Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 429
Filter
1.
Microbiol Res ; 284: 127738, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692035

ABSTRACT

This study aimed to (i) investigate the potential for enhanced phytoremediation to remove contaminants from soil historically co-contaminated with petroleum hydrocarbons (PHs) and heavy metals (HMs) and (ii) analyze the expression of crucial bacterial genes and whole metatranscriptomics profiles for better understanding of soil processes during applied treatment. Phytoremediation was performed using Zea mays and supported by the Pseudomonas qingdaonensis ZCR6 strain and a natural biofertilizer: meat and bone meal (MBM). In previous investigations, mechanisms supporting plant growth and PH degradation were described in the ZCR6 strain. Here, ZCR6 survived in the soil throughout the experiment, but the efficacy of PH removal from all soils fertilized with MBM reached 32 % regardless of the bacterial inoculation. All experimental groups contained 2 % (w/w) MBM. The toxic effect of this amendment on plants was detected 30 days after germination, irrespective of ZCR6 inoculation. Among the 17 genes tested using the qPCR method, only expression of the acdS gene, encoding 1-aminocyclopropane-1-carboxylic acid deaminase, and the CYP153 gene, encoding cytochrome P450-type alkane hydroxylase, was detected in soils. Metatranscriptomic analysis of soils indicated increased expression of methane particulated ammonia monooxygenase subunit A (pmoA-amoA) by Nitrosomonadales bacteria in all soils enriched with MBM compared to the non-fertilized control. We suggest that the addition of 2 % (w/w) MBM caused the toxic effect on plants via the rapid release of ammonia, and this led to high pmoA-amoA expression. In parallel, due to its wide substrate specificity, enhanced bacterial hydrocarbon removal in MBM-treated soils was observed. The metatranscriptomic results indicate that MBM application should be considered to improve bioremediation of soils polluted with PHs rather than phytoremediation. However, lower concentrations of MBM could be considered for phytoremediation enhancement. From a broader perspective, these results indicated the superior capability of metatranscriptomics to investigate the microbial mechanisms driving various bioremediation techniques.


Subject(s)
Biodegradation, Environmental , Pseudomonas , Soil Microbiology , Soil Pollutants , Zea mays , Soil Pollutants/metabolism , Zea mays/metabolism , Zea mays/microbiology , Pseudomonas/genetics , Pseudomonas/metabolism , Pseudomonas/isolation & purification , Metals, Heavy/metabolism , Petroleum/metabolism , Soil/chemistry , Hydrocarbons/metabolism , Gene Expression Profiling , Carbon-Carbon Lyases/metabolism , Carbon-Carbon Lyases/genetics , Transcriptome
2.
Microbiol Res ; 284: 127708, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38599021

ABSTRACT

Climate change intensifies soil salinization and jeopardizes the development of crops worldwide. The accumulation of salts in plant tissue activates the defense system and triggers ethylene production thus restricting cell division. We hypothesize that the inoculation of plant growth-promoting bacteria (PGPB) producing ACC (1-aminocyclopropane-1-carboxylate) deaminase favors the development of arbuscular mycorrhizal fungi (AMF), promoting the growth of maize plants under saline stress. We investigated the efficacy of individual inoculation of PGPB, which produce ACC deaminase, as well as the co-inoculation of PGPB with Rhizophagus clarus on maize plant growth subjected to saline stress. The isolates were acquired from the bulk and rhizospheric soil of Mimosa bimucronata (DC.) Kuntze in a temporary pond located in Pernambuco State, Brazil. In the first greenhouse experiment, 10 halophilic PGPB were inoculated into maize at 0, 40 and 80 mM of NaCl, and in the second experiment, the PGPB that showed the best performance were co-inoculated with R. clarus in maize under the same conditions as in the first experiment. Individual PGPB inoculation benefited the number of leaves, stem diameter, root and shoot dry mass, and the photosynthetic pigments. Inoculation with PGPB 28-10 Pseudarthrobacter enclensis, 24-1 P. enclensis and 52 P. chlorophenolicus increased the chlorophyll a content by 138%, 171%, and 324% at 0, 40 and 80 mM NaCl, respectively, comparing to the non-inoculated control. We also highlight that the inoculation of PGPB 28-10, 28-7 Arthrobacter sp. and 52 increased the content of chlorophyll b by 72%, 98%, and 280% and carotenoids by 82%, 98%, and 290% at 0, 40 and 80 mM of NaCl, respectively. Co-inoculation with PGPB 28-7, 46-1 Leclercia tamurae, 70 Artrobacter sp., and 79-1 Micrococcus endophyticus significantly increased the rate of mycorrhizal colonization by roughly 50%. Furthermore, co-inoculation promoted a decrease in the accumulation of Na and K extracted from plant tissue, with an increase in salt concentration, from 40 mM to 80 mM, also favoring the establishment and development of R. clarus. In addition, co-inoculation of these PGPB with R. clarus promoted maize growth and increased plant biomass through osmoregulation and protection of the photosynthetic apparatus. The tripartite symbiosis (plant-fungus-bacterium) is likely to reprogram metabolic pathways that improve maize growth and crop yield, suggesting that the AMF-PGPB consortium can minimize damages caused by saline stress.


