Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.974
Filter
1.
J Clin Invest ; 134(10)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451729

ABSTRACT

Development of effective strategies to manage the inevitable acquired resistance to osimertinib, a third-generation EGFR inhibitor for the treatment of EGFR-mutant (EGFRm) non-small cell lung cancer (NSCLC), is urgently needed. This study reports that DNA topoisomerase II (Topo II) inhibitors, doxorubicin and etoposide, synergistically decreased cell survival, with enhanced induction of DNA damage and apoptosis in osimertinib-resistant cells; suppressed the growth of osimertinib-resistant tumors; and delayed the emergence of osimertinib-acquired resistance. Mechanistically, osimertinib decreased Topo IIα levels in EGFRm NSCLC cells by facilitating FBXW7-mediated proteasomal degradation, resulting in induction of DNA damage; these effects were lost in osimertinib-resistant cell lines that possess elevated levels of Topo IIα. Increased Topo IIα levels were also detected in the majority of tissue samples from patients with NSCLC after relapse from EGFR tyrosine kinase inhibitor treatment. Enforced expression of an ectopic TOP2A gene in sensitive EGFRm NSCLC cells conferred resistance to osimertinib, whereas knockdown of TOP2A in osimertinib-resistant cell lines restored their susceptibility to osimertinib-induced DNA damage and apoptosis. Together, these results reveal an essential role of Topo IIα inhibition in mediating the therapeutic efficacy of osimertinib against EGFRm NSCLC, providing scientific rationale for targeting Topo II to manage acquired resistance to osimertinib.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , DNA Topoisomerases, Type II , Drug Resistance, Neoplasm , ErbB Receptors , Lung Neoplasms , Topoisomerase II Inhibitors , Humans , Acrylamides/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/enzymology , Aniline Compounds/pharmacology , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/enzymology , Lung Neoplasms/metabolism , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Cell Line, Tumor , Topoisomerase II Inhibitors/pharmacology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Animals , Mice , Mutation , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors , Drug Synergism , DNA Damage , Piperazines/pharmacology , Etoposide/pharmacology , Xenograft Model Antitumor Assays
2.
Adv Sci (Weinh) ; 10(35): e2303975, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37875398

ABSTRACT

Lung cancer is the leading cause of death among all cancers. A persistent chronic inflammatory microenvironment is highly correlated with lung cancer. However, there are no anti-inflammatory agents effective against lung cancer. Cytochrome P450 2E1 (CYP2E1) plays an important role in the inflammatory response. Here, it is found that CYP2E1 is significantly higher in the peritumoral tissue of non-small cell lung cancer (NSCLC) patients and lung tumor growth is significantly impeded in Cyp2e1-/- mice. The novel CYP2E1 inhibitor Q11, 1-(4-methyl-5-thialzolyl) ethenone, is effective in the treatment of lung cancer in mice, which can inhibit cancer cells by changing macrophage polarization rather than directly act on the cancer cells. It is also clarify that the benefit of Q11 may associated with the IL-6/STAT3 and MAPK/ERK pathways. The data demonstrate that CYP2E1 may be a novel inflammatory target and that Q11 is effective on lung cancer by regulation of the inflammatory microenvironment. These findings provide a molecular basis for targeting CYP2E1 and illustrate the potential druggability of the CYP2E1 inhibitor Q11.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Cytochrome P-450 CYP2E1/metabolism , Inflammation/drug therapy , Lung Neoplasms/drug therapy , MAP Kinase Signaling System , Tumor Microenvironment
3.
BMC Med Genomics ; 15(1): 147, 2022 07 02.
Article in English | MEDLINE | ID: mdl-35780128

