Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.086
Filter
1.
Plant Physiol Biochem ; 212: 108762, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788294

ABSTRACT

The atmospheric CO2 level is rising, and the consequent climate change is causing an increase in drought events. Furthermore, the CO2 level is known to induce changes in the physiological responses to stress in plants. Exogenous melatonin is suggested to play roles in the response of plants to abiotic stresses, including drought. We investigated physiological drought stress responses at ambient and elevated CO2 levels (aCO2 and eCO2) of melatonin-treated and untreated tomato plants, aiming to link effects of water use efficiency of photosynthesis at (WUELeaf) and stomatal conductance (gs) with the hormonal regulation of stomata. Tomatoes grown at eCO2 had reduced water use of both irrigated and drought stressed plants during the progression of drought at the whole plant level. This was also reflected in a CO2-affected increase in WUELeaf at eCO2 across irrigated and drought-stressed plants. These CO2-induced effects were mediated through stomatal closing and reductions in stomatal pore area rather than stomatal density or size. Abscisic acid (ABA) and its conjugated form, ABA glucose ester (ABA-GE), increased at drought stress in aCO2, while only ABA-GE increased at eCO2. Contrary, salicylic acid (SA) increased to a greater magnitude at drought stress in eCO2 than aCO2. Melatonin treatment showed no effects on the stomatal regulation. Our findings imply that eCO2 changes in the balance of hormonal effectors in stomatal regulation during drought, shifting from it ABA to SA regulation, suggesting to consider stomatal reactions at eCO2 in a perspective of a hormonal interplay rather than only ABA.


Subject(s)
Carbon Dioxide , Plant Stomata , Seedlings , Solanum lycopersicum , Plant Stomata/physiology , Plant Stomata/drug effects , Solanum lycopersicum/physiology , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Seedlings/drug effects , Seedlings/metabolism , Seedlings/physiology , Droughts , Abscisic Acid/metabolism , Melatonin/metabolism , Melatonin/pharmacology , Plant Growth Regulators/metabolism , Photosynthesis/drug effects , Stress, Physiological
2.
PLoS Biol ; 22(5): e3002592, 2024 May.
Article in English | MEDLINE | ID: mdl-38691548

ABSTRACT

Stomata are pores on plant aerial surfaces, each bordered by a pair of guard cells. They control gas exchange vital for plant survival. Understanding how guard cells respond to environmental signals such as atmospheric carbon dioxide (CO2) levels is not only insightful to fundamental biology but also relevant to real-world issues of crop productivity under global climate change. In the past decade, multiple important signaling elements for stomatal closure induced by elevated CO2 have been identified. Yet, there is no comprehensive understanding of high CO2-induced stomatal closure. In this work, we assemble a cellular signaling network underlying high CO2-induced stomatal closure by integrating evidence from a comprehensive literature analysis. We further construct a Boolean dynamic model of the network, which allows in silico simulation of the stomatal closure response to high CO2 in wild-type Arabidopsis thaliana plants and in cases of pharmacological or genetic manipulation of network nodes. Our model has a 91% accuracy in capturing known experimental observations. We perform network-based logical analysis and reveal a feedback core of the network, which dictates cellular decisions in closure response to high CO2. Based on these analyses, we predict and experimentally confirm that applying nitric oxide (NO) induces stomatal closure in ambient CO2 and causes hypersensitivity to elevated CO2. Moreover, we predict a negative regulatory relationship between NO and the protein phosphatase ABI2 and find experimentally that NO inhibits ABI2 phosphatase activity. The experimental validation of these model predictions demonstrates the effectiveness of network-based modeling and highlights the decision-making role of the feedback core of the network in signal transduction. We further explore the model's potential in predicting targets of signaling elements not yet connected to the CO2 network. Our combination of network science, in silico model simulation, and experimental assays demonstrates an effective interdisciplinary approach to understanding system-level biology.


Subject(s)
Arabidopsis , Carbon Dioxide , Models, Biological , Plant Stomata , Signal Transduction , Plant Stomata/drug effects , Plant Stomata/metabolism , Plant Stomata/physiology , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Computer Simulation , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics
3.
Plant Physiol Biochem ; 211: 108705, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714128

