Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.703
Filter
1.
Sci Rep ; 14(1): 7896, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570571

ABSTRACT

Ornamental foliage plants that have a dense appearance are highly valued. One way to achieve this is by using plant growth regulators as a tool for plant growth management. In a greenhouse with a mist irrigation system, a study was conducted on dwarf schefflera, an ornamental foliage plant, which was exposed to foliar application of gibberellic acid and benzyladenine hormones. The hormones were sprayed on dwarf schefflera leaves at 0, 100, and 200 mg/l concentrations, at 15-day intervals in three stages. The experiment was conducted as a factorial based on a completely randomized design, with four replicates. The combination of gibberellic acid and benzyladenine at 200 mg/l concentration had a significant effect on leaf number, leaf area, and plant height. The treatment also resulted in the highest content of photosynthetic pigments. Furthermore, the highest soluble carbohydrate to reducing sugars ratio was observed in treatments of 100 and 200 mg/l benzyladenine, and 200 mg/l gibberellic acid + benzyladenine. Stepwise regression analysis showed that root volume was the first variable to enter the model, explaining 44% of variations. The next variable was root fresh weight, and the two-variable model explained 63% of variations in leaf number. The greatest positive effect on leaf number was related to root fresh weight (0.43), which had a positive correlation with leaf number (0.47). The results showed that 200 mg/l concentration of gibberellic acid and benzyladenine significantly improved morphological growth, chlorophyll and carotenoid synthesis, and reducing sugar and soluble carbohydrate contents in dwarf schefflera.


Subject(s)
Benzylamines , Gibberellins , Gibberellins/pharmacology , Benzylamines/pharmacology , Plants , Carbohydrates/analysis , Hormones/pharmacology , Plant Leaves/chemistry
2.
Article in English | MEDLINE | ID: mdl-38688175

ABSTRACT

The present work aimed at the development and characterization of aroeira leaf flour (Schinus terebinthifolius Raddi), obtained by lyophilization and drying in an air circulation oven. The technological, physical, physico-chemical, morphological, functional, and microbiological aspects were analyzed. Physico-chemical analysis identified the following properties with values provided respectively for fresh leaves (FOin) and flours (FES and FLIO): low water activity (0.984, 0.370, 0.387 g/100 g), moisture (64.52, 5.37, 7.97 g /100 g), ash (2.69, 6.51, and 6.89 g/100 g), pH (0.89, 4.45, 4.48 g/100 g), lipids (0.84, 1.67, 5.23 g/100 g), protein (3.29, 8.23, 14.12 g/100 g), carbohydrates (17.02, 53.12, 33.02 g/100 g), ascorbic acid (19.70, 34.20, 36.90 mg/100 g). Sources of fiber from plant leaves and flours (11.64, 25.1, 32.89 g/100 g) showed increased levels of luminosity. For NMR, the presence of aliphatic and aromatic compounds with olefinic hydrogens and a derivative of gallic acid were detected. The most abundant minerals detected were potassium and calcium. Micrographs identified the presence of irregular, non-uniform, and sponge-like particles. The main sugars detected were: fructose, glucose, and maltose. Malic, succinic, citric, lactic, and formic acids were found. Fifteen phenolic compounds were identified in the samples, highlighting: kaempferol, catechin, and caffeic acid. The values ​​found for phenolics were (447, 716.66, 493.31 mg EAG/100 g), flavonoids (267.60, 267.60, 286.26 EC/100 g). Antioxidant activity was higher using the ABTS method rather than FRAP for analysis of FOin, FES, and FLIO. Since the flours of the aroeira leaf have an abundant matrix of nutrients with bioactive properties and antioxidant activity, they have a potential for technological and functional use when added to food.