ABSTRACT

BACKGROUND: Aberrant alternative splicing (AS) contributes to tumor progression. Previous studies have shown that apurinic-apyrimidinic endonuclease-1 (APEX1) is involved in tumor progression. It is unknown whether APEX1 functions in tumor progression by regulation of AS. It is also unknown whether APEX1 can regulate non-small-cell lung cancer (NSCLC) proliferation and apoptosis. We analyzed APEX1 expression levels in 517 lung NSCLC samples from the TCGA (Cancer Genome Atlas) database. The impact of APEX1 over expression on A549 cell proliferation and apoptosis was detected by the methyl thiazolyl tetrazolium assay and by flow cytometry. The transcriptome of A549 cells with and without APEX1 over expression was determined by Illumina sequencing, followed by analysis of AS. RT-qPCR validated expression of APEX1-related genes in A549 cells. We have successfully applied RNA-seq technology to demonstrate APEX1 regulation of AS. RESULTS: APEX1 expression was shown to be upregulated in NSCLC samples and to reduce cell proliferation and induce apoptosis of A549 cells. In addition, APEX1 regulated AS of key tumorigenesis genes involved in cancer proliferation and apoptosis within MAPK and Wnt signaling pathways. Each of these pathways are involved in lung cancer progression. Furthermore, validated AS events regulated by APEX1 were in key tumorigenesis genes; AXIN1 (axis inhibition protein 1), GCNT2 (N-acetyl glucosaminyl transferase 2), and SMAD3 (SMAD Family Member 3). These genes encode signaling pathway transcription regulatory factors. CONCLUSIONS: We found that increased expression of APEX1 was an independent prognostic factor related to NSCLC progression. Therefore, APEX1 regulation of AS may serve as a molecular marker or therapeutic target for NSCLC treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , DNA-(Apurinic or Apyrimidinic Site) Lyase , Lung Neoplasms , Alternative Splicing , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Transformation, Neoplastic , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Endonucleases , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Wnt Signaling Pathway
4.
Cell Death Dis ; 13(7): 602, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35831279

ABSTRACT

Sphingosine kinase 1 (SphK1) and sphingosine kinase (SphK2) are both important therapeutic targets of non-small cell lung cancer (NSCLC). SKI-349 is a novel, highly efficient and small molecular SphK1/2 dual inhibitor. Here in primary human NSCLC cells and immortalized cell lines, SKI-349 potently inhibited cell proliferation, cell cycle progression, migration and viability. The dual inhibitor induced mitochondrial depolarization and apoptosis activation in NSCLC cells, but it was non-cytotoxic to human lung epithelial cells. SKI-349 inhibited SphK activity and induced ceramide accumulation in primary NSCLC cells, without affecting SphK1/2 expression. SKI-349-induced NSCLC cell death was attenuated by sphingosine-1-phosphate and by the SphK activator K6PC-5, but was potentiated by the short-chain ceramide C6. Moreover, SKI-349 induced Akt-mTOR inactivation, JNK activation, and oxidative injury in primary NSCLC cells. In addition, SKI-349 decreased bromodomain-containing protein 4 (BRD4) expression and downregulated BRD4-dependent genes (Myc, cyclin D1 and Klf4) in primary NSCLC cells. At last, SKI-349 (10 mg/kg) administration inhibited NSCLC xenograft growth in nude mice. Akt-mTOR inhibition, JNK activation, oxidative injury and BRD4 downregulation were detected in SKI-349-treated NSCLC xenograft tissues. Taken together, targeting SphK1/2 by SKI-349 potently inhibits NSCLC cell growth in vitro and in vivo.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Phosphotransferases (Alcohol Group Acceptor) , Animals , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation/drug effects , Ceramides/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mice , Mice, Nude , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sphingosine , TOR Serine-Threonine Kinases , Transcription Factors , Xenograft Model Antitumor Assays
5.
Sci Rep ; 12(1): 6367, 2022 04 16.
Article in English | MEDLINE | ID: mdl-35430596

ABSTRACT

The identification of acquired resistance mutations has been essential in non-small-cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) active mutations. Rebiopsy plays a pivotal role in selecting the optimal treatment for patients who develop resistance to initial EGFR-tyrosine kinase inhibitors (EGFR-TKIs). This multicenter, observational study was conducted to investigate the details of rebiopsy in Japanese clinical practice. The primary endpoints were the implementation rate of rebiopsy and the concordance rate for T790M mutation detection between histological and cytological specimens using the cobas EGFR Mutation Test, version 2. One hundred ninety-four patients with EGFR-mutant NSCLC were enrolled, and 120 patients developed acquired resistance to EGFR-TKIs. The median age was 68 years (range 20-87), and 52.5% of the patients were women. Rebiopsy was performed in 109 patients, and the implementation rate of rebiopsy was 90.8%. The success rates of rebiopsy in the total, histology, cytology and liquid biopsy populations were 67.9%, 81.3%, 66.7% and 43.8%, respectively. The positive percent agreement and the negative percent agreement in the detection of the T790M mutation between the histological and cytological specimens were both 90.9%. Obtaining histological or cytological tissue samples at rebiopsy may contribute to improving the detection rate of the T790M mutation (trial registration number: UMIN000026019).


