Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 596(7872): 384-388, 2021 08.
Article in English | MEDLINE | ID: mdl-34408332

ABSTRACT

The control of the production of ozone-depleting substances through the Montreal Protocol means that the stratospheric ozone layer is recovering1 and that consequent increases in harmful surface ultraviolet radiation are being avoided2,3. The Montreal Protocol has co-benefits for climate change mitigation, because ozone-depleting substances are potent greenhouse gases4-7. The avoided ultraviolet radiation and climate change also have co-benefits for plants and their capacity to store carbon through photosynthesis8, but this has not previously been investigated. Here, using a modelling framework that couples ozone depletion, climate change, damage to plants by ultraviolet radiation and the carbon cycle, we explore the benefits of avoided increases in ultraviolet radiation and changes in climate on the terrestrial biosphere and its capacity as a carbon sink. Considering a range of strengths for the effect of ultraviolet radiation on plant growth8-12, we estimate that there could have been 325-690 billion tonnes less carbon held in plants and soils by the end of this century (2080-2099) without the Montreal Protocol (as compared to climate projections with controls on ozone-depleting substances). This change could have resulted in an additional 115-235 parts per million of atmospheric carbon dioxide, which might have led to additional warming of global-mean surface temperature by 0.50-1.0 degrees. Our findings suggest that the Montreal Protocol may also be helping to mitigate climate change through avoided decreases in the land carbon sink.


Subject(s)
Carbon Sequestration , Ozone Depletion/prevention & control , Stratospheric Ozone/analysis , Carbon Dioxide/analysis , Carbon Sequestration/radiation effects , Global Warming/prevention & control , Global Warming/statistics & numerical data , History, 21st Century , Photosynthesis/radiation effects , Plants/metabolism , Plants/radiation effects , Temperature , Ultraviolet Rays
2.
Photosynth Res ; 141(2): 195-207, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30756292

ABSTRACT

Crassulacean acid metabolism (CAM) is a specialized photosynthetic pathway present in a variety of genera including many epiphytic orchids. CAM is under circadian control and can be subdivided into four discrete phases during a diel cycle. Inherent to this specific mode of metabolism, carbohydrate availability is a limiting factor for nocturnal CO2 uptake and biomass production. To evaluate the effects of light quality on the photosynthetic performance and diel changes in carbohydrates during the CAM cycle. Phalaenopsis plants were grown under four different light qualities (red, blue, red + blue and full spectrum white light) at a fluence of 100 µmol m-2 s-1 and a photoperiod of 12 h for 8 weeks. In contrast to monochromatic blue light, plants grown under monochromatic red light showed already a significant decline of the quantum efficiency (ΦPSII) after 5 days and of the maximum quantum yield (Fv/Fm) after 10 days under this treatment. This was also reflected in a compromised chlorophyll and carotenoid content and total diel CO2 uptake under red light in comparison with monochromatic blue and full spectrum white light. In particular, CO2 uptake during nocturnal phase I was affected under red illumination resulting in a reduced amount of vacuolar malate. In addition, red light caused the rate of decarboxylation of malate during the day to be consistently lower and malic acid breakdown persisted until 4 h after dusk. Because the intrinsic activity of PEPC was not affected, the restricted availability of storage carbohydrates such as starch was likely to cause these adverse effects under red light. Addition of blue to the red light spectrum restored the diel fluxes of carbohydrates and malate and resulted in a significant enhancement of the daily CO2 uptake, pigment concentration and biomass formation.


Subject(s)
Carbon Dioxide/metabolism , Carbon Sequestration/radiation effects , Orchidaceae/physiology , Photosynthesis/radiation effects , Biomass , Chlorophyll/metabolism , Light , Malates/metabolism , Orchidaceae/growth & development , Orchidaceae/radiation effects , Photoperiod , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Leaves/radiation effects , Starch/metabolism
3.
Environ Sci Technol ; 45(15): 6697-702, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21714550

ABSTRACT

Here we describe an innovative mechanism for carbon sequestration in soil by in situ photopolymerization of soil organic matter under biomimetic catalysis. Three different Mediterranean soils were added with a synthetic water-soluble iron-porphyrin, irradiated by solar light, and subjected first to 5 days incubation and, then, 15, and 30 wetting and drying (w/d) cycles. The in situ catalyst-assisted photopolymerization of soil organic carbon (SOC) increased water stability of soil aggregates both after 5 days incubation and 15 w/d cycles, but not after 30 w/d cycles. Particle-size distribution of all treated soils confirmed the induced soil physical improvement, by showing a concomitant lower yield of the clay-sized fraction and larger yields of either coarse sand- or fine sand-size fractions, depending on soil texture, though only after 5 days incubation. The gain in soil physical quality was reflected by the shift of OC content from small to large soil aggregates, thereby suggesting that photopolymerization stabilized OC by both chemical and physical processes. A further evidence of the carbon sequestration capacity of the photocatalytic treatment was provided by the significant reduction of CO(2) respired by all soils after both incubation and w/d cycles. Our findings suggest that "green" catalytic technologies may potentially be the bases for future practices to increase soil carbon stabilization and mitigate CO(2) emissions from arable soils.


Subject(s)
Carbon Sequestration/radiation effects , Light , Organic Chemicals/chemistry , Polymerization/radiation effects , Soil/chemistry , Catalysis/radiation effects , Italy , Oxidation-Reduction/radiation effects , Particle Size , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...