ABSTRACT

Research on nanoparticles (NPs) and future elevated CO2 (eCO2) is extensive, but the effects of SeNPs on plant growth and secondary metabolism under eCO2 remain uncertain. In this study, we explored the impact of SeNPs and/or eCO2 on the growth, physiology, chemical composition (primary metabolites, coumarins, and essential oils), and antioxidant capacity of Trachyspermum (T.) ammi. The treatment with SeNPs notably improved the biomass and photosynthesis of T. ammi plants, particularly under eCO2 conditions. Plant fresh and dry weights were improved by about 19, 33 and 36% in groups treated by SeNPs, eCO2, and SeNPs + eCO2, respectively. SeNPs + eCO2 induced photosynthesis, consequently enhancing sugar and amino acid levels. Similar to the increase in total sugars, amino acids showed variable enhancements ranging from 6 to 42% upon treatment with SeNPs + eCO2. At the level of the secondary metabolites, SeNPs + eCO2 substantially augmented coumarin biosynthesis and essential oil accumulation. Consistently, there were increases in coumarins and essential oil precursors (shikimic and cinnamic acids) and their biosynthetic enzymes. The enhanced accumulation of coumarins and essential oils resulted in increased overall antioxidant activity, as evidenced by improvements in FRAP, ORAC, TBARS, conjugated dienes, and inhibition % of hemolysis. Conclusively, the application of SeNPs demonstrates significant enhancements in plant growth and metabolism under future CO2 conditions, notably concerning coumarin metabolism and essential oil production of T. ammi.


Subject(s)
Carbon Dioxide , Coumarins , Oils, Volatile , Selenium , Oils, Volatile/metabolism , Coumarins/metabolism , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Selenium/metabolism , Selenium/pharmacology , Antioxidants/metabolism , Nanoparticles , Photosynthesis/drug effects
4.
PLoS One ; 19(5): e0301913, 2024.
Article in English | MEDLINE | ID: mdl-38787834

ABSTRACT

Small lentic water bodies are important emitters of methane (CH4) and carbon dioxide (CO2), but the processes regulating their dynamics and susceptibility to human-induced stressors are not fully understood. Bioturbation by chironomid larvae has been proposed as a potentially important factor controlling the dynamics of both gases in aquatic sediments. Chironomid abundance can be affected by the application of biocides for mosquito control, such as Bti (Bacillus thuringiensis var. israelensis). Previous research has attributed increases in CH4 and CO2 emissions after Bti application to reduced bioturbation by chironomids. In this study, we separately tested the effect of chironomid bioturbation and Bti addition on CH4 production and emission from natural sediments. In a set of 15 microcosms, we compared CH4 and CO2 emission and production rates with high and low densities of chironomid larvae at the bioturbating stage, and standard and five times (5x) standard Bti dose, with control sediments that contained neither chironomid larvae nor Bti. Regardless of larvae density, chironomid larvae did not affect CH4 nor CO2 emission and production of the sediment, although both rates were more variable in the treatments with organisms. 5xBti dosage, however, led to a more than three-fold increase in CH4 and CO2 production rates, likely stimulated by bioavailable dissolved carbon in the Bti excipient and priming effects. Our results suggest weak effects of bioturbating chironomid larvae on the CH4 and CO2 dynamics in aquatic ecosystems. Furthermore, our results point out towards potential functional implications of Bti for carbon cycling beyond those mediated by changes in the macroinvertebrate community.


Subject(s)
Carbon Dioxide , Chironomidae , Fresh Water , Geologic Sediments , Larva , Methane , Animals , Chironomidae/metabolism , Chironomidae/drug effects , Chironomidae/growth & development , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Larva/drug effects , Larva/metabolism , Methane/metabolism , Geologic Sediments/chemistry , Bacillus thuringiensis/metabolism , Disinfectants/pharmacology , Mosquito Control/methods , Culicidae/drug effects , Culicidae/metabolism
5.
Bioresour Technol ; 403: 130881, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788806

ABSTRACT

Carbon dioxide (CO2) plays a crucial role in carbon chain elongation with ethanol serving as an electron donor. In this study, the impacts of various carbonates on CO2 concentration, hexanoic acid production, and microbial communities during ethanol-butyric acid fermentation were explored. The results showed that the addition of MgCO3 provided sustained inorganic carbon and facilitated interspecific electron transfer, thereby increasing hexanoic acid yield by 58%. MgCO3 and NH4HCO3 inhibited the excessive ethanol oxidation and decreased the yield of acetic acid by 51% and 42%, respectively. The yields of hexanoic acid and acetic acid in the CaCO3 group increased by 19% and 15%, respectively. The NaHCO3 group exhibited high headspace CO2 concentration, promoting acetogenic bacteria enrichment while reducing the abundance of Clostridium_sensu_stricto_12. The batch addition of NaHCO3 accelerated the synthesis of hexanoic acid and increased its production by 26%. The relative abundance of Clostridium_sensus_stricto_12 was positively correlated with hexanoic acid production.