Subject(s)
Bacteria , Carbon-Carbon Lyases , Mycorrhizae , Plant Roots , Soil Microbiology , Zea mays , Zea mays/microbiology , Zea mays/growth & development , Mycorrhizae/physiology , Carbon-Carbon Lyases/metabolism , Plant Roots/microbiology , Plant Roots/growth & development , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Salt Stress , Chlorophyll/metabolism , Glomeromycota/physiology , Salt Tolerance , Photosynthesis , Rhizosphere , Sodium Chloride/metabolism , Plant Leaves/microbiology , Soil/chemistry
3.
Microbiol Spectr ; 12(5): e0405623, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38563743

ABSTRACT

Codonopsis pilosula is a perennial herbaceous liana with medicinal value. It is critical to promote Codonopsis pilosula growth through effective and sustainable methods, and the use of plant growth-promoting bacteria (PGPB) is a promising candidate. In this study, we isolated a PGPB, Klebsiella michiganensis LDS17, that produced a highly active 1-aminocyclopropane-1-carboxylate deaminase from the Codonopsis pilosula rhizosphere. The strain exhibited multiple plant growth-promoting properties. The antagonistic activity of strain LDS17 against eight phytopathogenic fungi was investigated, and the results showed that strain LDS17 had obvious antagonistic effects on Rhizoctonia solani, Colletotrichum camelliae, Cytospora chrysosperma, and Phomopsis macrospore with growth inhibition rates of 54.22%, 49.41%, 48.89%, and 41.11%, respectively. Inoculation of strain LDS17 not only significantly increased the growth of Codonopsis pilosula seedlings but also increased the invertase and urease activities, the number of culturable bacteria, actinomycetes, and fungi, as well as the functional diversity of microbial communities in the rhizosphere soil of the seedlings. Heavy metal (HM) resistance tests showed that LDS17 is resistant to copper, zinc, and nickel. Whole-genome analysis of strain LDS17 revealed the genes involved in IAA production, siderophore synthesis, nitrogen fixation, P solubilization, and HM resistance. We further identified a gene (koyR) encoding a plant-responsive LuxR solo in the LDS17 genome. Klebsiella michiganensis LDS17 may therefore be useful in microbial fertilizers for Codonopsis pilosula. The identification of genes related to plant growth and HM resistance provides an important foundation for future analyses of the molecular mechanisms underlying the plant growth promotion and HM resistance of LDS17. IMPORTANCE: We comprehensively evaluated the plant growth-promoting characteristics and heavy metal (HM) resistance ability of the LDS17 strain, as well as the effects of strain LDS17 inoculation on the Codonopsis pilosula seedling growth and the soil qualities in the Codonopsis pilosula rhizosphere. We conducted whole-genome analysis and identified lots of genes and gene clusters contributing to plant-beneficial functions and HM resistance, which is critical for further elucidating the plant growth-promoting mechanism of strain LDS17 and expanding its application in the development of plant growth-promoting agents used in the environment under HM stress.


Subject(s)
Codonopsis , Klebsiella , Rhizosphere , Soil Microbiology , Klebsiella/genetics , Klebsiella/enzymology , Klebsiella/drug effects , Klebsiella/growth & development , Codonopsis/genetics , Codonopsis/growth & development , Codonopsis/microbiology , Plant Development , Rhizoctonia/growth & development , Rhizoctonia/genetics , Rhizoctonia/drug effects , Carbon-Carbon Lyases/genetics , Carbon-Carbon Lyases/metabolism , Plant Roots/microbiology , Plant Roots/growth & development , Plant Growth Regulators/metabolism , Plant Diseases/microbiology , Soil/chemistry
4.
Plant Cell Physiol ; 65(3): 428-446, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38174441

ABSTRACT

Many terrestrial plants produce large quantities of alkanes for use in epicuticular wax and the pollen coat. However, their carbon chains must be long to be useful as fuel or as a petrochemical feedstock. Here, we focus on Nymphaea odorata, which produces relatively short alkanes in its anthers. We identified orthologs of the Arabidopsis alkane biosynthesis genes AtCER1 and AtCER3 in N. odorata and designated them NoCER1A, NoCER3A and NoCER3B. Expression analysis of NoCER1A and NoCER3A/B in Arabidopsis cer mutants revealed that the N. odorata enzymes cooperated with the Arabidopsis enzymes and that the NoCER1A produced shorter alkanes than AtCER1, regardless of which CER3 protein it interacted with. These results indicate that AtCER1 frequently uses a C30 substrate, whereas NoCER1A, NoCER3A/B and AtCER3 react with a broad range of substrate chain lengths. The incorporation of shorter alkanes disturbed the formation of wax crystals required for water-repellent activity in stems, suggesting that chain-length specificity is important for surface cleaning. Moreover, cultured tobacco cells expressing NoCER1A and NoCER3A/B effectively produced C19-C23 alkanes, indicating that the introduction of the two enzymes is sufficient to produce alkanes. Taken together, our findings suggest that these N. odorata enzymes may be useful for the biological production of alkanes of specific lengths. 3D modeling revealed that CER1s and CER3s share a similar structure that consists of N- and C-terminal domains, in which their predicted active sites are respectively located. We predicted the complex structure of both enzymes and found a cavity that connects their active sites.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Nymphaea , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Nymphaea/metabolism , Alkanes/metabolism , Carbon-Carbon Lyases/metabolism
5.
ISME J ; 17(8): 1267-1277, 2023 08.
Article in English | MEDLINE | ID: mdl-37264153