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adult , Aged , Aged, 80 and over , Biopsy , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm , ErbB Receptors , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Young Adult
6.
Tohoku J Exp Med ; 257(2): 135-145, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35321978

ABSTRACT

Dysregulated expression of ubiquitin-specific protease 43 (USP43) has been recently discovered in malignancies. This study aimed to investigate the expression pattern of USP43 protein in lung squamous cell carcinoma (LUSC) and to explore its correlation with patients' clinicopathological characteristics as well as clinical outcomes. Expression of USP43 protein was determined by immunohistochemistry staining in a retrospective cohort containing 157 LUSC cases who underwent curative surgery in our hospital. Accordingly, USP43 protein was positively correlated with tumor size, depth of invasion, and lymph node metastasis. Patients with increased USP43 expression or positive lymph nodes exhibited a poorer overall survival. In addition, cellular assays elucidated that USP43 can promote LUSC growth and invasion. Taken together, our study demonstrated that USP43 may act as a proto-oncogene, which could be a promising biomarker and therapeutic target in the survival prediction and treatment of LUSC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Ubiquitin Thiolesterase , Carcinogenesis , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/enzymology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Prognosis , Retrospective Studies , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
7.
Int J Mol Sci ; 23(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35163585

ABSTRACT

BACKGROUND: The treatment of non-small-cell lung cancer (NSCLC) involves platinum-based chemotherapy. It is typically accompanied by chemoresistance resulting from antioxidant properties conferred by cancer stem cells (CSCs). Human epidermal growth factor receptor 2 (HER2) enhances CSCs and antioxidant properties in cancers, including NSCLC. METHODS: Here, we elucidated the role of histamine N-methyltransferase (HNMT), a histamine metabolism enzyme significantly upregulated in NSCLC and coexpressed with HER2. HNMT expression in lung cancer tissues was determined using quantitative reverse transcription PCR (RT-qPCR). A publicly available dataset was used to determine HNMT's potential as an NSCLC target molecule. Immunohistochemistry and coimmunoprecipitation were used to determine HNMT-HER2 correlations and interactions, respectively. HNMT shRNA and overexpression plasmids were used to explore HNMT functions in vitro and in vivo. We also examined miRNAs that may target HNMT and investigated HNMT/HER2's role on NSCLC cells' antioxidant properties. Finally, how HNMT loss affects NSCLC cells' sensitivity to cisplatin was investigated. RESULTS: HNMT was significantly upregulated in human NSCLC tissues, conferred a worse prognosis, and was coexpressed with HER2. HNMT depletion and overexpression respectively decreased and increased cell proliferation, colony formation, tumorsphere formation, and CSCs marker expression. Coimmunoprecipitation analysis indicated that HNMT directly interacts with HER2. TARGETSCAN analysis revealed that HNMT is a miR-223 and miR-3065-5p target. TBHp treatment increased HER2 expression, whereas shHNMT disrupted the Nuclear factor erythroid 2-related factor 2 (Nrf2)/ hemeoxygenase-1 (HO-1)/HER2 axis and increased reactive oxygen species accumulation in NSCLC cells. Finally, shHNMT sensitized H441 cells to cisplatin treatment in vitro and in vivo. CONCLUSIONS: Therefore, HNMT upregulation in NSCLC cells may upregulate HER2 expression, increasing tumorigenicity and chemoresistance through CSCs maintenance and antioxidant properties. This newly discovered regulatory axis may aid in retarding NSCLC progression and chemoresistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung/enzymology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Histamine N-Methyltransferase/biosynthesis , Lung Neoplasms/enzymology , Neoplastic Stem Cells/enzymology , Oxidative Stress , Receptor, ErbB-2/metabolism , Up-Regulation , A549 Cells , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Female , Histamine N-Methyltransferase/genetics , Humans , Lung Neoplasms/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Receptor, ErbB-2/genetics
8.
Eur J Clin Pharmacol ; 78(4): 613-621, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35039908