Subject(s)
Anacardiaceae , Flour , Plant Leaves , Plant Leaves/chemistry , Anacardiaceae/chemistry , Flour/analysis , Freeze Drying , Carbohydrates/analysis , Carbohydrates/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Schinus
3.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474613

ABSTRACT

Certain food by-products, including not-good-for-sale apples and pomegranate peels, are rich in bioactive molecules that can be collected and reused in food formulations. Their extracts, rich in pectin and antioxidant compounds, were obtained using hydrodynamic cavitation (HC), a green, efficient, and scalable extraction technique. The extracts were chemically and physically characterized and used in gluten-free and vegan cookie formulations to replace part of the flour and sugar to study whether they can mimic the role of these ingredients. The amount of flour + sugar removed and replaced with extracts was 5% and 10% of the total. Physical (dimensions, color, hardness, moisture content, water activity), chemical (total phenolic content, DPPH radical-scavenging activity), and sensory characteristics of cookie samples were studied. Cookies supplemented with the apple extract were endowed with similar or better characteristics compared to control cookies: high spread ratio, similar color, and similar sensory characteristics. In contrast, the pomegranate peel extract enriched the cookies in antioxidant molecules but significantly changed their physical and sensory characteristics: high hardness value, different color, and a bitter and astringent taste. HC emerged as a feasible technique to enable the biofortification of consumer products at a real scale with extracts from agri-food by-products.


Subject(s)
Flour , Fruit , Humans , Fruit/chemistry , Flour/analysis , Antioxidants/analysis , Sugars/analysis , Vegans , Food Handling/methods , Carbohydrates/analysis , Plant Extracts/analysis
4.
Nutrients ; 16(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474789

ABSTRACT

BACKGROUND: Regular exercise has been described to modify both the diversity and the relative abundance of certain bacterial taxa. To our knowledge, the effect of a cycling stage race, which entails extreme physiological and metabolic demands, on the gut microbiota composition and its metabolic activity has not been analysed. OBJECTIVE: The aim of this cohort study was to analyse the dynamics of faecal microbiota composition and short-chain fatty acids (SCFAs) content of professional cyclists over a Grand Tour and their relationship with performance and dietary intake. METHODS: 16 professional cyclists competing in La Vuelta 2019 were recruited. Faecal samples were collected at four time points: the day before the first stage (A); after 9 stages (B); after 15 stages (C); and on the last stage (D). Faecal microbiota populations and SCFA content were analysed using 16S rRNA sequencing and gas chromatography, respectively. A principal component analysis (PCA) followed by Generalised Estimating Equation (GEE) models were carried out to explore the dynamics of microbiota and SCFAs and their relationship with performance. RESULTS: Bifidobacteriaceae, Coriobacteriaceae, Erysipelotrichaceae, and Sutterellaceae dynamics showed a strong final performance predictive value (r = 0.83, ranking, and r = 0.81, accumulated time). Positive correlations were observed between Coriobacteriaceae with acetate (r = 0.530) and isovalerate (r = 0.664) and between Bifidobacteriaceae with isobutyrate (r = 0.682). No relationship was observed between SCFAs and performance. The abundance of Erysipelotrichaceae at the beginning of La Vuelta was directly related to the previous intake of complex-carbohydrate-rich foods (r = 0.956), while during the competition, the abundance of Bifidobacteriaceae was negatively affected by the intake of simple carbohydrates from supplements (r = -0.650). CONCLUSIONS: An ecological perspective represents more realistically the relationship between gut microbiota composition and performance compared to single-taxon approaches. The composition and periodisation of diet and supplementation during a Grand Tour, particularly carbohydrates, could be designed to modulate gut microbiota composition to allow better performance.


Subject(s)
Gastrointestinal Microbiome , Humans , RNA, Ribosomal, 16S/genetics , Cohort Studies , Fatty Acids, Volatile/metabolism , Feces/microbiology , Eating , Exercise , Carbohydrates/analysis
5.
Waste Manag ; 180: 23-35, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38503031