Subject(s)
Caproates , Carbon , Fermentation , Carbon/pharmacology , Anaerobiosis , Caproates/metabolism , Ethanol/metabolism , Carbon Dioxide/pharmacology , Carbon Dioxide/metabolism , Clostridium/metabolism , Butyric Acid/metabolism
6.
Malar J ; 23(1): 100, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589884

ABSTRACT

BACKGROUND: Anopheles gambiae, the major malaria mosquito in sub-Saharan Africa, feed largely indoors at night. Raising a house off the ground with no barriers underneath reduces mosquito-house entry. This experiment tested whether walling off the space under an elevated hut affects mosquito-hut entry. METHODS: Four inhabited experimental huts, each of which could be moved up and down, were used in rural Gambia. Nightly collections of mosquitoes were made using light traps and temperature and carbon dioxide levels monitored indoors and outdoors using loggers. Each night, a reference hut was kept at ground level and three huts raised 2 m above the ground; with the space under the hut left open, walled with air-permeable walls or solid walls. Treatments were rotated every four nights using a randomized block design. The experiment was conducted for 32 nights. Primary measurements were mosquito numbers and indoor temperature in each hut. RESULTS: A total of 1,259 female Anopheles gambiae sensu lato were collected in the hut at ground level, 655 in the hut with an open ground floor, 981 in the hut with air-permeable walls underneath and 873 in the hut with solid walls underneath. Multivariate analysis, adjusting for confounders, showed that a raised hut open underneath had 53% fewer mosquitoes (95% CI 47-58%), those with air-permeable walls underneath 24% fewer (95% CI 9-36%) and huts with solid walls underneath 31% fewer (95% CI 24-37%) compared with a hut on the ground. Similar results were found for Mansonia spp. and total number of female mosquitoes, but not for Culex mosquitoes where hut entry was unaffected by height or barriers. Indoor temperature and carbon dioxide levels were similar in all huts. CONCLUSION: Raising a house 2 m from the ground reduces the entry of An. gambiae and Mansonia mosquitoes, but not Culex species. The protective effect of height is reduced if the space underneath the hut is walled off.


Subject(s)
Anopheles , Culex , Insecticides , Animals , Female , Gambia , Carbon Dioxide/pharmacology , Mosquito Control/methods , Mosquito Vectors , Insecticides/pharmacology
7.
New Phytol ; 243(1): 58-71, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38655662

ABSTRACT

Climate change is simultaneously increasing carbon dioxide concentrations ([CO2]) and temperature. These factors could interact to influence plant physiology and performance. Alternatively, increased [CO2] may offset costs associated with elevated temperatures. Furthermore, the interaction between elevated temperature and [CO2] may differentially affect populations from along an elevational gradient and disrupt local adaptation. We conducted a multifactorial growth chamber experiment to examine the interactive effects of temperature and [CO2] on fitness and ecophysiology of diverse accessions of Boechera stricta (Brassicaceae) sourced from a broad elevational gradient in Colorado. We tested whether increased [CO2] would enhance photosynthesis across accessions, and whether warmer conditions would depress the fitness of high-elevation accessions owing to steep reductions in temperature with increasing elevation in this system. Elevational clines in [CO2] are not as evident, making it challenging to predict how locally adapted ecotypes will respond to elevated [CO2]. This experiment revealed that elevated [CO2] increased photosynthesis and intrinsic water use efficiency across all accessions. However, these instantaneous responses to treatments did not translate to changes in fitness. Instead, increased temperatures reduced the probability of reproduction for all accessions. Elevated [CO2] and increased temperatures interacted to shift the adaptive landscape, favoring lower elevation accessions for the probability of survival and fecundity. Our results suggest that elevated temperatures and [CO2] associated with climate change could have severe negative consequences, especially for high-elevation populations.


Subject(s)
Brassicaceae , Carbon Dioxide , Photosynthesis , Temperature , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Brassicaceae/physiology , Genetic Fitness , Altitude , Water , Colorado , Climate Change , Reproduction
8.
Compr Rev Food Sci Food Saf ; 23(3): e13345, 2024 05.
Article in English | MEDLINE | ID: mdl-38638070

