Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
BMC Biol ; 22(1): 52, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38439107

ABSTRACT

BACKGROUND: Capsella bursa-pastoris, a cosmopolitan weed of hybrid origin, is an emerging model object for the study of early consequences of polyploidy, being a fast growing annual and a close relative of Arabidopsis thaliana. The development of this model is hampered by the absence of a reference genome sequence. RESULTS: We present here a subgenome-resolved chromosome-scale assembly and a genetic map of the genome of Capsella bursa-pastoris. It shows that the subgenomes are mostly colinear, with no massive deletions, insertions, or rearrangements in any of them. A subgenome-aware annotation reveals the lack of genome dominance-both subgenomes carry similar number of genes. While most chromosomes can be unambiguously recognized as derived from either paternal or maternal parent, we also found homeologous exchange between two chromosomes. It led to an emergence of two hybrid chromosomes; this event is shared between distant populations of C. bursa-pastoris. The whole-genome analysis of 119 samples belonging to C. bursa-pastoris and its parental species C. grandiflora/rubella and C. orientalis reveals introgression from C. orientalis but not from C. grandiflora/rubella. CONCLUSIONS: C. bursa-pastoris does not show genome dominance. In the earliest stages of evolution of this species, a homeologous exchange occurred; its presence in all present-day populations of C. bursa-pastoris indicates on a single origin of this species. The evidence coming from whole-genome analysis challenges the current view that C. grandiflora/rubella was a direct progenitor of C. bursa-pastoris; we hypothesize that it was an extinct (or undiscovered) species sister to C. grandiflora/rubella.


Subject(s)
Arabidopsis , Capsella , Rubella , Capsella/genetics , Genomics , Polyploidy
2.
Elife ; 122024 Jan 08.
Article in English | MEDLINE | ID: mdl-38189348

ABSTRACT

Allopolyploidization is a frequent evolutionary transition in plants that combines whole-genome duplication (WGD) and interspecific hybridization. The genome of an allopolyploid species results from initial interactions between parental genomes and long-term evolution. Distinguishing the contributions of these two phases is essential to understanding the evolutionary trajectory of allopolyploid species. Here, we compared phenotypic and transcriptomic changes in natural and resynthesized Capsella allotetraploids with their diploid parental species. We focused on phenotypic traits associated with the selfing syndrome and on transcription-level phenomena such as expression-level dominance (ELD), transgressive expression (TRE), and homoeolog expression bias (HEB). We found that selfing syndrome, high pollen, and seed quality in natural allotetraploids likely resulted from long-term evolution. Similarly, TRE and most down-regulated ELD were only found in natural allopolyploids. Natural allotetraploids also had more ELD toward the self-fertilizing parental species than resynthesized allotetraploids, mirroring the establishment of the selfing syndrome. However, short-term changes mattered, and 40% of the cases of ELD in natural allotetraploids were already observed in resynthesized allotetraploids. Resynthesized allotetraploids showed striking variation of HEB among chromosomes and individuals. Homoeologous synapsis was its primary source and may still be a source of genetic variation in natural allotetraploids. In conclusion, both short- and long-term mechanisms contributed to transcriptomic and phenotypic changes in natural allotetraploids. However, the initial gene expression changes were largely reshaped during long-term evolution leading to further morphological changes.


Subject(s)
Capsella , Humans , Capsella/genetics , Chromosome Pairing , Diploidy , Gene Expression Profiling , Syndrome , Basic Helix-Loop-Helix Transcription Factors
3.
Plant Physiol ; 195(1): 343-355, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38270530