ABSTRACT

Beer is among the most popular beverages in the world, with the production distributed uniformly between the biggest continents, so the utilization of brewing by-products is essential on a global scale. Among their potential recipients, the plastics industry offers extensive range of potential products. Herein, the presented study investigated the application of currently underutilized solid brewing by-products (brewers' spent grain, spent hops, spent yeast) as fillers for highly-filled poly(ε-caprolactone)-based composites, providing the first direct connection between spent hops or spent yeast and the polymer composites. Comprehensive by-product characterization revealed differences in chemical composition. The elemental C:O ratio, protein content, and Trolox equivalent antioxidant capacity varied from 1.40 to 1.89, 12.9 to 32.4 wt%, and 2.41 to 10.24 mg/g, respectively, which was mirrored in the composites' structure and performance. Morphological analysis pointed to the composition-driven hydrophilicity gap limiting interfacial adhesion for high shares of brewers' spent grain and spent hops, due to high hydrophilicity induced by carbohydrate content. Phytochemicals and other components of applied by-products stimulated composites' oxidative resistance, shifting oxidation onset temperature from 261 °C for matrix over 360 °C for high spent yeast shares. Simultaneously, spent yeast also provided compatibilizing effects for poly(ε-caprolactone)-based composites, reducing complex viscosity compared to other fillers and indicating its highest affinity to poly(ε-caprolactone)due to the lowest hydrophilicity gap. The presented results indicate that the proper selection of brewing by-products and adjustment of their shares creates an exciting possibility of engineering composites' structure and performance, which can be transferred to other polymers differing with hydrophilicity.


Subject(s)
Humulus , Saccharomyces cerevisiae , Beer , Polymers , Carbohydrates/analysis , Edible Grain/chemistry
6.
Int J Biol Macromol ; 265(Pt 1): 130906, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493611

ABSTRACT

The pre-hydrolysis liquor (PHL) produced during pulp dissolution and biomass refining is mainly composed of hemicellulose and lignin, and it is a potential source for production of value-added materials and platform chemicals; however, their utilization has been a serious challenge. In this study, we proposed a green and simple strategy to simultaneously prepare size-controlled functional lignin nanoparticles (LNPs) and levulinic acid (LA) from PHL as the raw material. The as-prepared LNPs exhibited remarkable stability thanks to the presence of saccharides with abundant oxygen-containing groups and surface charges, which prevented aggregation and maintained long-term storage stability. Trace amounts of the LNPs (≤ 0.2 wt%) could stabilize various Pickering emulsions, even with oil-to-water ratios as high as 5:5 (v/v). Subsequently, the remaining PHL was directly used to produce LA without adding a catalyst; under optimal conditions (160 °C and 1 h), the yield of LA was 56.3 % based on the dry saccharide content in the raw PHL. More importantly, p-toluenesulfonic acid (p-TsOH), the only reactive reagent used during the entire preparation process, including the two preparation steps of the LNPs and LA, was reusable, and the recovery rate was >70 % after five cycles. Overall, this green and simple strategy effectively and comprehensively utilized the PHL and showed potential for producing biobased nanomaterials and platform chemicals.


Subject(s)
Levulinic Acids , Nanoparticles , Populus , Lignin/chemistry , Hydrolysis , Wood/chemistry , Carbohydrates/analysis
7.
New Phytol ; 242(3): 1000-1017, 2024 May.
Article in English | MEDLINE | ID: mdl-38433329

ABSTRACT

Drought affects the complex interactions between Norway spruce, the bark beetle Ips typographus and associated microorganisms. We investigated the interplay of tree water status, defense and carbohydrate reserves with the incidence of bark beetle attack and infection of associated fungi in mature spruce trees. We installed roofs to induce a 2-yr moderate drought in a managed spruce stand to examine a maximum of 10 roof and 10 control trees for resin flow (RF), predawn twig water potentials, terpene, phenolic and carbohydrate bark concentrations, and bark beetle borings in field bioassays before and after inoculation with Endoconidiophora polonica and Grosmannia penicillata. Drought-stressed trees showed more attacks and significantly longer fungal lesions than controls, but maintained terpene resin defenses at predrought levels. Reduced RF and lower mono- and diterpene, but not phenolic concentrations were linked with increased host selection. Bark beetle attack and fungi stimulated chemical defenses, yet G. penicillata reduced phenolic and carbohydrate contents. Chemical defenses did not decrease under mild, prolonged drought in our simulated small-scale biotic infestations. However, during natural mass attacks, reductions in carbon fixation under drought, in combination with fungal consumption of carbohydrates, may deplete tree defenses and facilitate colonization by I. typographus.