ABSTRACT

Supercritical carbon dioxide (SC-CO2) has emerged as a nonthermal technology to guarantee food safety. This review addresses the potential of SC-CO2 technology in food preservation, discussing the microbial inactivation mechanisms and the impact on food products' quality parameters and bioactive compounds. Furthermore, the main advantages and gaps are denoted. SC-CO2 technology application causes adequate microbial reductions (>5 log cfu/mL) of spoilage and pathogenic microorganisms, enzyme inactivation, and improvements in the storage stability in fruit and vegetable products (mainly fruit juices), meat products, and dairy derivatives. SC-CO2-treated products maintain the physicochemical, technological, and sensory properties, bioactive compound concentrations, and biological activity (antioxidant and angiotensin-converting enzyme-inhibitory activities) similar to the untreated products. The optimization of processing parameters (temperature, pressure, CO2 volume, and processing times) is mandatory for achieving the desired results. Further studies should consider the expansion to different food matrices, shelf-life evaluation, bioaccessibility of bioactive compounds, and in vitro and in vivo studies to prove the benefits of using SC-CO2 technology. Moreover, the impact on sensory characteristics and, mainly, the consumer perception of SC-CO2-treated foods need to be elucidated. We highlight the opportunity for studies in postbiotic production. In conclusion, SC-CO2 technology may be used for microbial inactivation to ensure food safety without losing the quality parameters.


Subject(s)
Carbon Dioxide , Comprehension , Microbial Viability , Carbon Dioxide/chemistry , Carbon Dioxide/pharmacology , Colony Count, Microbial , Food Handling/methods
9.
Int J Neuropsychopharmacol ; 27(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38577951

ABSTRACT

BACKGROUND: Anxiety disorders are highly prevalent and socio-economically costly. Novel pharmacological treatments for these disorders are needed because many patients do not respond to current agents or experience unwanted side effects. However, a barrier to treatment development is the variable and large placebo response rate seen in trials of novel anxiolytics. Despite this, the mechanisms that drive placebo responses in anxiety disorders have been little investigated, possibly due to low availability of convenient experimental paradigms. We aimed to develop and test a novel protocol for inducing placebo anxiolysis in the 7.5% CO2 inhalational model of generalized anxiety in healthy volunteers. METHODS: Following a baseline 20-minute CO2 challenge, 32 healthy volunteers were administered a placebo intranasal spray labelled as either the anxiolytic "lorazepam" or "saline." Following this, participants surreptitiously underwent a 20-minute inhalation of normal air. Post-conditioning, a second dose of the placebo was administered, after which participants completed another CO2 challenge. RESULTS: Participants administered sham "lorazepam" reported significant positive expectations of reduced anxiety (P = .001), but there was no group-level placebo effect on anxiety following CO2 challenge post-conditioning (Ps > .350). Surprisingly, we found many participants exhibited unexpected worsening of anxiety, despite positive expectations. CONCLUSIONS: Contrary to our hypothesis, our novel paradigm did not induce a placebo response, on average. It is possible that effects of 7.5% CO2 inhalation on prefrontal cortex function or behavior in line with a Bayesian predictive coding framework attenuated the effect of expectations on subsequent placebo response. Future studies are needed to explore these possibilities.


Subject(s)
Anti-Anxiety Agents , Anxiety , Carbon Dioxide , Placebo Effect , Humans , Carbon Dioxide/administration & dosage , Carbon Dioxide/pharmacology , Male , Female , Adult , Young Adult , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/administration & dosage , Administration, Inhalation , Anxiety/drug therapy , Anxiety/chemically induced , Lorazepam/pharmacology , Lorazepam/administration & dosage , Double-Blind Method
10.
New Phytol ; 242(5): 1944-1956, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575849

ABSTRACT

The oxygen isotope composition of cellulose (δ18O values) has been suggested to contain information on stomatal conductance (gs) responses to rising pCO2. The extent by which pCO2 affects leaf water and cellulose δ18O values (δ18OLW and δ18OC) and the isotope processes that determine pCO2 effects on δ18OLW and δ18OC are, however, unknown. We tested the effects of pCO2 on gs, δ18OLW and δ18OC in a glasshouse experiment, where six plant species were grown under pCO2 ranging from 200 to 500 ppm. Increasing pCO2 caused a decline in gs and an increase in δ18OLW, as expected. Importantly, the effects of pCO2 on gs and δ18OLW were small and pCO2 effects on δ18OLW were not directly transferred to δ18OC but were attenuated in grasses and amplified in dicotyledonous herbs and legumes. This is likely because of functional group-specific pCO2 effects on the model parameter pxpex. Our study highlights important uncertainties when using δ18OC as a proxy for gs. Specifically, pCO2-triggered gs effects on δ18OLW and δ18OC are possibly too small to be detected in natural settings and a pCO2 effect on pxpex may render the commonly assumed negative linkage between δ18OC and gs to be incorrect, potentially confounding δ18OC based gs reconstructions.