ABSTRACT

Flowering plants contain tightly controlled pollen-pistil interactions required for promoting intraspecific fertilization and preventing interspecific hybridizations. In Arabidopsis (Arabidopsis thaliana), several receptor kinases (RKs) are known to regulate the later stages of intraspecific pollen tube growth and ovular reception in the pistil, but less is known about RK regulation of the earlier stages. The Arabidopsis RECEPTOR-LIKE KINASE IN FLOWERS1 (RKF1)/RKF1-LIKE (RKFL) 1-3 cluster of 4 leucine-rich repeat malectin (LRR-MAL) RKs was previously found to function in the stigma to promote intraspecific pollen hydration. In this study, we tested additional combinations of up to 7 Arabidopsis LRR-MAL RK knockout mutants, including RKF1, RKFL1-3, LysM RLK1-INTERACTING KINASE1, REMORIN-INTERACTING RECEPTOR1, and NEMATODE-INDUCED LRR-RLK2. These LRR-MAL RKs were discovered to function in the female stigma to support intraspecific Arabidopsis pollen tube growth and to establish a prezygotic interspecific barrier against Capsella rubella pollen. Thus, this study uncovered additional biological functions for this poorly understood group of RKs in regulating the early stages of Arabidopsis sexual reproduction.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Flowers , Pollen Tube , Pollen , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Flowers/genetics , Flowers/physiology , Pollen/genetics , Pollen/physiology , Pollen/growth & development , Pollen Tube/genetics , Pollen Tube/growth & development , Pollination/physiology , Capsella/genetics , Capsella/physiology , Capsella/metabolism , Gene Expression Regulation, Plant , Protein Kinases/metabolism , Protein Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Leucine-Rich Repeat Proteins
4.
Am J Bot ; 110(10): e16237, 2023 10.
Article in English | MEDLINE | ID: mdl-37661924

ABSTRACT

PREMISE: Floral scent, usually consisting of multiple compounds, is a complex trait, and its role in pollinator attraction has received increasing attention. However, disentangling the effect of individual floral scent compounds is difficult due to the complexity of isolating the effect of single compounds by traditional methods. METHODS: Using available quasi-isogenic lines (qILs) that were generated as part of the original mapping of the floral scent volatile-related loci CNL1 (benzaldehyde) and TPS2 (ß-ocimene) in Capsella, we generated four genotypes that should only differ in these two compounds. Plants of the four genotypes were introduced into a common garden outside the natural range of C. rubella or C. grandiflora, with individuals of a self-compatible C. grandiflora line as pollen donors, whose different genetic background facilitates the detection of outcrossing events. Visitors to flowers of all five genotypes were compared, and the seeds set during the common-garden period were collected for high-throughput amplicon-based sequencing to estimate their outcrossing rates. RESULTS: Benzaldehyde and ß-ocimene emissions were detected in the floral scent of corresponding genotypes. While some pollinator groups showed specific visitation preferences depending on scent compounds, the outcrossing rates in seeds did not vary among the four scent-manipulated genotypes. CONCLUSIONS: The scent-manipulated Capsella materials constructed using qILs provide a powerful system to study the ecological effects of individual floral scent compounds under largely natural environments. In Capsella, individual benzaldehyde and ß-ocimene emission may act as attractants for different types of pollinators.


Subject(s)
Capsella , Odorants , Humans , Benzaldehydes , Capsella/genetics , Pollination , Flowers
5.
Genetics ; 224(4)2023 08 09.
Article in English | MEDLINE | ID: mdl-37279657

ABSTRACT

Polyploidy is an important generator of evolutionary novelty across diverse groups in the Tree of Life, including many crops. However, the impact of whole-genome duplication depends on the mode of formation: doubling within a single lineage (autopolyploidy) versus doubling after hybridization between two different lineages (allopolyploidy). Researchers have historically treated these two scenarios as completely separate cases based on patterns of chromosome pairing, but these cases represent ideals on a continuum of chromosomal interactions among duplicated genomes. Understanding the history of polyploid species thus demands quantitative inferences of demographic history and rates of exchange between subgenomes. To meet this need, we developed diffusion models for genetic variation in polyploids with subgenomes that cannot be bioinformatically separated and with potentially variable inheritance patterns, implementing them in the dadi software. We validated our models using forward SLiM simulations and found that our inference approach is able to accurately infer evolutionary parameters (timing, bottleneck size) involved with the formation of auto- and allotetraploids, as well as exchange rates in segmental allotetraploids. We then applied our models to empirical data for allotetraploid shepherd's purse (Capsella bursa-pastoris), finding evidence for allelic exchange between the subgenomes. Taken together, our model provides a foundation for demographic modeling in polyploids using diffusion equations, which will help increase our understanding of the impact of demography and selection in polyploid lineages.