Subject(s)
Coleoptera , Picea , Weevils , Animals , Droughts , Picea/microbiology , Plant Bark/chemistry , Plant Diseases/microbiology , Terpenes , Phenols , Norway , Water/analysis , Carbohydrates/analysis
8.
ScientificWorldJournal ; 2024: 9980936, 2024.
Article in English | MEDLINE | ID: mdl-38510569

ABSTRACT

This study was carried out to determine the mineral content and nutritional properties of five wild fruits Rhus vulgaris, Rosa abyssinica, Rhus natalensis, Euclea racemosa, and Ficus sur. The proximate composition parameters (moisture, ash, crude fiber, crude fat, and crude protein) and antinutritional factors were evaluated using methods of the Association of Official Analytical Chemists and elemental analysis using the atomic absorption spectroscopy technique. Among the five wild edible fruit species, Rhus vulgaris had the highest carbohydrate content (83.3 ± 0.28 g/100 g) and a high total energy (344.5 ± 2.21 kcal/100 g). Euclea racemosa was found to have the maximum ash content (12.8 ± 0.37 g/100 g), protein content (3.22 ± 0.01 g/100 g), and moisture (16.24 ± 0.003 g/100 g), respectively. Rhus natalensis showed the highest fiber content (9.54 ± 0.003 g/100 g). Mineral analysis showed that local wild fruits contained a considerable amount of minerals. The calcium concentration ranged from 99.51 mg/100 g in Euclea racemosa to 160.12 mg/100 g in Ficus sur. Potassium concentration varied from 54.34 mg/100 g in Euclea racemosa to 234 mg/100 g in Rhus vulgaris. Iron ranges from 21.4 mg/100 g in Rosa abyssinica to 41 mg/100 g in Rhus natalensis, and zinc ranges from 2.3 mg/100 g in Rhus vulgaris to 4.2 mg/100 g in Ficus sur. A high saponin content (2.12 mg/100 g) and a low tannin content (0.23 mg/100 g) were obtained in Rosa abyssinica. The phytate content (1.52 mg/100 g) and the oxalate content (0.9 mg/100 g) were high in Rhus natalensis. In conclusion, the present study shows that wild fruits can be used as food supplementation in food in a safe area.


Subject(s)
Fruit , Minerals , Fruit/chemistry , Ethiopia , Nutritive Value , Minerals/analysis , Zinc/analysis , Carbohydrates/analysis
9.
PLoS One ; 19(3): e0297686, 2024.
Article in English | MEDLINE | ID: mdl-38507439

ABSTRACT

Aluminium (Al) is toxic to most plants, but recent research has suggested that Al addition may stimulate growth and nutrient uptake in some species capable of accumulating high tissue Al concentrations. The physiological basis of this growth response is unknown, but it may be associated with processes linked to the regulation of carbon assimilation and partitioning by Al supply. To test alternative hypotheses for the physiological mechanism explaining this response, we examined the effects of increasing Al concentrations in the growth medium on tissue nutrient concentrations and carbon assimilation in two populations of the Al-accumulator Melastoma malabathricum. Compared to seedlings grown in a control nutrient solution containing no Al, mean rates of photosynthesis and respiration increased by 46% and 27%, respectively, total non-structural carbohydrate concentrations increased by 45%, and lignin concentration in roots decreased by 26% when seedlings were grown in a nutrient solution containing 2.0 mM Al. The concentrations of P, Ca and Mg in leaves and stems increased by 31%, 22%, and 26%, respectively, in response to an increase in nutrient solution Al concentration from 0 to 2.0 mM. Elemental concentrations in roots increased for P (114%), Mg (61%) and K (5%) in response to this increase in Al concentration in the nutrient solution. Plants derived from an inherently faster-growing population had a greater relative increase in final dry mass, net photosynthetic and respiration rates and total non-structural carbohydrate concentrations in response to higher external Al supply. We conclude that growth stimulation by Al supply is associated with increases in photosynthetic and respiration rates and enhanced production of non-structural carbohydrates that are differentially allocated to roots, as well as stimulation of nutrient uptake. These responses suggest that internal carbon assimilation is up-regulated to provide the necessary resources of non-structural carbohydrates for uptake, transport and storage of Al in Melastoma malabathricum. This physiological mechanism has only been recorded previously in one other plant species, Camellia sinensis, which last shared a common ancestor with M. malabathricum more than 120 million years ago.