Subject(s)
Atmosphere , Carbon Dioxide , Cellulose , Fabaceae , Oxygen Isotopes , Plant Leaves , Poaceae , Water , Carbon Dioxide/pharmacology , Carbon Dioxide/metabolism , Cellulose/metabolism , Poaceae/drug effects , Poaceae/physiology , Plant Leaves/drug effects , Plant Leaves/metabolism , Fabaceae/drug effects , Fabaceae/physiology , Fabaceae/metabolism , Atmosphere/chemistry , Plant Stomata/drug effects , Plant Stomata/physiology
11.
Plant Physiol Biochem ; 210: 108657, 2024 May.
Article in English | MEDLINE | ID: mdl-38670030

ABSTRACT

The continuously rising atmospheric CO2 concentration potentially increase plant growth through stimulating C metabolism; however, plant C:N:P stoichiometry in response to elevated CO2 (eCO2) under low P stress remains largely unknown. We investigated the combined effect of eCO2 and low phosphorus on growth, yield, C:N:P stoichiometry, and remobilization in rice cv. Kasalath (aus type), IR64 (a mega rice variety), and IR64-Pup1 (Pup1 QTL introgressed IR64). In response to eCO2 and low P, the C accumulation increased significantly (particularly at anthesis stage) while N and P concentration decreased leading to higher C:N and C:P ratios in all plant components (leaf, sheath, stem, and grain) than ambient CO2. The remobilization efficiencies of N and P were also reduced under low P with eCO2 as compared to control conditions. Among cultivars, the combined effect of eCO2 and low P was greater in IR64-Pup1 and produced higher biomass and grain yield as compared to IR64. However, IR64-Pup1 exhibited a lower N but higher P concentration than IR64, indicating that the Pup1 QTL improved P uptake but did not influence N uptake. Our study suggests that the P availability along with eCO2 would alter the C:N:P ratios due to their differential partitioning, thereby affecting growth and yield.


Subject(s)
Carbon Dioxide , Nitrogen , Oryza , Phosphorus , Biomass , Carbon/metabolism , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Nitrogen/metabolism , Oryza/drug effects , Oryza/growth & development , Oryza/metabolism , Phosphorus/metabolism , Phosphorus/pharmacology , Quantitative Trait Loci
12.
Int Tinnitus J ; 27(2): 174-182, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38507632

ABSTRACT

BACKGROUND: Laparoscopic cholecystectomy is a proper treatment for cholecystitis but the Carbon dioxide gas which is used in surgery stimulates the sympathetic system and causes hemodynamic changes and postoperative shivering in patients undergoing operations. This study was conducted to evaluate the effects of clonidine on reducing hemodynamic changes during tracheal intubation and Carbon dioxide gas insufflation and postoperative shivering in patients undergoing laparoscopic cholecystectomy. MATERIAL AND METHODS: This prospective, randomized, triple-blind clinical trial was conducted on 60 patients between the 18-70 years-old age group, who were candidates of laparoscopic cholecystectomy surgery. The patients randomized into two groups (30 patients received 150 µg oral clonidine) and 30 patients received 100 mg oral Vitamin C). Heart rate and mean arterial pressure of patients were recorded before anesthesia, before and after laryngoscopy, before and after Carbon dioxide gas insufflation. Data were analyzed using Chi-2, student t-test, and analysis of variance by repeated measure considering at a significant level less than 0.05. RESULTS: The findings of this study showed that both heart rate and mean arterial pressure in clonidine group after tracheal intubation and Carbon dioxide gas insufflation were lower than patients in the placebo group, but there was not any statistically significant difference between the two groups (p>0.05) and also postoperative shivering was not different in groups. There was no significant statistical difference in postoperative shivering between the two groups (p>0.05). CONCLUSION: Using 150 µg oral clonidine as a cheap and affordable premedication in patients undergoing laparoscopic cholecystectomy improves hemodynamic stability during operation.