Subject(s)
Capsella , Polyploidy , Biological Evolution , Hybridization, Genetic , Capsella/genetics , Demography
6.
Am J Bot ; 110(3): 1-11, 2023 03.
Article in English | MEDLINE | ID: mdl-36758170

ABSTRACT

PREMISE: Researchers often use ecological niche models to predict where species might establish and persist under future or novel climate conditions. However, these predictive methods assume species have stable niches across time and space. Furthermore, ignoring the time of occurrence data can obscure important information about species reproduction and ultimately fitness. Here, we assess compare ecological niche models generated from full-year averages to seasonal models. METHODS: In this study, we generate full-year and monthly ecological niche models for Capsella bursa-pastoris in Europe and North America to see if we can detect changes in the seasonal niche of the species after long-distance dispersal. RESULTS: We find full-year ecological niche models have low transferability across continents and there are continental differences in the climate conditions that influence the distribution of C. bursa-pastoris. Monthly models have greater predictive accuracy than full-year models in cooler seasons, but no monthly models can predict North American summer occurrences very well. CONCLUSIONS: The relative predictive ability of European monthly models compared to North American monthly models suggests a change in the seasonal timing between the native range to the non-native range. These results highlight the utility of ecological niche models at finer temporal scales in predicting species distributions and unmasking subtle patterns of evolution.


Subject(s)
Capsella , Capsella/genetics , Seasons , North America , Europe , Ecosystem
7.
New Phytol ; 237(1): 339-353, 2023 01.
Article in English | MEDLINE | ID: mdl-36254103

ABSTRACT

Polyploidization, the process leading to the increase in chromosome sets, is a major evolutionary transition in plants. Whole-genome duplication (WGD) within the same species gives rise to autopolyploids, whereas allopolyploids result from a compound process with two distinct components: WGD and interspecific hybridization. To dissect the instant effects of WGD and hybridization on gene expression and phenotype, we created a series of synthetic hybrid and polyploid Capsella plants, including diploid hybrids, autotetraploids of both parental species, and two kinds of resynthesized allotetraploids with different orders of WGD and hybridization. Hybridization played a major role in shaping the relative expression pattern of the neo-allopolyploids, whereas WGD had almost no immediate effect on relative gene expression pattern but, nonetheless, still affected phenotypes. No transposable element-mediated genomic shock scenario was observed in either neo-hybrids or neo-polyploids. Finally, WGD and hybridization interacted and the distorting effects of WGD were less strong in hybrids. Whole-genome duplication may even improve hybrid fertility. In summary, while the initial relative gene expression pattern in neo-allotetraploids was almost entirely determined by hybridization, WGD only had trivial effects on relative expression patterns, both processes interacted and had a strong impact on physical attributes and meiotic behaviors.


Subject(s)
Capsella , Capsella/genetics , Gene Duplication , Polyploidy , Hybridization, Genetic , Diploidy , Plants/genetics , Genome, Plant
8.
New Phytol ; 236(6): 2344-2357, 2022 12.
Article in English | MEDLINE | ID: mdl-36089898

ABSTRACT

The shift from outcrossing to selfing is one of the main evolutionary transitions in plants. It is accompanied by profound effects on reproductive traits, the so-called selfing syndrome. Because the transition to selfing also implies deep genomic and ecological changes, one also expects to observe a genomic selfing syndrome. We took advantage of the three independent transitions from outcrossing to selfing in the Capsella genus to characterize the overall impact of mating system change on RNA expression, in flowers but also in leaves and roots. We quantified the extent of both selfing and genomic syndromes, and tested whether changes in expression corresponded to adaptation to selfing or to relaxed selection on traits that were constrained in outcrossers. Mating system change affected gene expression in all three tissues but more so in flowers than in roots and leaves. Gene expression in selfing species tended to converge in flowers but diverged in the two other tissues. Hence, convergent adaptation to selfing dominates in flowers, whereas genetic drift plays a more important role in leaves and roots. The effect of mating system transition is not limited to reproductive tissues and corresponds to both adaptation to selfing and relaxed selection on previously constrained traits.