ABSTRACT

Plant growth promoting bacteria can confer resistance to various types of stress and increase agricultural yields. The mechanisms they employ are diverse. One of the most important genes associated with the increase in plant biomass and stress resistance is acdS, which encodes a 1-aminocyclopropane-1-carboxylate- or ACC-deaminase. The non-proteinogenic amino acid ACC is the precursor and means of long-distance transport of ethylene, a plant hormone associated with growth arrest. Expression of acdS reduces stress induced ethylene levels and the enzyme is abundant in rhizosphere colonizers. Whether ACC hydrolysis plays a role in the phyllosphere, both as assembly cue and in growth promotion, remains unclear. Here we show that Paraburkholderia dioscoreae Msb3, a yam phyllosphere symbiont, colonizes the tomato phyllosphere and promotes plant growth by action of its ACC deaminase. We found that acdS is required for improved plant growth but not for efficient leaf colonization. Strain Msb3 readily proliferates on the leaf surface of tomato, only occasionally spreading to the leaf endosphere through stomata. The strain can also colonize the soil or medium around the roots but only spreads into the root if the plant is wounded. Our results indicate that the degradation of ACC is not just an important trait of plant growth promoting rhizobacteria but also one of leaf dwelling phyllosphere bacteria. Manipulation of the leaf microbiota by means of spray inoculation may be more easily achieved than that of the soil. Therefore, the application of ACC deaminase containing bacteria to the phyllosphere may be a promising strategy to increasing plant stress resistance, pathogen control, and harvest yields.


Subject(s)
Carbon-Carbon Lyases , Plant Roots , Plant Roots/microbiology , Carbon-Carbon Lyases/genetics , Carbon-Carbon Lyases/metabolism , Ethylenes/metabolism , Bacteria/genetics , Bacteria/metabolism , Soil
6.
Antonie Van Leeuwenhoek ; 115(9): 1165-1176, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35867173

ABSTRACT

It has been previously shown that a number of plant associated methylotrophic bacteria contain an enzyme aminocyclopropane carboxylate (ACC) deaminase (AcdS) hydrolyzing ACC, the immediate precursor of ethylene in plants. The genome of the epiphytic methylotroph Methylobacterium radiotolerans JCM2831 contains an open reading frame encoding a protein homologous to transcriptional regulatory protein AcdR of the Lrp (leucine-responsive regulatory protein) family. The acdR gene of M. radiotolerans was heterologously expressed in Escherichia coli and purified. The results of gel retardation experiments have shown that AcdR specifically binds the DNA fragment containing the promoter-operator region of the acdS gene. ACC decreased electrophoretic mobility of the AcdR-DNA complex whereas leucine had no effect on the complex mobility. The mutant strains of M. radiotolerans obtained by insertion of a tetracycline cassette in the acdS or acdR gene lost the ACC-deaminase activity but the strains with complementation of the mutation recovered this function. The acdS- mutant but not acdR- strain expressed the xylE reporter gene under the control of acdS promoter region thus resulting in a catechol 2,3-dioxygenase activity. This suggested that AcdR in vivo functions as activator of transcription of the acdS gene. The results obtained in this study showed that in phytosymbiotic methylotroph Methylobacterium radiotolerans AcdR mediates activation of the acdS gene transcription in the presence of an inducer ACC or 2-aminoisobutyrate and the excess of the regulatory protein assists in transcription initiation even in the absence of the inducer. The model of regulation of acdS transcription in M. radiotolerans was proposed.


Subject(s)
Carbon-Carbon Lyases , Methylobacterium , Carbon-Carbon Lyases/genetics , Carbon-Carbon Lyases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Methylobacterium/genetics , Methylobacterium/metabolism , Promoter Regions, Genetic , Transcription, Genetic
7.
Environ Microbiol ; 24(8): 3612-3624, 2022 08.
Article in English | MEDLINE | ID: mdl-35191581

ABSTRACT

The omics-based studies are important for identifying characteristic proteins in plants to elucidate the mechanism of ACC deaminase producing bacteria-mediated salt tolerance. This study evaluates the changes in the proteome of rice inoculated with ACC deaminase producing bacteria under salt-stress conditions. Salt stress resulted in a significant decrease in photosynthetic pigments, whereas inoculation of Methylobacterium oryzae CBMB20 had significantly increased pigment contents under normal and salt-stress conditions. A total of 76, 51 and 33 differentially abundant proteins (DAPs) were identified in non-inoculated salt-stressed plants, bacteria-inoculated plants under normal and salt stress conditions respectively. The abundances of proteins responsible for ethylene emission and programmed cell death were increased, and that of photosynthesis-related proteins were decreased in non-inoculated plants under salt stress. However, bacteria-inoculated plants had shown higher abundance of antioxidant proteins, RuBisCo and ribosomal proteins that are important for enhancing stress tolerance and improving plant physiological traits. Collectively, salt stress might affect plant physiological traits by impairing photosynthetic machinery and accelerating apoptosis leading to a decline in biomass. However, inoculation of plants with bacteria can assist in enhancing photosynthetic activity, antioxidant activities and ethylene regulation related proteins for attenuating salt-induced apoptosis and sustaining growth and development.