Subject(s)
Cholecystectomy, Laparoscopic , Insufflation , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Clonidine/therapeutic use , Clonidine/pharmacology , Cholecystectomy, Laparoscopic/adverse effects , Insufflation/adverse effects , Shivering , Carbon Dioxide/pharmacology , Prospective Studies , Hemodynamics , Premedication , Intubation
13.
Mar Pollut Bull ; 201: 116284, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38522335

ABSTRACT

Antioxidant responses of juvenile sole exposed to seawater acidification (SA) and Cd were investigated. SA increased lipid peroxidation (LPO) in the fish, independent of Cd concentrations. Cd at medium and high levels inflated LPO under no or moderate SA conditions. This effect was absent under high SA levels, due to SA effect exceeding and obscuring Cd effect. SA and Cd collaborated to provoke LPO, with SOD and CAT being stimulated to defend against oxidative stress, while those related to GSH redox cycle were inhibited under SA exposure. Responses of GSH-related antioxidants to Cd impact varied contingent on their interactions with SA. This defensive strategy was insufficient to protect fish from increased LPO. Antioxidants responded more sensitively to SA than Cd exposure. GSH, GR, SOD and CAT are sensitive biomarkers for SA conditions. The findings offer insights into assessing fish's antioxidant defense strategy under Cd and SA circumstances in natural habitats.


Subject(s)
Antioxidants , Cadmium , Animals , Antioxidants/metabolism , Cadmium/toxicity , Carbon Dioxide/pharmacology , Ocean Acidification , Glutathione/metabolism , Oxidative Stress , Lipid Peroxidation , Superoxide Dismutase/metabolism
14.
New Phytol ; 242(3): 1333-1347, 2024 May.
Article in English | MEDLINE | ID: mdl-38515239

ABSTRACT

Warming and elevated CO2 (eCO2) are expected to facilitate vascular plant encroachment in peatlands. The rhizosphere, where microbial activity is fueled by root turnover and exudates, plays a crucial role in biogeochemical cycling, and will likely at least partially dictate the response of the belowground carbon cycle to climate changes. We leveraged the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment, to explore the effects of a whole-ecosystem warming gradient (+0°C to 9°C) and eCO2 on vascular plant fine roots and their associated microbes. We combined trait-based approaches with the profiling of fungal and prokaryote communities in plant roots and rhizospheres, through amplicon sequencing. Warming promoted self-reliance for resource uptake in trees and shrubs, while saprophytic fungi and putative chemoorganoheterotrophic bacteria utilizing plant-derived carbon substrates were favored in the root zone. Conversely, eCO2 promoted associations between trees and ectomycorrhizal fungi. Trees mostly associated with short-distance exploration-type fungi that preferentially use labile soil N. Additionally, eCO2 decreased the relative abundance of saprotrophs in tree roots. Our results indicate that plant fine-root trait variation is a crucial mechanism through which vascular plants in peatlands respond to climate change via their influence on microbial communities that regulate biogeochemical cycles.


Subject(s)
Microbiota , Mycorrhizae , Tracheophyta , Ecosystem , Carbon Dioxide/pharmacology , Plants , Trees , Soil , Soil Microbiology , Plant Roots
15.
J Insect Sci ; 24(2)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38491952

ABSTRACT

Modified atmosphere is effective in controlling Tribolium castaneum Herbst, but it has adaptations. Comprehending the potential mechanism of resistance to T. castaneum in a modified atmosphere will help advance related management methods. This study conducted a comparative transcriptomic and metabolomic analysis to understand the physiological mechanism of T. castaneum in adapting to CO2 stress. Results showed that there were a large number of differentially expressed genes (DEGs) in T. castaneum treated with different concentrations of CO2. Gene ontology (GO) analysis revealed significant enrichment of DEGs mainly in binding, catalytic activity, cell, membrane, membrane part, protein-containing complex, biological regulation, and cellular and metabolic process. Kyoto Encyclopedia of Genes and Genomes analysis showed that different treatments had different effects on the metabolic pathways of T. castaneum. DEGs induced by 25% CO2 were involved in arginine and proline metabolism, and 50% air + 50% CO2 treatment affected most kinds of metabolic pathways, mainly the signal transduction pathway, including PI3K-Akt signaling pathway, AMPK signaling pathway, neurotrophin signaling pathway, insulin signaling pathway, and thyroid hormone signaling. Ribosome and DNA replication were enriched under high CO2 stress (75% and 95%). The metabolomics revealed that different concentrations of CO2 treatments might inhibit the growth of T. castaneum through acidosis, or they may adapt to anoxic conditions through histamine and N-acetylhistamine. Multiple analyses have shown significant changes in histamine and N-acetylhistamine levels, as well as their associated genes, with increasing CO2 concentration. In conclusion, this study comprehensively revealed the molecular mechanism of T. castaneum responding to CO2 stress and provided the basis for an effectively modified atmosphere in the T. castaneum.