Subject(s)
Aluminum , Melastomataceae , Aluminum/analysis , Carbon/analysis , Photosynthesis , Seedlings , Plant Roots , Carbohydrates/analysis , Plant Leaves/chemistry
10.
J Chromatogr A ; 1719: 464730, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38367394

ABSTRACT

Polysaccharides have unique physio-chemical properties and various biological functions and have rapidly expanded interest over the last two decades. The purification of polysaccharides and their degraded oligosaccharides is challenging because carbohydrates have no chromophore and need a proper detector to monitor the chromatographic elution process. This study proposed an active derivatization detection (ADD) method based on active splitting from post-column flow, a microchannel reactor for efficient derivatization of polysaccharide reducing sugars with p-hydroxybenzoic acid hydrazide, and in-line detection by the UV detector of liquid chromatography system. The method and device were validated by the use of 11 monosaccharides, sulfated oligosaccharides (from degraded carrageenan), and polysaccharides (from Zizania latifolia). It has shown much better performance than the traditional phenol-sulfuric acid method (gold standard). Moreover, the ADD module presumes an add-in to the original preparative LC system, independent of the scale of the purification process and type of system. The developed method is versatile for chromatographic separation of carbohydrates and lays the foundation for their subsequent studies.


Subject(s)
Carbohydrates , Oligosaccharides , Chromatography, High Pressure Liquid/methods , Carbohydrates/analysis , Chromatography, Liquid , Oligosaccharides/chemistry , Polysaccharides/chemistry
11.
Sci Rep ; 14(1): 3684, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355653

ABSTRACT

Vegetable drinks offer a convenient way to increase the daily intake of vegetables containing vitamins, antioxidants, and fiber. In this study, we discovered that mungbean milk serves as a carbohydrate source during fermentation using lactic acid bacteria (LAB) and enhances the nutritional value of vegetable yoghurt. Mungbean milk reduces pH while titratable acidity increases faster than soybean milk during fermentation. M0S, Soybean milk 100% with added sucrose exhibited the highest titratable acidity after 16 h of fermentation. The acetic acid content of all samples did not show significant changes during fermentation, but the lactic acid content increased. Proximate analysis showed no significant change during fermentation, regardless of the fermentation time and mixing ratio of mungbean to soybean milk. The sucrose content of samples except M0S decreased after 16 h of fermentation. Mungbean milk exhibited high antioxidant activity both before and after fermentation, while M0S showed the lowest antioxidant activity. The results of this study demonstrated the potential application of mungbean milk to improve fermented vegetable drinks using LAB functionally. Fermented mungbean milk yoghurt can be a valuable addition to a healthy and balanced diet for those who consume plant-based diets.


Subject(s)
Antioxidants , Lactobacillales , Animals , Antioxidants/analysis , Yogurt/microbiology , Vitamins/analysis , Carbohydrates/analysis , Vegetables , Milk/chemistry , Sucrose/analysis , Fermentation
12.
Food Chem ; 445: 138712, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38364494

ABSTRACT

Honey, recognized for its diverse flavors and nutritional benefits, confronts challenges in maintaining authenticity and quality due to factors like adulteration and mislabelling. This review undertakes a comprehensive exploration of the utility of Near-Infrared (NIR) spectroscopy as a non-destructive analytical method for concurrently evaluating both honey quantity and authenticity. The primary purpose of this investigation is to delve into the various applications of NIR spectroscopy in honey analysis, with a specific focus on its capability to identify and quantify significant quality parameters such as sugar content, moisture levels, 5-HMF, and proline content. Results from the study underscore the effectiveness of NIR spectroscopy, especially when integrated with advanced chemometrics models. This combination not only facilitates quantification of diverse quality parameters but also enhances the classification of honey based on geographical and botanical origin. The technology emerges as a potent tool for detecting adulteration, addressing critical challenges in preserving the authenticity and quality of honey products. The impact of this critical analysis extends to shedding light on the current state, challenges, and future prospects of applying NIR spectroscopy in the honey industry. This analysis outlines the current challenges and future prospects of NIR spectroscopy in the honey industry. Emphasizing its potential to improve consumer confidence and food safety, the research has broader implications for authenticity and quality assurance in honey. Integrating NIR spectroscopy into industry practices could establish stronger quality control measures, benefiting both producers and consumers globally.