Subject(s)
Capsella , Capsella/genetics , Self-Fertilization , Pollination/genetics , Biological Evolution , Flowers/genetics , Reproduction/genetics , Gene Expression
9.
Int J Mol Sci ; 23(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35562871

ABSTRACT

Lodging is one of the main reasons for the reduction in seed yield and is the limitation of mechanized harvesting in B. napus. The dissection of the regulatory mechanism of lodging resistance is an important goal in B. napus. In this study, the lodging resistant B. napus line, YG689, derived from the hybridization between B. napus cv. Zhongyou 821 (ZY821) and Capsella bursa-pastoris, was used to dissect the regulation mechanism of hard stem formation by integrating anatomical structure, transcriptome and metabolome analyses. It was shown that the lignocellulose content of YG689 is higher than that of ZY821, and some differentially expressed genes (DEGs) involved in the lignocellulose synthesis pathway were revealed by transcriptome analyses. Meanwhile, GC-TOF-MS and UPLC-QTOF-MS identified 40, 54, and 31 differential metabolites in the bolting stage, first flower stage, and the final flower stage. The differential accumulation of these metabolites might be associated with the lignocellulose biosynthesis in B. napus. Finally, some important genes that regulate the metabolic pathway of lignocellulose biosynthesis, such as BnaA02g18920D, BnaA10g15590D, BnaC05g48040D, and NewGene_216 were identified in B. napus through the combination of transcriptomics and metabolomics data. The present results explored the potential regulatory mechanism of lignocellulose biosynthesis, which provided a new clue for the breeding of B. napus with lodging resistance in the future.


Subject(s)
Brassica napus , Capsella , Brassica napus/genetics , Brassica napus/metabolism , Capsella/genetics , Gene Expression Regulation, Plant , Metabolome , Plant Breeding , Transcriptome
10.
Philos Trans R Soc Lond B Biol Sci ; 377(1855): 20200510, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35634918

ABSTRACT

The shift from outcrossing to self-fertilization (selfing) is considered one of the most prevalent evolutionary transitions in flowering plants. Selfing species tend to share similar reproductive traits in morphology and function, and such a set of traits is called the 'selfing syndrome'. Although the genetic basis of the selfing syndrome has been of great interest to evolutionary biologists, knowledge of the causative genes or mutations was limited until recently. Thanks to advances in population genomic methodologies combined with high-throughput sequencing technologies, several studies have successfully unravelled the molecular and genetic basis for evolution of the selfing syndrome in Capsella, Arabidopsis, Solanum and other genera. Here we first introduce recent research examples that have explored the loci, genes and mutations responsible for the selfing syndrome traits, such as reductions in petal size or in pollen production, that are mainly relevant to pre-pollination processes. Second, we review the relationship between the evolution of selfing and interspecific pollen transfer, highlighting the findings of post-pollination reproductive barriers at the molecular level. We then discuss the emerging view of patterns in evolution of the selfing syndrome, such as the pervasive involvement of loss-of-function mutations and the relative importance of selection versus neutral degradation. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.