Subject(s)
Coleoptera , Histamine/analogs & derivatives , Tribolium , Animals , Coleoptera/genetics , Tribolium/genetics , Histamine/pharmacology , Carbon Dioxide/pharmacology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/pharmacology , Gene Expression Profiling
16.
Int J Food Microbiol ; 416: 110658, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38484608

ABSTRACT

Fusarium asiaticum is a predominant fungal pathogen causing Fusarium Head Blight (FHB) in wheat and barley in China and is associated with approximately £201 million in annual losses due to grains contaminated with mycotoxins. F. asiaticum produces deoxynivalenol and zearalenone whose maximum limits in cereals and cereals-derived products have been established in different countries including the EU. Few studies are available on the ecophysiological behaviour of this fungal pathogen, but nothing is known about the impact of projected climate change scenarios on its growth and mycotoxin production. Therefore, this study aimed to examine the interacting effect of i) current and increased temperature (25 vs 30 °C), ii) drought stress variation (0.98 vs 0.95 water activity; aw) and iii) existing and predicted CO2 concentrations (400 vs 1000 ppm) on fungal growth and mycotoxin production (type B trichothecenes and zearalenone) by three F. asiaticum strains (CH024b, 82, 0982) on a wheat-based matrix after 10 days of incubation. The results showed that, when exposed to increased CO2 concentration (1000 ppm) there was a significant reduction of fungal growth compared to current concentration (400 ppm) both at 25 and 30 °C, especially at 0.95 aw. The multi-mycotoxin analysis performed by LC-MS/MS qTRAP showed a significant increase of deoxynivalenol and 15-acetyldeoxynivalenol production when the CH024b strain was exposed to elevated CO2 compared to current CO2 levels. Zearalenone production by the strain 0982 was significantly stimulated by mild water stress (0.95 aw) and increased CO2 concentration (1000 ppm) regardless of the temperature. Such results highlight that intraspecies variability exist among F. asiaticum strains with some mycotoxins likely to exceed current EU legislative limits under prospected climate change conditions.


Subject(s)
Fusarium , Mycotoxins , Trichothecenes , Zearalenone , Mycotoxins/analysis , Zearalenone/analysis , Triticum/microbiology , Carbon Dioxide/pharmacology , Chromatography, Liquid , Climate Change , Tandem Mass Spectrometry , Edible Grain/microbiology
17.
Article in English | MEDLINE | ID: mdl-38513801

ABSTRACT

Climatic events are affecting the Amazon basin and according to projections it is predicted the intensification of climate changes through increases in temperature and carbon dioxide (CO2). Recent evidence has revealed that exposure to an extreme climate scenario elicits oxidative damage in some fish species, impairing their metabolism and physiology, contributing to their susceptibility. Thus, the comprehension of physiological alterations in Arapaima gigas (pirarucu) to the climatic changes forecasted for the next 100 years is important to evaluate its capability to deal with oxidative stress. The objective of this work was to determine whether antioxidant defense system is able to prevent muscle oxidative damage of pirarucu exposed 96 h to extreme climate scenario, as well as the effects of this exposition on muscle fatty acid levels. Lipid peroxidation and reactive oxygen species significantly increase in the muscle of pirarucus exposed to an extreme climate scenario compared to control, while muscle superoxide dismutase, catalase, and glutathione peroxidase were significantly lower. Total amount of saturated fatty acids (SFAs) was significantly higher in pirarucu exposed to an extreme climate scenario compared to control, while total content of monounsaturated (MUFAs) and polyunsaturated fatty acids (PUFAs) was significantly lower. Exposure to an extreme climate scenario causes muscular oxidative stress and that the antioxidant systems are inefficient to avoid oxidative damage. In addition, the increase of total SFAs and the decrease of MUFAs and PUFAs probably intend to maintain membrane fluidity while facing high temperature and CO2 levels.


Subject(s)
Antioxidants , Fatty Acids , Animals , Antioxidants/metabolism , Temperature , Carbon Dioxide/pharmacology , Oxidative Stress , Fishes/metabolism , Fatty Acids, Unsaturated
18.
Plant Physiol Biochem ; 208: 108465, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422577