Subject(s)
Honey , Honey/analysis , Spectroscopy, Near-Infrared/methods , Food Contamination/analysis , Carbohydrates/analysis , Food Safety
13.
Food Chem ; 445: 138745, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38364500

ABSTRACT

In this study, acidity was regulated with the addition of exogenous tartaric acid and citric acid before bottling. The effect of exogenous organic acids on chemical compositions and sensory attributes of fortified sweet wines from dehydrated grapes were investigated. The results indicated that exogenous organic acids promoted the conversion of monomeric anthocyanins to copigmented anthocyanins in wines. Specifically, the combination of malvidin-3-O-glucoside and flavanols (catechin and epicatechin) was facilitated to form copigmented anthocyanins. Sensory analysis suggested that exogenous organic acids improved the balance of sugar and acidity and benefited the harmony in wines on the taste. Wines with a residual sugar and titratable acidity ratio of about 11:1 exhibited the more harmonious taste. In addition, it was also observed changes in the aroma profile related to volatile compounds, namely, more intense fruity aroma in wines with the addition of organic acids.


Subject(s)
Vitis , Volatile Organic Compounds , Wine , Vitis/chemistry , Wine/analysis , Anthocyanins/analysis , Taste , Phenols/analysis , Odorants/analysis , Carbohydrates/analysis , Sugars/analysis , Volatile Organic Compounds/analysis
14.
Food Res Int ; 179: 113945, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342516

ABSTRACT

Buritirana (Mauritella armata) is a fruit from a native Brazilian palm tree whose economic and industrial potential is still little explored. The nutritional composition and carbohydrates; organic acids; fatty acids; triacylglycerol; and phenolics profile of buritirana pulp, shells, and seeds were performed in this study. In addition, pH, color, ant total carotenoid, phenolic, flavonoids, flavonols, tannins, and antioxidant potential (ABTS, DPPH, ILP, FRAP, CUPRAC, and TRC) were determined in these parts of the fruit. The results indicated high lipid content and energy value for pulp (30.53 g 100 g-1, and 351.21 kcal 100 g-1, respectively) and shells (18.41 g 100 g-1, and 276.73 kcal 100 g-1, respectively). On the other hand, high fiber (63.09 g 100 g-1), starch (2.66 g 100 g-1), and carbohydrates (28.60 g 100 g-1) contents were observed for the seeds. Glucose was the main carbohydrate found in pulp and seed, while sucrose was the main sugar in shells. Tartaric acid was the predominant organic acid in pulp and shells (16.60 and 10.96 mg 100 g-1, respectively), while malic acid was the main organic acid in seeds (58.78 mg 100 g-1). Oleic and palmitic acid were the main fatty acids detected in buritirana pulp, shells, and seeds. Buritirana pulp and shells showed a high content of total phenolic and total flavonoid (918.58 and 940.63 mg GAE 100 g-1; and 679.31 and 444.94 mg CE 100 g-1, respectively). Moreover, a high antioxidant potential (DPPH•, CUPRAC, and ILP) was observed in the extracts obtained from pulp and shells. The pulp showed a significant content of carotenoids (270.23 µg g-1). Among the 28 phenolic compounds determined in buritirana pulp and seeds, and 27 in shells, 22 (pulp and seeds), and 21 (shells) were reported by first time in the literature. Ferulic acid in pulp and shells (99.39 and 111.69 µg g-1) and pinocembrin in seeds (19.21 µg g-1) were the main phenolic compounds identified in buritirana. Multivariate analysis showed high correlation of phenolic compounds on antioxidant potential. The results showed that buritirana is rich in nutrients and bioactive products and can be fully utilized. The products resulting from buritirana processing can be applied in the food, cosmetics, and pharmaceutical industries.