Subject(s)
Oryza , Antioxidants/metabolism , Carbon-Carbon Lyases/genetics , Carbon-Carbon Lyases/metabolism , Ethylenes/metabolism , Oryza/microbiology , Proteomics , Salt Stress , Stress, Physiological
8.
Nat Commun ; 13(1): 782, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35145075

ABSTRACT

Untargeted metabolomics via high-resolution mass spectrometry can reveal more than 100,000 molecular features in a single sample, many of which may represent unidentified metabolites, posing significant challenges to data analysis. We here introduce Metaboseek, an open-source analysis platform designed for untargeted comparative metabolomics and demonstrate its utility by uncovering biosynthetic functions of a conserved fat metabolism pathway, α-oxidation, using C. elegans as a model. Metaboseek integrates modules for molecular feature detection, statistics, molecular formula prediction, and fragmentation analysis, which uncovers more than 200 previously uncharacterized α-oxidation-dependent metabolites in an untargeted comparison of wildtype and α-oxidation-defective hacl-1 mutants. The identified metabolites support the predicted enzymatic function of HACL-1 and reveal that α-oxidation participates in metabolism of endogenous ß-methyl-branched fatty acids and food-derived cyclopropane lipids. Our results showcase compound discovery and feature annotation at scale via untargeted comparative metabolomics applied to a conserved primary metabolic pathway and suggest a model for the metabolism of cyclopropane lipids.


Subject(s)
Caenorhabditis elegans/metabolism , Lipid Metabolism , Metabolic Networks and Pathways , Metabolomics/methods , Animals , Caenorhabditis elegans/genetics , Carbon-Carbon Lyases/genetics , Carbon-Carbon Lyases/metabolism , Fatty Acids/genetics , Fatty Acids/metabolism , Humans , Larva , Lipid Metabolism/genetics , Mass Spectrometry , Metabolic Networks and Pathways/genetics , Metabolome , Oxidation-Reduction
9.
J Am Chem Soc ; 143(49): 21003-21009, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34851644

ABSTRACT

The enzyme NgnD catalyzes an ambimodal cycloaddition that bifurcates to [6+4]- and [4+2]-adducts. Both products have been isolated in experiments, but it remains unknown how enzyme and water influence the bifurcation selectivity at the femtosecond time scale. Here, we study the impact of water and enzyme on the post-transition state bifurcation of NgnD-catalyzed [6+4]/[4+2] cycloaddition by integrating quantum mechanics/molecular mechanics quasiclassical dynamics simulations and biochemical assays. The ratio of [6+4]/[4+2] products significantly differs in the gas phase, water, and enzyme. Biochemical assays were employed to validate computational predictions. The study informs how water and enzyme affect the bifurcation selectivity through perturbation of the reaction dynamics in the femtosecond time scale, revealing the fundamental roles of condensed media in dynamically controlling the chemical selectivity for biosynthetic reactions.


Subject(s)
Bacterial Proteins/chemistry , Carbon-Carbon Lyases/chemistry , Water/chemistry , Bacterial Proteins/metabolism , Biocatalysis , Carbon-Carbon Lyases/metabolism , Catalytic Domain , Cycloaddition Reaction , Density Functional Theory , Lactones/chemistry , Lactones/metabolism , Models, Chemical , Molecular Dynamics Simulation , Nocardia/enzymology , Protein Binding
10.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34884785

ABSTRACT

Drought is a major abiotic stress imposed by climate change that affects crop production and soil microbial functions. Plants respond to water deficits at the morphological, biochemical, and physiological levels, and invoke different adaptation mechanisms to tolerate drought stress. Plant growth-promoting bacteria (PGPB) can help to alleviate drought stress in plants through various strategies, including phytohormone production, the solubilization of mineral nutrients, and the production of 1-aminocyclopropane-1-carboxylate deaminase and osmolytes. However, PGPB populations and functions are influenced by adverse soil factors, such as drought. Therefore, maintaining the viability and stability of PGPB applied to arid soils requires that the PGPB have to be protected by suitable coatings. The encapsulation of PGPB is one of the newest and most efficient techniques for protecting beneficial bacteria against unfavorable soil conditions. Coatings made from polysaccharides, such as sodium alginate, chitosan, starch, cellulose, and their derivatives, can absorb and retain substantial amounts of water in the interstitial sites of their structures, thereby promoting bacterial survival and better plant growth.


