Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biomolecules ; 11(12)2021 12 16.
Article in English | MEDLINE | ID: mdl-34944533

ABSTRACT

Fermented persimmon juice, Kakishibu, has traditionally been used for wood and paper protection. This protective effect stems at least partially from inhibition of microbial cellulose degrading enzymes. The inhibitory effect of Kakishibu on lytic polysaccharide monooxygenases (LPMOs) and on a cocktail of cellulose hydrolases was studied, using three different cellulosic substrates. Dose dependent inhibition of LPMO activity by a commercial Kakishibu product was assessed for the well-characterized LPMO from Thermoascus aurantiacus TaAA9A, and the inhibitory effect was confirmed on five additional microbial LPMOs. The model tannin compound, tannic acid exhibited a similar inhibitory effect on TaAA9A as Kakishibu. It was further shown that both polyethylene glycol and tannase can alleviate the inhibitory effect of Kakishibu and tannic acid, indicating a likely mechanism of inhibition caused by unspecific tannin-protein interactions.


Subject(s)
Diospyros/chemistry , Enzyme Inhibitors/pharmacology , Fruit and Vegetable Juices/microbiology , Mixed Function Oxygenases/antagonists & inhibitors , Thermoascus/enzymology , Carboxylic Ester Hydrolases/adverse effects , Diospyros/microbiology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Fermentation , Fruit and Vegetable Juices/analysis , Fungal Proteins/antagonists & inhibitors , Gene Expression Regulation, Fungal/drug effects , Hydrolases/antagonists & inhibitors , Polyethylene Glycols/adverse effects , Tannins/pharmacology , Thermoascus/drug effects
2.
Cells ; 9(8)2020 07 27.
Article in English | MEDLINE | ID: mdl-32726939

ABSTRACT

Recessive mutations in Post-GPI attachment to proteins 3 (PGAP3) cause the rare neurological disorder hyperphosphatasia with mental retardation syndrome 4 type (HPMRS4). Here, we report a novel homozygous nonsense mutation in PGAP3 (c.265C>T-p.Gln89*), in a 3-year-old boy with unique novel clinical features. These include decreased intrauterine fetal movements, dysgenesis of the corpus callosum, olfactory bulb agenesis, dysmorphic features, cleft palate, left ear constriction, global developmental delay, and hypotonia. The zebrafish functional modeling of PGAP3 loss resulted in HPMRS4-like features, including structural brain abnormalities, dysmorphic cranial and facial features, hypotonia, and seizure-like behavior. Remarkably, morphants displayed defective neural tube formation during the early stages of nervous system development, affecting brain morphogenesis. The significant aberrant midbrain and hindbrain formation demonstrated by separation of the left and right tectal ventricles, defects in the cerebellar corpus, and caudal hindbrain formation disrupted oligodendrocytes expression leading to shorter motor neurons axons. Assessment of zebrafish neuromuscular responses revealed epileptic-like movements at early development, followed by seizure-like behavior, loss of touch response, and hypotonia, mimicking the clinical phenotype human patients. Altogether, we report a novel pathogenic PGAP3 variant associated with unique phenotypic hallmarks, which may be related to the gene's novel role in brain morphogenesis and neuronal wiring.


Subject(s)
Abnormalities, Multiple/genetics , Brain/pathology , Carboxylic Ester Hydrolases/adverse effects , Intellectual Disability/genetics , Phosphorus Metabolism Disorders/genetics , Abnormalities, Multiple/metabolism , Animals , Disease Models, Animal , Humans , Intellectual Disability/metabolism , Morphogenesis , Phosphorus Metabolism Disorders/metabolism , Receptors, Cell Surface , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...