ABSTRACT

PURPOSE: Aprepitant is used with dexamethasone and 5-HT3 receptor antagonists as an antiemetic treatment for chemotherapy, including cisplatin. Aprepitant is a substrate of cytochrome P450 (CYP) 3A4 and is known to cause its inhibition and induction. In addition, dexamethasone is a CYP3A4 substrate that induces CYP3A4 and CYP3A5 expression. In this study, we aimed to quantitatively evaluate the profile of CYP3A activity using its endogenous markers in non-small cell lung cancer patients receiving a standard cisplatin regimen with antiemetics, including aprepitant. METHODS: Urinary 11ß-hydroxytestosterone (11ß-OHT)/testosterone concentration ratio and plasma 4ß-hydroxycholesterol (4ß-OHC) concentrations were measured before and after cisplatin treatment (days 1, 4, and 8). CYP3A5 was genotyped, and plasma aprepitant concentrations were measured on day 4 to examine its influence on CYP3A endogenous markers. RESULTS: The urinary 11ß-OHT/testosterone concentration ratio in the 35 patients included in this study increased by 2.65-fold and 1.21-fold on days 4 and 8 compared with day 1, respectively. Their plasma 4ß-OHC concentration increased by 1.46-fold and 1.66-fold, respectively. The mean plasma aprepitant concentration on day 4 was 1,451 ng/mL, which is far lower than its inhibitory constant. The allele frequencies of CYP3A5*1 and CYP3A5*3 were 0.229 and 0.771, respectively. In patients with the CYP3A5*1 allele, the plasma 4ß-OHC concentration was significantly lower at baseline but more potently increased with chemotherapy. CONCLUSION: CYP3A activity was significantly induced from day 4 to day 8 in patients receiving cisplatin and three antiemetic drugs.


Subject(s)
Antiemetics , Aprepitant , Carcinoma, Non-Small-Cell Lung , Cisplatin , Cytochrome P-450 CYP3A , Dexamethasone , Lung Neoplasms , Antiemetics/therapeutic use , Aprepitant/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Cisplatin/adverse effects , Cisplatin/therapeutic use , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Dexamethasone/therapeutic use , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Vomiting/chemically induced , Vomiting/prevention & control
9.
Signal Transduct Target Ther ; 7(1): 25, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35087031

ABSTRACT

WX-0593 (Iruplinalkib) is a novel, highly selective oral ALK and ROS1 tyrosine kinase inhibitor (TKI). In this study, the safety, antitumor activity, and pharmacokinetics of WX-0593 were evaluated in advanced non-small cell lung cancer (NSCLC) patients with ALK or ROS1 rearrangement. In the dose-escalation phase and dose-expansion phase, patients were treated with WX-0593 until disease progression, unacceptable toxicity, or subject withdrawal. In the dose-escalation phase, the primary endpoints were maximum tolerated dose (MTD), dose-limiting toxicity (DLT), and safety assessed by investigators. In the dose-expansion phase, the primary endpoint was objective response rate (ORR) assessed by investigators. Between September 25, 2017 and October 15, 2018, a total of 153 patients received WX-0593 treatment. Two dose-limiting toxicities (DLTs) including one grade 3 QT interval prolonged and one grade 2 chronic heart failure were reported at the dose of 300 mg in one patient. MTD was not reached. Overall, 140 of the 152 (92%) patients experienced treatment-related adverse events (TRAEs) and 35 of the 152 (23%) patients had TRAEs ≥grade 3. The overall ORR was 59.3% (32 of 54) for the dose-escalation phase and 56.6% (56 of 99) for the dose-expansion phase. For patients who were ALK-rearranged and ALK TKI naive, the ORR were 81.0% (17 of 21) in the dose-escalation phase and 76.3% (29 of 38) in the dose-expansion phase, and for patients who previously received crizotinib as the only ALK TKI, the ORR were 38.1% (8 of 21) and 45.7% (21 of 46) for the two phases, respectively. For patients who were ROS1-rearranged, the ORR were 30.0% (3 of 10) in the dose-escalation phase and 44.4% (4 of 9) in the dose-expansion phase. WX-0593 showed favorable safety and promising antitumor activity in advanced NSCLC patients with ALK or ROS1 rearrangement.


