effect of harvesting year in sample discrimination and related biomarkers were revealed, belonging to fatty acids and flavonoids. The effect of geographical region and, especially, variety on chemical variation patterns was more intricate to interpret. The results of this work are envisioned to enhance our understanding of the real-world phytochemical complexity of C. sativa (hemp), with a view to maximized utilization of hemp for the promotion of human well-being.


Subject(s)
Cannabis , Phytochemicals , Cannabis/chemistry , Greece , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Cannabinoids/chemistry , Cannabinoids/analysis
18.
Behav Pharmacol ; 35(4): 161-171, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38660819

ABSTRACT

Cannabis is a pharmacologically complex plant consisting of hundreds of potentially active compounds. One class of compounds present in cannabis that has received little attention are terpenes. Traditionally thought to impart aroma and flavor to cannabis, it has become increasingly recognized that terpenes might exert therapeutic effects themselves. Several recent reports have also indicated terpenes might behave as cannabinoid type 1 (CB1) receptor agonists. This study aimed to investigate whether several terpenes present in cannabis produce discriminative stimulus effects similar to or enhance the effects of Δ 9 -tetrahydrocannabinol (THC). Subsequent experiments explored other potential cannabimimetic effects of these terpenes. Rats were trained to discriminate THC from vehicle while responding under a fixed-ratio 10 schedule of food presentation. Substitution testing was performed with the CB receptor agonist JWH-018 and the terpenes linalool, limonene, γ-terpinene and α-humulene alone. Terpenes were also studied in combination with THC. Finally, THC and terpenes were tested in the tetrad assay to screen for CB1-receptor agonist-like effects. THC and JWH-018 dose-dependently produced responding on the THC-paired lever. When administered alone, none of the terpenes produced responding predominantly on the THC-paired lever. When administered in combination with THC, none of the terpenes enhanced the potency of THC, and in the case of α-humulene, decreased the potency of THC to produce responding on the THC-paired lever. While THC produced effects in all four tetrad components, none of the terpenes produced effects in all four components. Therefore, the terpenes examined in this report do not have effects consistent with CB1 receptor agonist properties in the brain.


Subject(s)
Cannabis , Dronabinol , Terpenes , Animals , Terpenes/pharmacology , Rats , Dronabinol/pharmacology , Male , Cannabinoids/pharmacology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/metabolism , Indoles/pharmacology , Naphthalenes/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Rats, Sprague-Dawley , Dose-Response Relationship, Drug , Discrimination Learning/drug effects , Discrimination, Psychological/drug effects
19.
Article in English | MEDLINE | ID: mdl-38588664

ABSTRACT

To investigate cannabinoid content and profiles, 16 cannabinoids were quantified in 30 commercial hemp seed edible oils. In addition, one hemp seed oil was subjected to thermal processing up to 200 °C for up to 60 min. UHPLC-MS/MS was used for analysis. The content of cannabinoids in the samples ranged from 9 to 279 mg kg-1 (sum) and for Δ9-tetrahydrocannabinol (Δ9-THC) from 0.2 to 6.7 mg kg-1. Three samples exceeded the EU Δ9-THC equivalent maximum levels of 7.5 mg kg-1 for hemp seed oils. Cannabinoid profiles can provide indications of different product characteristics (e.g. degree of processing, variety of plant material). Furthermore, intense thermal processing (200 °C, 60 min) led to 38% decrease in sum cannabinoid content (sum of all analysed cannabinoids in this study), 99% decrease in cannabinoid acids, and 22% increase in Δ9-THC.


Subject(s)
Cannabinoids , Cannabis , Hot Temperature , Plant Extracts , Plant Oils , Seeds , Cannabis/chemistry , Cannabinoids/analysis , Plant Oils/chemistry , Plant Oils/analysis , Chromatography, High Pressure Liquid , Seeds/chemistry , Tandem Mass Spectrometry , Food Contamination/analysis
20.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673788

ABSTRACT

Phytocannabinoids, a diverse group of naturally occurring compounds extracted from the Cannabis plant, have attracted interest due to their potential pharmacological effects and medicinal uses. This comprehensive review presents the intricate pharmacological profiles of phytocannabinoids while exploring the diverse impacts these substances have on biological systems. From the more than one hundred cannabinoids which were identified in the Cannabis plant so far, cannabidiol (CBD) and tetrahydrocannabinol (THC) are two of the most extensively studied phytocannabinoids. CBD is a non-psychoactive compound, which exhibits potential anti-inflammatory, neuroprotective, and anxiolytic properties, making it a promising candidate for a wide array of medical conditions. THC, known for its psychoactive effects, possesses analgesic and antiemetic properties, contributing to its therapeutic potential. In addition to THC and CBD, a wide range of additional phytocannabinoids have shown intriguing pharmacological effects, including cannabichromene (CBC), cannabigerol (CBG), and cannabinol (CBN). The endocannabinoid system, made up of the enzymes involved in the production and breakdown of endocannabinoids, cannabinoid receptors (CB1 and CB2), and endogenous ligands (endocannabinoids), is essential for preserving homeostasis in several physiological processes. Beyond their effects on the endocannabinoid system, phytocannabinoids are studied for their ability to modify ion channels, neurotransmitter receptors, and anti-oxidative pathways. The complex interaction between phytocannabinoids and biological systems offers hope for novel treatment approaches and lays the groundwork for further developments in the field of cannabinoid-based medicine. This review summarizes the state of the field, points out information gaps, and emphasizes the need for more studies to fully realize the therapeutic potential of phytocannabinoids.


Subject(s)
Cannabinoids , Humans , Cannabinoids/therapeutic use , Cannabinoids/pharmacology , Animals , Cannabis/chemistry , Endocannabinoids/metabolism , Endocannabinoids/therapeutic use , Cannabidiol/therapeutic use , Cannabidiol/pharmacology , Phytochemicals/therapeutic use , Phytochemicals/pharmacology , Dronabinol/therapeutic use , Dronabinol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...