Subject(s)
Bacteria/metabolism , Cell Encapsulation/methods , Droughts , Plant Development/physiology , Plant Roots/microbiology , Polysaccharides/metabolism , Acclimatization/physiology , Alginates/metabolism , Carbon-Carbon Lyases/metabolism , Chitosan/metabolism , Plant Growth Regulators/metabolism , Plants/microbiology , Rhizosphere , Soil Microbiology , Stress, Physiological/physiology
11.
Int J Mol Sci ; 22(21)2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34768893

ABSTRACT

Soil salinity stress has become a serious roadblock for food production worldwide since it is one of the key factors affecting agricultural productivity. Salinity and drought are predicted to cause considerable loss of crops. To deal with this difficult situation, a variety of strategies have been developed, including plant breeding, plant genetic engineering, and a wide range of agricultural practices, including the use of plant growth-promoting rhizobacteria (PGPR) and seed biopriming techniques, to improve the plants' defenses against salinity stress, resulting in higher crop yields to meet future human food demand. In the present review, we updated and discussed the negative effects of salinity stress on plant morphological parameters and physio-biochemical attributes via various mechanisms and the beneficial roles of PGPR with 1-Aminocyclopropane-1-Carboxylate(ACC) deaminase activity as green bio-inoculants in reducing the impact of saline conditions. Furthermore, the applications of ACC deaminase-producing PGPR as a beneficial tool in seed biopriming techniques are updated and explored. This strategy shows promise in boosting quick seed germination, seedling vigor and plant growth uniformity. In addition, the contentious findings of the variation of antioxidants and osmolytes in ACC deaminase-producing PGPR treated plants are examined.


Subject(s)
Carbon-Carbon Lyases/metabolism , Rhizobiaceae/metabolism , Salt Stress , Agriculture/methods , Crops, Agricultural , Plant Development , Plant Physiological Phenomena , Plant Roots/growth & development , Plants , Rhizosphere , Salinity , Soil/chemistry , Soil Microbiology
12.
Biochemistry ; 60(50): 3829-3840, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34845903

ABSTRACT

Catalytic promiscuity is the coincidental ability to catalyze nonbiological reactions in the same active site as the native biological reaction. Several lines of evidence show that catalytic promiscuity plays a role in the evolution of new enzyme functions. Thus, studying catalytic promiscuity can help identify structural features that predispose an enzyme to evolve new functions. This study identifies a potentially preadaptive residue in a promiscuous N-succinylamino acid racemase/o-succinylbenzoate synthase (NSAR/OSBS) enzyme from Amycolatopsis sp. T-1-60. This enzyme belongs to a branch of the OSBS family which includes many catalytically promiscuous NSAR/OSBS enzymes. R266 is conserved in all members of the NSAR/OSBS subfamily. However, the homologous position is usually hydrophobic in other OSBS subfamilies, whose enzymes lack NSAR activity. The second-shell amino acid R266 is close to the catalytic acid/base K263, but it does not contact the substrate, suggesting that R266 could affect the catalytic mechanism. Mutating R266 to glutamine in Amycolatopsis NSAR/OSBS profoundly reduces NSAR activity but moderately reduces OSBS activity. This is due to a 1000-fold decrease in the rate of proton exchange between the substrate and the general acid/base catalyst K263. This mutation is less deleterious for the OSBS reaction because K263 forms a cation-π interaction with the OSBS substrate and/or the intermediate, rather than acting as a general acid/base catalyst. Together, the data explain how R266 contributes to NSAR reaction specificity and was likely an essential preadaptation for the evolution of NSAR activity.


Subject(s)
Amino Acid Isomerases/chemistry , Amino Acid Isomerases/metabolism , Carbon-Carbon Lyases/chemistry , Carbon-Carbon Lyases/metabolism , Amino Acid Isomerases/genetics , Amino Acid Sequence , Amino Acid Substitution , Amycolatopsis/enzymology , Amycolatopsis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Carbon-Carbon Lyases/genetics , Catalytic Domain/genetics , Conserved Sequence , Crystallography, X-Ray , Enzyme Stability/genetics , Evolution, Molecular , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
13.
J Am Chem Soc ; 143(47): 19719-19730, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34784713

ABSTRACT

Fusarium graminearum is a pathogenic fungus causing huge economic losses worldwide via crop infection leading to yield reduction and grain contamination. The process through which the fungal invasion occurs remains poorly understood. We recently characterized fusaoctaxin A in F. graminearum, where this octapeptide virulence factor results from an assembly line encoded in fg3_54, a gene cluster proved to be involved in fungal pathogenicity and host adaptation. Focusing on genes in this cluster that are related to fungal invasiveness but not to the biosynthesis of fusaoctaxin A, we here report the identification and characterization of fusaoctaxin B, a new octapeptide virulence factor with comparable activity in wheat infection. Fusaoctaxin B differs from fusaoctaxin A at the N-terminus by possessing a guanidinoacetic acid (GAA) unit, formation of which depends on the combined activities of the protein products of fgm1-3. Fgm1 is a cytochrome P450 protein that oxygenates l-Arg to 4(R)-hydroxyl-l-Arg in a regio- and stereoselective manner. Then, Cß-Cγ bond cleavage proceeds in the presence of Fgm3, a pyridoxal-5'-phosphate-dependent lyase, giving guanidinoacetaldehyde and l-Ala. Rather than being directly oxidized to GAA, the guanidine-containing aldehyde undergoes spontaneous cyclization and subsequent enzymatic dehydrogenation to provide glycociamidine, which is linearized by Fgm2, a metallo-dependent amidohydrolase. The GAA path in F. graminearum is distinct from that previously known to involve l-Arg:l-Gly aminidotransferase activity. To provide this nonproteinogenic starter unit that primes nonribosomal octapeptidyl assembly, F. graminearum employs new chemistry to process l-Arg through inert C-H bond activation, selective C-C bond cleavage, cyclization-based alcohol dehydrogenation, and amidohydrolysis-associated linearization.