Subject(s)
Anaplastic Lymphoma Kinase/genetics , Antineoplastic Agents/administration & dosage , Carcinoma, Non-Small-Cell Lung , Gene Rearrangement , Lung Neoplasms , Protein Kinase Inhibitors/administration & dosage , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Adult , Aged , Antineoplastic Agents/adverse effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Female , Follow-Up Studies , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Male , Middle Aged , Protein Kinase Inhibitors/adverse effects
11.
Cells ; 10(12)2021 11 30.
Article in English | MEDLINE | ID: mdl-34943871

ABSTRACT

FGFR signalling is one of the most prominent pathways involved in cell growth and development as well as cancer progression. FGFR1 amplification occurs in approximately 20% of all squamous cell lung carcinomas (SCC), a predominant subtype of non-small cell lung carcinoma (NSCLC), indicating FGFR as a potential target for the new anti-cancer treatment. However, acquired resistance to this type of therapies remains a serious clinical challenge. Here, we investigated the NSCLC cell lines response and potential mechanism of acquired resistance to novel selective FGFR inhibitor CPL304110. We found that despite significant genomic differences between CPL304110-sensitive cell lines, their resistant variants were characterised by upregulated p38 expression/phosphorylation, as well as enhanced expression of genes involved in MAPK signalling. We revealed that p38 inhibition restored sensitivity to CPL304110 in these cells. Moreover, the overexpression of this kinase in parental cells led to impaired response to FGFR inhibition, thus confirming that p38 MAPK is a driver of resistance to a novel FGFR inhibitor. Taken together, our results provide an insight into the potential direction for NSCLC targeted therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism , Biomarkers, Tumor/metabolism , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Humans , Receptor, Fibroblast Growth Factor, Type 1/metabolism
12.
Cell Rep ; 37(12): 110137, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34936872

ABSTRACT

Glycolytic reprogramming is a typical feature of cancer. However, the cancer-specific modulation of glycolytic enzymes requires systematic elucidation. Here, we report a range of dysregulated modifications in association with a family of enzymes specifically related to the glycolysis pathway by systematic identification of delta masses at the proteomic scale in human non-small-cell lung cancer. The most significant modification is the delta mass of 79.967 Da at serine 58 (Ser58) of triosephosphate isomerase (TPI), which is confirmed to be phosphorylation. Blocking TPI Ser58 phosphorylation dramatically inhibits glycolysis, cancer growth, and metastasis. The protein kinase PRKACA directly phosphorylates TPI Ser58, thereby enhancing TPI enzymatic activity and glycolysis. The upregulation of TPI Ser58 phosphorylation is detected in various human tumor specimens and correlates with poor survival. Therefore, our study identifies a number of cancer-specific protein modifications spanned on glycolytic enzymes and unravels the significance of TPI Ser58 phosphorylation in glycolysis and lung cancer development.


Subject(s)
Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , Glycolysis , Lung Neoplasms/metabolism , Protein Processing, Post-Translational , Proteome/metabolism , Triose-Phosphate Isomerase/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line , Female , Humans , Lung Neoplasms/enzymology , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphorylation , Proteomics
13.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830123

ABSTRACT

New drugs, including immune checkpoint inhibitors and targeted therapy, have changed the prognosis in a subset of patients with advanced lung cancer, and are now actively investigated in a number of trials with neoadjuvant and adjuvant regimens. However, no phase III randomized studies were published yet. The current narrative review proves that targeted therapies are safe in neoadjuvant approach. Unsurprisingly, administration of therapy is related to an acceptable toxicity profile. Severe adverse events' rate that rarely compromises outcomes of patients with advanced lung cancer is not that commonly accepted in early lung cancer as it may lead to missing the chance of curative surgery. Among those complications, the most important factors that may limit the use of targeted therapies are severe respiratory adverse events precluding the resection occurring after treatment with some anaplastic lymphoma kinase and rarely after epidermal growth factor receptor tyrosine kinase inhibitors. At this point, in the presented literature assessing the feasibility of neoadjuvant therapies with anaplastic lymphoma kinase and epidermal growth factor receptor tyrosine kinase inhibitors, we did not find any unexpected intraoperative events that would be of special interest to a thoracic surgeon. Moreover, the postoperative course was associated with typical rate of complications.