Subject(s)
Biological Evolution , Capsella , Capsella/genetics , Plants/genetics , Pollination/genetics , Reproduction/genetics , Self-Fertilization
11.
Ann Bot ; 129(6): 697-708, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35325927

ABSTRACT

BACKGROUND AND AIMS: Self-fertilization is often associated with ecological traits corresponding to the ruderal strategy, and selfers are expected to be less competitive than outcrossers, either because of a colonization/competition trade-off or because of the deleterious genetic effects of selfing. Range expansion could reduce further competitive ability while polyploidy could mitigate the effects of selfing. If pollinators are not limited, individual fitness is thus expected to be higher in outcrossers than in selfers and, within selfers, in polyploids than in diploids. Although often proposed in the botanical literature and also suggested by meta-analyses, these predictions have not been directly tested yet. METHODS: In order to compare fitness and the competitive ability of four Capsella species with a different mating system and ploidy level, we combined two complementary experiments. First, we carried out an experiment outdoors in north-west Greece, i.e. within the range of the obligate outcrossing species, C. grandiflora, where several life history traits were measured under two different disturbance treatments, weeded plots vs. unweeded plots. To better control competition and to remove potential effects of local adaptation of the outcrosser, we also performed a similar competition experiment but under growth chamber conditions. KEY RESULTS: In the outdoor experiment, disturbance of the environment did not affect the phenotype in any of the four species. For most traits, the obligate outcrossing species performed better than all selfing species. In contrast, polyploids did not survive or reproduce better than diploids. Under controlled conditions, as in the field experiment, the outcrosser had a higher fitness than selfing species and was less affected by competition. Finally, contrary to the outdoor experiment where the two behaved identically, polyploid selfers were less affected by competition than diploid selfes. CONCLUSIONS: In the Capsella genus, selfing induces lower fitness than outcrossing and can also reduce competitive ability. The effect of polyploidy is, however, unclear. These results highlight the possible roles of ecological context in the evolution of selfing species.


Subject(s)
Capsella , Capsella/genetics , Ploidies , Polyploidy , Reproduction/genetics , Self-Fertilization
12.
Protoplasma ; 259(3): 595-614, 2022 May.
Article in English | MEDLINE | ID: mdl-34212249

ABSTRACT

Despite the importance of dormancy and dormancy cycling for plants' fitness and life cycle phenology, a comprehensive characterization of the global and cellular epigenetic patterns across space and time in different seed dormancy states is lacking. Using Capsella bursa-pastoris (L.) Medik. (shepherd's purse) seeds with primary and secondary dormancy, we investigated the dynamics of global genomic DNA methylation and explored the spatio-temporal distribution of 5-methylcytosine (5-mC) and histone H4 acetylated (H4Ac) epigenetic marks. Seeds were imbibed at 30 °C in a light regime to maintain primary dormancy, or in darkness to induce secondary dormancy. An ELISA-based method was used to quantify DNA methylation, in relation to total genomic cytosines. Immunolocalization of 5-mC and H4Ac within whole seeds (i.e., including testa) was assessed with reference to embryo anatomy. Global DNA methylation levels were highest in prolonged (14 days) imbibed primary dormant seeds, with more 5-mC marked nuclei present only in specific parts of the seed (e.g., SAM and cotyledons). In secondary dormant seeds, global methylation levels and 5-mC signal where higher at 3 and 7 days than 1 or 14 days. With respect to acetylation, seeds had fewer H4Ac marked nuclei (e.g., SAM) in deeper dormant states, for both types of dormancy. However, the RAM still showed signal after 14 days of imbibition under dormancy-inducing conditions, suggesting a central role for the radicle/RAM in the response to perceived ambient changes and the adjustment of the seed dormancy state. Thus, we show that seed dormancy involves extensive cellular remodeling of DNA methylation and H4 acetylation.


Subject(s)
Capsella , 5-Methylcytosine , Capsella/genetics , DNA Methylation/genetics , Germination/genetics , Histones/genetics , Plant Dormancy/genetics , Seeds/genetics
13.
Mol Biol Evol ; 38(12): 5563-5575, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34498072