Subject(s)
Fungal Proteins/biosynthesis , Fusarium/metabolism , Oligopeptides/biosynthesis , Virulence Factors/biosynthesis , Amidohydrolases/metabolism , Carbon-Carbon Lyases/metabolism , Cytochrome P-450 Enzyme System/metabolism , Fungal Proteins/genetics , Fusarium/genetics , Multigene Family , Oligopeptides/genetics , Virulence Factors/genetics
14.
Microbiol Res ; 253: 126891, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34656832

ABSTRACT

Rhizobacteria from pearl millet were screened to produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase and to evaluate its role in alleviating drought stress. Amongst 96 isolates, 28 were positive for ACC deaminase production, with MMR04 offering maximum activity of 2196.23 nmol of α-ketobutyrate produced mg-1 of protein h-1. The ACC deaminase producing rhizobacteria with multiple beneficial properties along with root colonization and non-pathogenic were selected [Bacillus amyloliquefaciens (MMR04), Bacillus subtilis (MMR18) and Stenotrophomonas maltophilia (MMR36)] to confirm the presence of ACC deaminase gene. A significant enhancement in seed germination (91.75%) and seedling vigor (1213.73) was noted upon seed treatment with MMR04 and hence further evaluated for its ability to induce drought stress. The seed treatment with MMR04 improved plant growth parameters and total chlorophyll and RWC in plants grown under severe drought stress (G5) conditions compared to control plants. In addition, MMR04 seed treatment enhanced proline, APX and SOD activity while decreased the MDA content up to 2.3 fold compared to untreated plants (G5). Gene expression studies revealed a significant decrease of 3.3 and 1.8 fold in the relative expression of drought-responsive (DREB-1E) and ethylene-responsive factor (ERF-1B) marker genes, respectively and an increase of 2.2 and 2.9 fold in the relative expression of APX1 and SOD1, respectively in MMR04 treated plants grown under G5 conditions over control. The results confirmed that ACC deaminase producing B. amyloliquefaciens MMR04 could defend the pearl millet plants against drought stress through an antioxidative system, thereby warranting its application in drought stress management.


Subject(s)
Bacillus amyloliquefaciens , Droughts , Host Microbial Interactions , Pennisetum , Antioxidants/metabolism , Bacillus amyloliquefaciens/enzymology , Bacillus amyloliquefaciens/genetics , Carbon-Carbon Lyases/metabolism , Host Microbial Interactions/physiology , Pennisetum/microbiology
15.
Nat Metab ; 3(10): 1385-1399, 2021 10.
Article in English | MEDLINE | ID: mdl-34675440

ABSTRACT

Metabolic engineering often entails concurrent engineering of substrate utilization, central metabolism and product synthesis pathways, inevitably creating interdependency with native metabolism. Here we report an alternative approach using synthetic pathways for C1 bioconversion that generate multicarbon products directly from C1 units and hence are orthogonal to the host metabolic network. The engineered pathways are based on formyl-CoA elongation (FORCE) reactions catalysed by the enzyme 2-hydroxyacyl-CoA lyase. We use thermodynamic and stoichiometric analyses to evaluate FORCE pathway variants, including aldose elongation, α-reduction and aldehyde elongation. Promising variants were prototyped in vitro and in vivo using the non-methylotrophic bacterium Escherichia coli. We demonstrate the conversion of formate, formaldehyde and methanol into various products including glycolate, ethylene glycol, ethanol and glycerate. FORCE pathways also have the potential to be integrated with the host metabolism for synthetic methylotrophy by the production of native growth substrates as demonstrated in a two-strain co-culture system.


Subject(s)
Carbon/metabolism , Metabolic Networks and Pathways , Carbon-Carbon Lyases/metabolism , Catalysis , Escherichia coli/metabolism
16.
World J Microbiol Biotechnol ; 37(12): 198, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34664131