Subject(s)
Antioxidants , Fruit , Antioxidants/analysis , Fruit/chemistry , Brazil , Carotenoids/analysis , Flavonoids/analysis , Phenols/analysis , Fatty Acids/analysis , Carbohydrates/analysis
15.
Sci Rep ; 14(1): 87, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167975

ABSTRACT

Fenugreek (Trigonella foenum-graecum L.) is a multi-use annual forage legume crop that is widely used in food products such as syrup, bitter run, curries, stew, and flavoring. In the present study, morphological traits, proximate composition (moisture, crude fibre, protein, fat, carbohydrate, and energy value), total phenol and total flavonoid contents, and antioxidant properties of 31 Iranian agro-ecotypic populations of the plant was investigated. Among the leaf and seed samples studied, the seeds exhibited the high ash (3.94 ± 0.12%), fat (7.94 ± 0.78%), crude fibre (10.3 ± 0.25%), protein (35.41 ± 1.86%), and carbohydrate (50.5 ± 1.90%) content. In general, more energy value (kcal/100 g) was also obtained from the seed (318.88 ± 1.78-350.44 ± 1.27) than leaf samples (45.50 ± 1.32-89.28 ± 0.85). Antioxidant activity and power of leaf samples were ranged from 67.95 ± 0.05‒157.52 ± 0.20 µg/ml and from 45.17 ± 0.01‒361.92 ± 0.78 µmol Fe+2 per g dry weigh, respectively. Positive linear correlations between antioxidant activity and total phenolic compounds were observed. A significant correlation between proximate composition (dependent variable) and some morphological features (independent variable) was observed. Considerable variability in the studied traits among the plant samples can be interestingly used in further food and production systems.


Subject(s)
Antioxidants , Trigonella , Antioxidants/metabolism , Trigonella/chemistry , Iran , Plant Extracts/chemistry , Seeds/metabolism , Carbohydrates/analysis , Phytochemicals/analysis
16.
Anal Chim Acta ; 1288: 342166, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38220298

ABSTRACT

BACKGROUND: As an essential compound in living organism, saccharides have attracted enormous attentions from scientists in various fields. Understanding the distribution of saccharides in various samples is of great scientific importance. However, the low signal response and lack of specific recognition technology of saccharides and the complex matrix of samples make the analysis of saccharides a very challenge task. Thus, the development of a simple and straightforward strategy for the analysis of saccharides would represent a great contribution to the field. RESULTS: In this study, by employing the sulfonyl functionalized magnetic dendritic mesoporous silica nanoparticles as the substrate, we develop an integrated platform for analysis of saccharides. The construction of the platform mainly relied on multi-functional boronic acid, which serves as separation and derivation ligands at the same time. In the general procedure, the boronic acid is first immobilized onto the surface of substrate, then the selective enrichment of saccharides can be realized via boronate affinity separation. Finally, by the rational choice of the solution, we are able to elute the labelled complex (boronic acid-saccharide) from the substrate, which can be direct subjected to HPLC-UV analysis. The reliable precision (<15 %), accuracy (80-100 %), reproducibility (<10 %), improved sensitivity (20x) and limited time-consuming (down to minutes) of the proposed platform are experimentally demonstrated. SIGNIFICANCE AND NOVELTY: The successful quantification of different saccharides (alditols, glucose) in real samples is achieved. The proposed strategy is not only straightforward and fast, but also avoid the requirement of special equipment. With these attractive features, we believe that this strategy will greatly prompt the analysis of saccharides in various samples (eg. food, pharmaceutics and biosamples).


Subject(s)
Nanoparticles , Silicon Dioxide , Silicon Dioxide/chemistry , Reproducibility of Results , Carbohydrates/analysis , Boronic Acids/chemistry , Nanoparticles/chemistry , Magnetic Phenomena
17.
Food Chem ; 443: 138556, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38290299

ABSTRACT

Potato is one of the most important crops worldwide, to feed a fast-growing population. In addition to providing energy, fiber, vitamins, and minerals, potato storage proteins are considered as one of the most valuable sources of non-animal proteins due to their high essential amino acid (EAA) index. However, low tuber protein content and limited knowledge about potato storage proteins restrict their widespread utilization in the food industry. Here, we report a proof-of-concept study, using deep learning-based protein design tools, to characterize the biological and chemical characteristics of patatins, the major potato storage proteins. This knowledge was then employed to design multiple cysteines on the patatin surface to build polymers linked by disulfide bonds, which significantly improved viscidity and nutrient of potato flour dough. Our study shows that deep learning-based protein design strategies are efficient to characterize and to create novel proteins for future food sources.