ABSTRACT

Accurate estimates of genome-wide rates and fitness effects of new mutations are essential for an improved understanding of molecular evolutionary processes. Although eukaryotic genomes generally contain a large noncoding fraction, functional noncoding regions and fitness effects of mutations in such regions are still incompletely characterized. A promising approach to characterize functional noncoding regions relies on identifying accessible chromatin regions (ACRs) tightly associated with regulatory DNA. Here, we applied this approach to identify and estimate selection on ACRs in Capsella grandiflora, a crucifer species ideal for population genomic quantification of selection due to its favorable population demography. We describe a population-wide ACR distribution based on ATAC-seq data for leaf samples of 16 individuals from a natural population. We use population genomic methods to estimate fitness effects and proportions of positively selected fixations (α) in ACRs and find that intergenic ACRs harbor a considerable fraction of weakly deleterious new mutations, as well as a significantly higher proportion of strongly deleterious mutations than comparable inaccessible intergenic regions. ACRs are enriched for expression quantitative trait loci (eQTL) and depleted of transposable element insertions, as expected if intergenic ACRs are under selection because they harbor regulatory regions. By integrating empirical identification of intergenic ACRs with analyses of eQTL and population genomic analyses of selection, we demonstrate that intergenic regulatory regions are an important source of nearly neutral mutations. These results improve our understanding of selection on noncoding regions and the role of nearly neutral mutations for evolutionary processes in outcrossing Brassicaceae species.


Subject(s)
Capsella , Capsella/genetics , Chromatin/genetics , DNA Transposable Elements , Genome, Plant , Humans , Selection, Genetic
14.
Mol Biol Evol ; 38(10): 4310-4321, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34097067

ABSTRACT

Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic data sets, one from Capsella grandiflora and one from Drosophila melanogaster. We consider how processes such as drift, admixture, Hill-Robertson interference, and epistasis may contribute to these patterns. We report that most types of mutations exhibit positive LD, particularly, if they are predicted to be less deleterious. We show with simulations that this pattern arises easily in a model of admixture or distance-biased mating, and that genome-wide differences across site types are generally expected due to differences in the strength of purifying selection even in the absence of epistasis. We further explore how signed LD decays on a finer scale, showing that loss of function mutations exhibit particularly positive LD across short distances, a pattern consistent with intragenic antagonistic epistasis. Controlling for genomic distance, signed LD in C. grandiflora decays faster within genes, compared with between genes, likely a by-product of frequent recombination in gene promoters known to occur in plant genomes. Finally, we use information from published biological networks to explore whether there is evidence for negative synergistic epistasis between interacting radical missense mutations. In D. melanogaster networks, we find a modest but significant enrichment of negative LD, consistent with the possibility of intranetwork negative synergistic epistasis.


Subject(s)
Capsella/genetics , Drosophila melanogaster , Linkage Disequilibrium , Animals , Drosophila melanogaster/genetics , Genome, Plant , Genomics
15.
Heredity (Edinb) ; 127(1): 124-134, 2021 07.
Article in English | MEDLINE | ID: mdl-33875831

ABSTRACT

Polyploidy, or whole-genome duplication, is a common speciation mechanism in plants. An important barrier to polyploid establishment is a lack of compatible mates. Because self-compatibility alleviates this problem, it has long been hypothesized that there should be an association between polyploidy and self-compatibility (SC), but empirical support for this prediction is mixed. Here, we investigate whether the molecular makeup of the Brassicaceae self-incompatibility (SI) system, and specifically dominance relationships among S-haplotypes mediated by small RNAs, could facilitate loss of SI in allopolyploid crucifers. We focus on the allotetraploid species Capsella bursa-pastoris, which formed ~300 kya by hybridization and whole-genome duplication involving progenitors from the lineages of Capsella orientalis and Capsella grandiflora. We conduct targeted long-read sequencing to assemble and analyze eight full-length S-locus haplotypes, representing both homeologous subgenomes of C. bursa-pastoris. We further analyze small RNA (sRNA) sequencing data from flower buds to identify candidate dominance modifiers. We find that C. orientalis-derived S-haplotypes of C. bursa-pastoris harbor truncated versions of the male SI specificity gene SCR and express a conserved sRNA-based candidate dominance modifier with a target in the C. grandiflora-derived S-haplotype. These results suggest that pollen-level dominance may have facilitated loss of SI in C. bursa-pastoris. Finally, we demonstrate that spontaneous somatic tetraploidization after a wide cross between C. orientalis and C. grandiflora can result in production of self-compatible tetraploid offspring. We discuss the implications of this finding on the mode of formation of this widespread weed.