ABSTRACT

Drought is the prime abiotic stress that rigorously influences plant growth, yield and quality of crops. The current investigation illustrated the bio-protective characters of Serratia marcescens and Pseudomonas sp. to ameliorate drought stress tolerance, plant growth and nutrient status of wheat. The present study aimed for search of potential drought tolerant plant growth-promoting rhizobacteria (PGPR). All screened bacterial isolates exhibited potential plant growth promoting (PGP) attributes such as production of ACC deaminase, exo-polysaccharide, siderophore, ammonia, IAA, and efficiently solubilized zinc and phosphate under in vitro conditions. To assess the in situ plant growth promotion potential of PGPR, a greenhouse experiment was conducted by priming wheat seeds with screened plant PGPR. Improved water status, reactive oxygen species, osmolyte accumulation, chlorophyll and carotenoids content in plant leaves confirmed the excellent drought tolerance conferring ability of RRN II 2 and RRC I 5. Among all PGPR, RRN II 2 and RRC I 5 inoculated plants not only demonstrated greater harvest index but also exhibited more micronutrient (zinc and iron) content in wheat grains. Further, RRN II 2 and RRC I 5 were identified through 16S rDNA sequencing as S. marcescens and Pseudomonas sp., respectively. Furthermore, amplification of acdS gene (Amplified band size of acdS gene was ~ 1.8 Kb) also confirmed ACC deaminase enzyme producing ability of Pseudomonas sp. Moreover, correlation coefficient, principal component analysis and cluster analysis also demonstrated that nutrient status and values of agronomical parameters of wheat primed with S. marcescens and Pseudomonas sp. were at par with the positive control. Thus, the outcome of this comparative investigation indicates that Pseudomonas sp. and S. marcescens could be utilized as bioinoculant in wheat since they can improve the physiological status, productivity and nutrient status in wheat crop under drought.


Subject(s)
Acclimatization , Carbon-Carbon Lyases/metabolism , Droughts , Nutrients , Plant Development , Pseudomonas/metabolism , Serratia marcescens/metabolism , Triticum/growth & development , Antibiosis , Chlorophyll , Plant Roots/microbiology , Pseudomonas/genetics , Pseudomonas/isolation & purification , Seeds , Serratia marcescens/genetics , Serratia marcescens/isolation & purification , Soil Microbiology , Stress, Physiological , Triticum/microbiology , Water
17.
Environ Microbiol Rep ; 13(4): 533-539, 2021 08.
Article in English | MEDLINE | ID: mdl-34212524

ABSTRACT

Elaborating the plant hormone catabolic activities of bacteria is important for developing a detailed understanding of plant-microbe interactions. In this work, the plant hormone catabolic and plant growth promotion activities of Achromobacter xylosoxidans SOLR10 and A. insolitus AB2 are described. The genome sequences of these strains were obtained and analysed in detail, revealing the genetic mechanisms behind its multiple plant hormone catabolism abilities. Achromobacter strains catabolized indoleacetic acid (IAA) and phenylacetic acid (PAA) (auxins); salicylic acid (SA) and its precursor, benzoic acid (BA); and the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC). The inoculation of cucumber plants resulted in increased plant growth and development, indicating the beneficial properties of SOLR10 and AB2 strains. Genomic analysis demonstrated the presence of IAA, PAA and BA degradation gene clusters, as well as the nag gene cluster (SA catabolism) and the acdS gene (ACC deaminase), in the genomes of strains SOLR10 and AB2. Additionally, detailed analysis revealed that plant hormone catabolism genes were commonly detected in the Achromobacter genus but were mostly absent in the Bordetella genus, consistent with the notion that Achromobacter evolved in soils in close association with its plant hosts.


Subject(s)
Achromobacter , Plant Growth Regulators , Achromobacter/genetics , Achromobacter/metabolism , Carbon-Carbon Lyases/genetics , Carbon-Carbon Lyases/metabolism , Plant Development , Soil Microbiology
18.
Microbiol Spectr ; 9(1): e0027921, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34190589

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) are a functionally diverse group of microbes having immense potential as biostimulants and biopesticides. We isolated four PGPR (designated n, L, K, and Y) that confer growth-promoting effects on Arabidopsis thaliana. The present study describes the detailed polyphasic characterization of these PGPR. Classical methods of bacterial identification and biochemical test kits (API20E, API20NE, API ZYM, and API 50CH) revealed their metabolic versatility. All rhizobacterial isolates were positive for 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCD) and indole acetic acid production and phosphorous solubilization. PCR analysis confirmed the presence of the nifH gene in strains n, L, and Y, showing their N2-fixation potential. In vitro dual culture methods and bacterial infestation in planta demonstrated that strains n and L exerted antagonistic effects on Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea 191 and provided protection to Arabidopsis plants against both phytopathogens. Short- or long-term bacterial treatment revealed significant changes in transcript levels of genes annotated to stress response and hormone metabolism in A. thaliana. In particular, the expression of stress-responsive genes in A. thaliana showed an upregulation under salinity stress. MAP kinase 6 (MPK6) was involved in the growth promotion induced by the four bacterial strains. Furthermore, these strains caused a significant increase in root dry weight of maize seedlings under gnotobiotic conditions. We conclude that the four rhizobacteria are good candidates as biofertilizers for enhancing growth of maize, among which strains n and L showed marked plant growth-promoting attributes and the potential to be exploited as functional biostimulants and biopesticides for sustainable agriculture. IMPORTANCE There are pressing needs to reduce the use of agrochemicals, and PGPR are receiving increasing interest in plant growth promotion and disease protection. This study follows up our previous report that the four newly isolated rhizobacteria promote the growth of Arabidopsis thaliana. We test the hypothesis that they have multiple PGP traits and that they can be used as biofertilizers and biopesticides. In vitro assays indicated that these four strains have various PGP properties related to nutrient availability, stress resistance, and/or pest organism antagonism. They significantly influenced the transcript levels of genes involved in stress response and hormone metabolism in A. thaliana. MPK6 is indispensable to the growth stimulation effects. Strains n and L protected A. thaliana seedlings against phytopathogens. Three strains significantly increased maize growth in vitro. In summary, introducing these four strains onto plant roots provides a benefit to the plants. This is the first study regarding the potential mechanism(s) applied by Mucilaginibacter sp. as biostimulants.