Subject(s)
Anaplastic Lymphoma Kinase/antagonists & inhibitors , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/drug therapy , Molecular Targeted Therapy/methods , Protein Kinase Inhibitors/therapeutic use , Anaplastic Lymphoma Kinase/metabolism , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/surgery , Diarrhea/chemically induced , ErbB Receptors/metabolism , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/surgery , Nausea/chemically induced , Neoadjuvant Therapy/methods , Protein Kinase Inhibitors/adverse effects
14.
Thorac Cancer ; 12(23): 3184-3193, 2021 12.
Article in English | MEDLINE | ID: mdl-34729938

ABSTRACT

BACKGROUND: Activation of ALK leads to a high level of aerobic glycolysis related to crizotinib insensitivity in anaplastic lymphoma kinase-positive non-small cell lung cancer (ALK+ NSCLC). The strategy and mechanism of glycolysis inhibition in sensitizing ALK+ NSCLC cells to crizotinib requires further investigation. METHODS: The levels of glycolysis in H3122 and H2228 cells were evaluated through detection of glucose consumption and lactate production. MTT assay was used to explore the effects of glycolytic inhibitors on crizotinib sensitivity, and the potential mechanism of action were detected by colony formation, Ki67 incorporation assay, transwell assay, small interfering RNA technology and western blot analysis. RESULTS: ALK+ NSCLC cells exhibited significantly higher levels of glycolysis compared to ALK- NSCLC cells. Long-term exposure to crizotinib could decrease the sensitivity of ALK+ NSCLC cells to crizotinib via increasing the levels of glycolysis related to hexokinases II (HK2). Crizotinib in combination with glycolysis inhibitor 2-deoxy-D-glucose (2DG) synergistically inhibited proliferation, glycolysis, colony formation and invasion ability of ALK+ NSCLC cells. 2DG sensitization crizotinib might be associated with the inhibition of HK2-mediated glycolysis and P-ALK/AKT/mTOR signaling pathway in H3122 and H2228 cells. CONCLUSIONS: These results indicate that HK2-mediated glycolysis plays a crucial role in the increased tolerance of ALK+ NSCLC cells to crizotinib. 2DG may sensitize ALK+ NSCLC to crizotinib via suppression of HK2-mediated glycolysis and the AKT/mTOR signaling pathway.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Crizotinib/pharmacology , Deoxyglucose/pharmacology , Glycolysis/drug effects , Hexokinase/metabolism , Lung Neoplasms/drug therapy , Anaplastic Lymphoma Kinase/genetics , Antimetabolites/pharmacology , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Neoplasm Invasiveness , Protein Kinase Inhibitors/pharmacology
15.
Br J Cancer ; 125(11): 1561-1569, 2021 11.
Article in English | MEDLINE | ID: mdl-34599295

ABSTRACT

BACKGROUND: Tumour heterogeneity impacts the efficacy of metastatic cancer treatment even if actionable mutations are identified. Clinicians need to understand if assessing one lesion provides reliable information to drive a therapeutic decision in non-small-cell lung cancer (NSCLC) patients. METHODS: We analysed inter-tumour heterogeneity from five autopsied individuals with NSCLC-harbouring mutations in the epidermal growth factor receptor (EGFR), treated with EGFR tyrosine kinase inhibitors (TKIs). Through a comprehensive next-generation sequencing (NGS) oncopanel, and an EGFR panel for digital droplet PCR (ddPCR), we compared metastases within individuals, longitudinal biopsies from the same lesions and, whenever possible, the primary naive tumour. RESULTS: Analysis of 22 necropsies from five patients revealed homogeneity in pathogenic mutations and TKI-resistance mechanisms within each patient in four of them. In-depth analysis by whole-exome sequencing from patient 1 confirmed homogeneity in clonal mutations, but heterogeneity in passenger subclonal alterations. Different resistance mechanisms were detected depending on the patient and line of treatment. Three patients treated with a c-MET inhibitor in combination with TKI lost MET amplification upon progression. CONCLUSION: At a given point and under selective TKI pressure, a single metastasis biopsy in disseminated tumours from EGFR-mutated NSCLC patients could provide a reasonable assessment of actionable alterations useful for therapeutic decisions.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Protein Kinase Inhibitors/therapeutic use , Carcinoma, Non-Small-Cell Lung/enzymology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Evolution, Molecular , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/enzymology , Protein Kinase Inhibitors/pharmacology
16.
Pathol Res Pract ; 227: 153651, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34673351