Subject(s)
Brassicaceae , Capsella , Brassicaceae/genetics , Capsella/genetics , Diploidy , Hybridization, Genetic , Polyploidy
16.
J Agric Food Chem ; 69(12): 3692-3701, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33728912

ABSTRACT

Capsella bursa-pastoris (L.) Medik. has evolved resistance to ALS-inhibiting herbicides on a large scale. Previous studies primarily focused on the target-site resistance (TSR), and the non-TSR (NTSR) is not well characterized. In this study, pre-treatment with the cytochrome P450 monooxygenase (P450) inhibitor malathion clearly reduced the tribenuron-methyl resistance in the resistant (R) population. After tribenuron-methyl treatment, the glutathione S-transferase (GST) activity of R plants was significantly higher than that of susceptible (S) plants. The higher tribenuron-methyl metabolism in R plants was also confirmed by using LC-MS/MS analysis. Isoform sequencing (Iso-Seq) combined with RNA sequencing (RNA-Seq) was used to identify candidate genes involved in non-target metabolic resistance in this population. A total of 37 differentially expressed genes were identified, 11 of them constitutively upregulated in R plants, including three P450s, one GST, two glycosyltransferases, two ATP-binding cassette transporters, one oxidase, and two peroxidases. This study confirmed the metabolic tribenuron-methyl resistance in C. bursa-pastoris, and the transcriptome data obtained by Iso-Seq combined with RNA-Seq provide gene resources for understanding the molecular mechanism of NTSR in C. bursa-pastoris.


Subject(s)
Acetolactate Synthase , Capsella , Herbicides , Acetolactate Synthase/metabolism , Arylsulfonates , Capsella/genetics , Capsella/metabolism , Chromatography, Liquid , Herbicide Resistance/genetics , Herbicides/pharmacology , RNA-Seq , Sequence Analysis, RNA , Tandem Mass Spectrometry , Transcriptome
17.
PLoS Genet ; 17(2): e1009370, 2021 02.
Article in English | MEDLINE | ID: mdl-33571184

ABSTRACT

Hybridization of closely related plant species is frequently connected to endosperm arrest and seed failure, for reasons that remain to be identified. In this study, we investigated the molecular events accompanying seed failure in hybrids of the closely related species pair Capsella rubella and C. grandiflora. Mapping of QTL for the underlying cause of hybrid incompatibility in Capsella identified three QTL that were close to pericentromeric regions. We investigated whether there are specific changes in heterochromatin associated with interspecific hybridizations and found a strong reduction of chromatin condensation in the endosperm, connected with a strong loss of CHG and CHH methylation and random loss of a single chromosome. Consistent with reduced DNA methylation in the hybrid endosperm, we found a disproportionate deregulation of genes located close to pericentromeric regions, suggesting that reduced DNA methylation allows access of transcription factors to targets located in heterochromatic regions. Since the identified QTL were also associated with pericentromeric regions, we propose that relaxation of heterochromatin in response to interspecies hybridization exposes and activates loci leading to hybrid seed failure.


Subject(s)
Capsella/genetics , Chromatin/genetics , Endosperm/genetics , Hybridization, Genetic , Seeds/genetics , Capsella/classification , Centromere/genetics , Chromatin/metabolism , Chromosome Aberrations , DNA Methylation , Gene Expression Regulation, Plant , Genes, Plant/genetics , Heterochromatin/genetics , Heterochromatin/metabolism , Quantitative Trait Loci/genetics , Species Specificity
18.
Curr Biol ; 30(19): 3880-3888.e5, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32795439