Subject(s)
Bacteria/isolation & purification , Soil Microbiology , Zea mays/growth & development , Zea mays/microbiology , Arabidopsis/growth & development , Arabidopsis/microbiology , Bacteria/classification , Bacteria/enzymology , Bacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon-Carbon Lyases/genetics , Carbon-Carbon Lyases/metabolism , Indoleacetic Acids/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Growth Regulators/metabolism
19.
Microbiol Res ; 249: 126771, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33930840

ABSTRACT

Drought stress is expected to increase in intensity, frequency, and duration in many parts of the world, with potential negative impacts on plant growth and productivity. The plants have evolved complex physiological and biochemical mechanisms to respond and adjust to water-deficient environments. The physiological and biochemical mechanisms associated with water-stress tolerance and water-use efficiency have been extensively studied. Besides these adaptive and mitigating strategies, the plant growth-promoting rhizobacteria (PGPR) play a significant role in alleviating plant drought stress. These beneficial microorganisms colonize the endo-rhizosphere/rhizosphere of plants and enhance drought tolerance. The common mechanism by which these microorganisms improve drought tolerance included the production of volatile compounds, phytohormones, siderophores, exopolysaccharides, 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase), accumulation of antioxidant, stress-induced metabolites such as osmotic solutes proline, alternation in leaf and root morphology and regulation of the stress-responsive genes. The PGPR is an easy and efficient alternative approach to genetic manipulation and crop enhancement practices because plant breeding and genetic modification are time-consuming and expensive processes for obtaining stress-tolerant varieties. In this review, we will elaborate on PGPR's mechanistic approaches in enhancing the plant stress tolerance to cope with the drought stress.


Subject(s)
Bacterial Physiological Phenomena , Crops, Agricultural/growth & development , Droughts , Plant Physiological Phenomena , Rhizosphere , Stress, Physiological , Antioxidants/metabolism , Carbon-Carbon Lyases/metabolism , Crops, Agricultural/metabolism , Crops, Agricultural/microbiology , Genes, Plant , Genetic Engineering , Plant Development , Plant Growth Regulators/metabolism , Plant Roots/anatomy & histology , Plant Roots/microbiology , Polysaccharides, Bacterial/metabolism , Secondary Metabolism
20.
Sci Rep ; 11(1): 9081, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33907268

ABSTRACT

Phosphorus-solubilizing microorganisms is a microbial fertilizer with broad application potential. In this study, 7 endophytic phosphate solubilizing bacteria were screened out from Chinese fir, and were characterized for plant growth-promoting traits. Based on morphological and 16S rRNA sequence analysis, the endophytes were distributed into 5 genera of which belong to Pseudomonas, Burkholderia, Paraburkholderia, Novosphingobium, and Ochrobactrum. HRP2, SSP2 and JRP22 were selected based on their plant growth-promoting traits for evaluation of Chinese fir growth enhancement. The growth parameters of Chinese fir seedlings after inoculation were significantly greater than those of the uninoculated control group. The results showed that PSBs HRP2, SSP2 and JRP22 increased plant height (up to 1.26 times), stem diameter (up to 40.69%) and the biomass of roots, stems and leaves (up to 21.28%, 29.09% and 20.78%) compared to the control. Total N (TN), total P (TP), total K (TK), Mg and Fe contents in leaf were positively affected by PSBs while showed a significant relationship with strain and dilution ratio. The content of TN, TP, TK, available phosphorus (AP) and available potassium (AK) in the soil increased by 0.23-1.12 mg g-1, 0.14-0.26 mg g-1, 0.33-1.92 mg g-1, 5.31-20.56 mg kg-1, 15.37-54.68 mg kg-1, respectively. Treatment with both HRP2, SSP2 and JRP22 increased leaf and root biomass as well as their N, P, K uptake by affecting soil urease and acid phosphatase activities, and the content of available nutrients in soil. In conclusion, PSB could be used as biological agents instead of chemical fertilizers for agroforestry production to reduce environmental pollution and increase the yield of Chinese fir.


Subject(s)
Agricultural Inoculants/physiology , Cunninghamia/growth & development , Cunninghamia/microbiology , Phosphates/metabolism , Seedlings/growth & development , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/metabolism , Carbon-Carbon Lyases/metabolism , Cunninghamia/metabolism , Endophytes/physiology , Indoleacetic Acids/metabolism , Nitrogenase/metabolism , Phosphorus/metabolism , RNA, Ribosomal, 16S , Seedlings/metabolism , Seedlings/microbiology , Siderophores/metabolism , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...