Subject(s)
Deep Learning , Solanum tuberosum , Solanum tuberosum/chemistry , Plant Proteins/metabolism , Plant Tubers/chemistry , Carbohydrates/analysis
18.
Food Chem ; 443: 138517, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38295564

ABSTRACT

Leaves and stalks, which account for about 45% and 25% of broccoli biomass, respectively, are usually discarded during broccoli production, leading to the waste of green resources. In this study, the phytochemical composition and antioxidant capacity of broccoli florets and their by-products (leaves and stalks) were comprehensively analyzed. The metabolomics identified several unique metabolites (e.g., scopoletin, Harpagoside, and sinalbin) in the leaves and stalks compared to florets. Notably, the leaves were found to be a rich source of flavonoids and coumarins, with superior antioxidant capacity. The random forest model and correlation analysis indicated that flavonoids, coumarin, and indole compounds were the important factors contributing to the antioxidant activity. Moreover, the stalks contained higher levels of carbohydrates and exhibited better antioxidant enzyme activity. Together, these results provided valuable data to support the comprehensive utilization of broccoli waste, the development of new products, and the expansion of the broccoli industry chain.


Subject(s)
Antioxidants , Brassica , Antioxidants/chemistry , Brassica/chemistry , Plant Leaves/chemistry , Flavonoids/analysis , Carbohydrates/analysis
19.
J Food Sci ; 89(2): 811-833, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38224177

ABSTRACT

This systematic review paper aims to discuss the trend in quality assessment properties and constituents of honey at different storage conditions and confer the possible whys and wherefores associated with the significant changes. Initially, a literature search was conducted through Google Scholar, ScienceDirect, PubMed, and Scopus databases. In total, 43 manuscripts published between 2001 and 2023 that met the inclusion and exclusion criteria were chosen for the review. As an outcome of this review, prolonged honey storage could deteriorate sensory, nutritional, and antioxidant properties and promote fermentation, granulation, microbial growth, carcinogenicity, organotoxicity, and nephrotoxicity. This systematic review also recognized that diastase activity, invertase activity, 5-hydroxymethylfurfural content, proline content, sugar content, amino acids, and vitamins could be used as indicators to distinguish fresh and stored honey based on the significant test (p-value) in the reported studies. However, all the reported studies used the simplest approach (one-way ANOVA) to identify the significant differences in the analyzed parameter during the storage period and none of them reported an approach to identify the most influential parameter at different storage conditions. In conclusion, orthogonal partial least squares discriminant analysis (supervised multivariate statistical tool) has to be employed in future studies to find the most influential parameter and could be used to potent chemical markers to distinguish fresh and stored honey because this analysis is incorporated with S-plot, variable importance of projection, and one-way ANOVA, which can produce the most accurate and precise results rather solely depending on one-way ANOVA.


Subject(s)
Honey , Honey/analysis , Antioxidants/analysis , Carbohydrates/analysis , Amino Acids/analysis , Proline
20.
Compr Rev Food Sci Food Saf ; 23(1): e13260, 2024 01.
Article in English | MEDLINE | ID: mdl-38284574

ABSTRACT

Thermal processing techniques can lead to the formation of heat-induced toxic substances. Acrylamide is one contaminant that has received much scientific attention in recent years, and it is formed essentially during the Maillard reaction when foods rich in carbohydrates, particularly reducing sugars (glucose, fructose), and certain free amino acids, especially asparagine (ASN), are processed at high temperatures (>120°C). The highly variable free ASN concentration in raw materials makes it challenging for food businesses to keep acrylamide content below the European Commission benchmark levels, while avoiding flavor, color, and texture impacts on their products. Free ASN concentrations in crops are affected by environment, genotype, and soil fertilization, which can also influence protein content and amino acid composition. This review aims to provide an overview of free ASN and acrylamide quantification methods and mitigation strategies for acrylamide formation in foods, focusing on adding pulse flours to cereal-based snacks and bakery products. Overall, this review emphasizes the importance of these mitigation strategies in minimizing acrylamide formation in plant-based products and ensuring safer and healthier food options.


Subject(s)
Asparagine , Edible Grain , Asparagine/analysis , Asparagine/chemistry , Asparagine/metabolism , Edible Grain/chemistry , Acrylamide/analysis , Acrylamide/chemistry , Acrylamide/toxicity , Snacks , Carbohydrates/analysis , Carbohydrates/chemistry , Amino Acids/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...