ABSTRACT

Morphological variation is the basis of natural diversity and adaptation. For example, angiosperms (flowering plants) evolved during the Cretaceous period more than 100 mya and quickly colonized terrestrial habitats [1]. A major reason for their astonishing success was the formation of fruits, which exist in a myriad of different shapes and sizes [2]. Evolution of organ shape is fueled by variation in expression patterns of regulatory genes causing changes in anisotropic cell expansion and division patterns [3-5]. However, the molecular mechanisms that alter the polarity of growth to generate novel shapes are largely unknown. The heart-shaped fruits produced by members of the Capsella genus comprise an anatomical novelty, making it particularly well suited for studies on morphological diversification [6-8]. Here, we show that post-translational modification of regulatory proteins provides a critical step in organ-shape formation. Our data reveal that the SUMO protease, HEARTBREAK (HTB), from Capsella rubella controls the activity of the key regulator of fruit development, INDEHISCENT (CrIND in C. rubella), via de-SUMOylation. This post-translational modification initiates a transduction pathway required to ensure precisely localized auxin biosynthesis, thereby facilitating anisotropic cell expansion to ultimately form the heart-shaped Capsella fruit. Therefore, although variation in the expression of key regulatory genes is known to be a primary driver in morphological evolution, our work demonstrates how other processes-such as post-translational modification of one such regulator-affects organ morphology.


Subject(s)
Capsella/genetics , Fruit/genetics , Gene Expression Regulation, Plant/genetics , Adaptation, Physiological/genetics , Anisotropy , Arabidopsis Proteins , Basic Helix-Loop-Helix Transcription Factors/metabolism , Capsella/growth & development , Fruit/growth & development , Gene Expression/genetics , Plant Proteins/metabolism , Protein Processing, Post-Translational/genetics , Ubiquitins/genetics , Ubiquitins/metabolism
19.
Proc Biol Sci ; 287(1927): 20200463, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32429810

ABSTRACT

The outcome of species range expansion depends on the interplay of demographic, environmental and genetic factors. Self-fertilizing species usually show a higher invasive ability than outcrossers but selfing and bottlenecks during colonization also lead to an increased genetic load. The relationship between genomic and phenotypic characteristics of expanding populations has, hitherto, rarely been tested experimentally. We analysed how accessions of the shepherd's purse, Capsella bursa-pastoris, from the colonization front or from the core of the natural range performed under increasing density of competitors. First, accessions from the front showed a lower fitness than those from the core. Second, for all accessions, competitor density impacted negatively both vegetative growth and fruit production. However, despite their higher genetic load and lower absolute performances, accessions from the front were less affected by competition than accessions from the core. This seems to be due to phenotypic trade-offs and a shift in phenology that allow accessions from the front to avoid competition.


Subject(s)
Capsella/genetics , Genetic Load , Capsella/growth & development
20.
Mol Biol Evol ; 37(8): 2386-2393, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32321158

ABSTRACT

Understanding the persistence of genetic variation within populations has long been a goal of evolutionary biology. One promising route toward achieving this goal is using population genetic approaches to describe how selection acts on the loci associated with trait variation. Gene expression provides a model trait for addressing the challenge of the maintenance of variation because it can be measured genome-wide without information about how gene expression affects traits. Previous work has shown that loci affecting the expression of nearby genes (local or cis-eQTLs) are under negative selection, but we lack a clear understanding of the selective forces acting on variants that affect the expression of genes in trans. Here, we identify loci that affect gene expression in trans using genomic and transcriptomic data from one population of the obligately outcrossing plant, Capsella grandiflora. The allele frequencies of trans-eQTLs are consistent with stronger negative selection acting on trans-eQTLs than cis-eQTLs, and stronger negative selection acting on trans-eQTLs associated with the expression of multiple genes. However, despite this general pattern, we still observe the presence of a trans-eQTL at intermediate frequency that affects the expression of a large number of genes in the same coexpression module. Overall, our work highlights the different selective pressures shaping variation in cis- and trans-regulation.


Subject(s)
Biological Evolution , Capsella/genetics , Gene Expression Regulation, Plant , Quantitative Trait Loci , Selection, Genetic , Gene Frequency
SELECTION OF CITATIONS
SEARCH DETAIL
...