ABSTRACT

Immune related endonucleases have recently been described as potential therapeutic targets and predictors of response to treatment with immune checkpoint inhibitors (ICI). The aim is to evaluate the association between the expression of 5 biomarkers involved in the immune response (CD73, CD39, VISTA, Arl4d and Cytohesin-3) in parallel with the more common ICI-predictive markers, PD-L1 expression and Tumor Mutation Burden (TMB) with response to ICI therapy in an advanced non-small cell lung cancer (NSCLC) cohort. METHODS: Patients with advanced NSCLC treated with ICI single agent were divided into responders and non-responders according to RECIST v1.1 and duration of response (DOR) criteria. Immunohistochemistry was performed on pretreatment tumor tissue samples for PD-L1, CD73, CD39, VISTA, Arl4d, and Cytohesin-3 expression. TMB was estimated with NEOplus v2 RUO (NEO New Oncology GmbH) hybrid capture next generation sequencing assay. Resistance mutations in STK11/KEAP1 and positive predictive mutations in ARID1A/POLE were also evaluated. RESULTS: Included were 56 patients who were treated with ICI single agent. The median progression-free and overall survival for the whole cohort was 3.0 (95% CI, 2.4-3.6) and 15 (95% CI, 9.7-20.2) months, respectively. The distribution of CD73 in tumor cells and CD39, VISTA, Arl4d and Cytohesin-3 expression in immune cells were not different between responders and non-responders. Also, PD-L1 and TMB were not predictive for response. The frequency of STK11, KEAP1 and ARID1A mutations was low and only observed in the non-responder group. CONCLUSION: Separate and combined expression of 5 biomarkers involved in the immune response (CD73, CD39, VISTA, Arl4d, and Cytohesin-3) was not associated with response in our cohort of advanced NSCLC patients receiving single agent ICI. To confirm our findings the analysis of independent larger cohorts is warranted.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Biomarkers, Tumor/analysis , Carcinoma, Non-Small-Cell Lung/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Nivolumab/therapeutic use , 5'-Nucleotidase/analysis , ADP-Ribosylation Factors/analysis , Aged , Aged, 80 and over , Apyrase/analysis , B7 Antigens/analysis , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/mortality , Disease Progression , Female , GPI-Linked Proteins/analysis , Humans , Immunohistochemistry , Lung Neoplasms/enzymology , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Male , Middle Aged , Mutation , Predictive Value of Tests , Progression-Free Survival , Receptors, Cytoplasmic and Nuclear/analysis , Time Factors
17.
Cell Rep ; 37(3): 109854, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686341

ABSTRACT

Despite the tremendous success of targeted and conventional therapies for lung cancer, therapeutic resistance is a common and major clinical challenge. RNF8 is a ubiquitin E3 ligase that plays essential roles in the DNA damage response; however, its role in the pathogenesis of lung cancer is unclear. Here, we report that RNF8 is overexpressed in lung cancer and positively correlates with the expression of p-Akt and poor survival of patients with non-small-cell lung cancer. In addition, we identify RNF8 as the E3 ligase for regulating the activation of Akt by K63-linked ubiquitination under physiological and genotoxic conditions, which leads to lung cancer cell proliferation and resistance to chemotherapy. Together, our study suggests that RNF8 could be a very promising target in precision medicine for lung cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , DNA Damage/drug effects , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm , Lung Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Ubiquitin-Protein Ligases/metabolism , A549 Cells , Animals , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , DNA-Binding Proteins/genetics , Enzyme Activation , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Mice, Inbred BALB C , Mice, Nude , Phosphorylation , Signal Transduction , Tumor Burden/drug effects , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Xenograft Model Antitumor Assays
18.
PLoS One ; 16(9): e0257152, 2021.
Article in English | MEDLINE | ID: mdl-34559836