ABSTRACT

The concentration of atmospheric carbon dioxide (CO2) has increased drastically over the past several decades, resulting in the pH of the ocean decreasing by 0.44 ± 0.005 units, known as ocean acidification (OA). The Kappaphycus alvarezii (Rhodophyta, Solieriaceae), is a commercially and ecologically important red macroalga with significant CO2 absorption potential from seawater. The K. alvarezii also experienced light variations from self-shading and varied cultivation depths. Thus, the aim of present study was to investigate the effects of two pCO2 levels (450 and 1200 ppmv) and three light intensities (50, 100, and 150 µmol photons·m-2·s-1) on photosynthesis and the biochemical components in K. alvarezii. The results of the present study showed that a light intensity of 50 µmol photons·m-2·s-1 was optimal for K. alvarezii photosynthesis with 0.663 ± 0.030 of Fv/Fm and 0.672 ± 0.025 of Fv'/Fm'. Phycoerythrin contents at two pCO2 levels decreased significantly with an increase in light intensity by 57.14-87.76%, while phycocyanin contents only decreased from 0.0069 ± 0.001 mg g-1 FW to 0.0047 ± 0.001 mg g-1 FW with an increase in light intensity at 1200 ppmv of pCO2. Moreover, moderate increases in light intensity and pCO2 had certain positive effects on the physiological performance of K. alvarezii, specifically in terms of increasing soluble carbohydrate production. Although OA and high light levels promoted total organic carbon accumulation (21.730 ± 0.205% DW) in K. alvarezii, they had a negative impact on total nitrogen accumulation (0.600 ± 0.017% DW).


Subject(s)
Edible Seaweeds , Rhodophyta , Seaweed , Seawater/chemistry , Hydrogen-Ion Concentration , Carbon Dioxide/pharmacology , Ocean Acidification , Photosynthesis
19.
Sci Total Environ ; 921: 171173, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38401718

ABSTRACT

The efficiency of water use in plants, a critical ecophysiological parameter closely related to water and carbon cycles, is essential for understanding the interactions between plants and their environment. This study investigates the effects of ongoing climate change and increasing atmospheric CO2 concentration on intrinsic (stomata-based; iWUE) and evaporative (transpiration-based; eWUE) water use efficiency in oak trees along a naturally small altitudinal gradient (130-630 m a.s.l.) of Vihorlat Mountains (eastern Slovakia, Central Europe). To assess changes in iWUE and eWUE values over the past 60 years (1961-2020), stable carbon isotope ratios in latewood cellulose (δ13Ccell) of annually resolved tree rings were analyzed. Such an approach was sensitive enough to distinguish tree responses to growth environments at different altitudes. Our findings revealed a rising trend in iWUE, particularly in oak trees at low and middle altitudes. However, this increase was negligible at high altitudes. Warmer and drier conditions at lower altitudes likely led to significant stomatal closure and enhanced efficiency in photosynthetic CO2 uptake due to rising CO2 concentration. Conversely, the increasing intracellular-to-ambient CO2 ratio (Ci/Ca) at higher altitudes indicated lower efficiency in photosynthetic CO2 uptake. In contrast to iWUE, eWUE showed no increasing trends over the last 60 years. This suggests that the positive impacts of elevated CO2 concentrations and temperature on photosynthesis and stomatal closure are counteracted by the rising atmospheric vapor pressure deficit (VPD). These differences underscore the importance of the correct interpretation of stomata-based and transpiration-based WUEs and highlight the necessity of atmospheric VPD correction when applying tree-ring δ13C-derived WUE at ecosystem and global levels.


Subject(s)
Carbon Dioxide , Ecosystem , Carbon Dioxide/pharmacology , Temperature , Vapor Pressure , Gases , Photosynthesis , Carbon Isotopes/analysis , Water
20.
Psychopharmacology (Berl) ; 241(3): 627-635, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38363344

ABSTRACT

RATIONALE: Although the study of emotions can look back to over 100 years of research, it is unclear which information the brain uses to construct the subjective experience of an emotion. OBJECTIVE: In the current study, we assess the role of the peripheral and central adrenergic system in this respect. METHODS: Healthy volunteers underwent a double inhalation of 35% CO2, which is a well-validated procedure to induce an intense emotion, namely panic. In a randomized, cross-over design, 34 participants received either a ß1-blocker acting selectively in the peripheral nervous system (atenolol), a ß1-blocker acting in the peripheral and central nervous system (metoprolol), or a placebo before the CO2 inhalation. RESULTS: Heart rate and systolic blood pressure were reduced in both ß-blocker conditions compared to placebo, showing effective inhibition of the adrenergic tone. Nevertheless, the subjective experience of the induced panic was the same in all conditions, as measured by self-reported fear, discomfort, and panic symptom ratings. CONCLUSIONS: These results indicate that information from the peripheral and central adrenergic system does not play a major role in the construction of the subjective emotion.


Subject(s)
Adrenergic beta-Antagonists , Carbon Dioxide , Emotions , Nervous System , Panic , Humans , Adrenergic beta-Antagonists/pharmacology , Carbon Dioxide/pharmacology , Emotions/drug effects , Emotions/physiology , Fear/drug effects , Fear/physiology , Heart Rate/drug effects , Panic/drug effects , Panic/physiology , Nervous System/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...