ABSTRACT

Approximately 5-7% of non-small cell lung cancer (NSCLC) cases harbor an anaplastic lymphoma kinase (ALK) fusion gene and may benefit from ALK inhibitor therapy. To detect ALK fusion genes, we developed a novel test using reverse transcription polymerase chain reaction (RT-PCR) for the ALK kinase domain (KD). Since ALK expression is mostly silenced in the adult with the exception of neuronal tissue, the normal lung tissue, mesothelial lining, and inflammatory cells are devoid of ALK transcript, making ALK KD RT-PCR an ideal surrogate test for ALK fusion transcripts in lung or pleural effusion. The test was designed with a short PCR product (197 bp) to work for both malignant pleural effusion (MPE) and formalin-fixed, paraffin-embedded (FFPE) NSCLC samples. Using ALK IHC as a reference, the sensitivity of the test was 100% for both MPE and FFPE. The specificity was 97.6% for MPE and 97.4% for FFPE. Two false positive cases were found. One was a metastatic brain lesion which should be avoided in the future due to intrinsic ALK expression in the neuronal tissue. The other one resulted from ALK gene amplification. Due to potential false positivity, subsequent confirmation tests such as fluorescence in situ hybridization or multiplex PCR would be preferable. Nevertheless, the test is simple and inexpensive with no false negativity, making it a desirable screening test. It also offers an advantage over multiplex RT-PCR with the capability to detect novel ALK fusions. Indeed through the screening test, we found a novel ALK fusion partner (sperm antigen with calponin homology and coiled-coil domains 1 like gene, SPECC1L) with increased sensitivity to crizotinib in vitro. In summary, a novel RNA-based ALK KD analysis was developed for ALK rearrangement screening in MPE and FFPE specimens of NSCLC. This simple inexpensive test can be implemented as routine diagnostics.


Subject(s)
Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Early Detection of Cancer , Gene Rearrangement , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Base Sequence , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Cycle Proteins/genetics , Cell Proliferation/drug effects , Cohort Studies , Crizotinib/pharmacology , Crizotinib/therapeutic use , DNA, Neoplasm/genetics , ErbB Receptors/genetics , Female , Formaldehyde , HEK293 Cells , Humans , Lung Neoplasms/drug therapy , Male , Microtubule-Associated Proteins/genetics , Middle Aged , Paraffin Embedding , Pleural Effusion, Malignant/enzymology , Pleural Effusion, Malignant/genetics , Serine Endopeptidases/genetics , Tissue Fixation
19.
BMB Rep ; 54(11): 563-568, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34488935

ABSTRACT

Cancer cells predominantly generate energy via glycolysis, even in the presence of oxygen, to support abnormal cell proliferation. Suppression of PDHA1 by PDK1 prevents the conversion of cytoplasmic pyruvate into Acetyl-CoA. Several PDK inhibitors have been identified, but their clinical applications have not been successful for unclear reasons. In this study, endogenous PDHA1 in A549 cells was silenced by the CRISPR/Cas9 system, and PDHA1WT and PDHA13SD were transduced. Since PDHA13SD cannot be phosphorylated by PDKs, it was used to evaluate the specific activity of PDK inhibitors. This study highlights that PDHA1WT and PDHA13SD A549 cells can be used as a cell-based PDK inhibitor-distinction system to examine the relationship between PDH activity and cell death by established PDK inhibitors. Leelamine, huzhangoside A and otobaphenol induced PDH activity-dependent apoptosis, whereas AZD7545, VER-246608 and DCA effectively enhanced PDHA1 activity but little toxic to cancer cells. Furthermore, the activity of phosphomimetic PDHA1 revealed the complexity of its regulation, which requires further in-depth investigation. [BMB Reports 2021; 54(11): 563-568].


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Drug Evaluation/methods , Enzyme Inhibitors/pharmacology , Lung Neoplasms/pathology , Pyruvate Dehydrogenase (Lipoamide)/antagonists & inhibitors , A549 Cells , Apoptosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Enzyme Inhibitors/chemistry , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Phosphorylation
20.
Biosci Rep ; 41(10)2021 10 29.
Article in English | MEDLINE | ID: mdl-34533198

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer. Ubiquitination is closely related to the development of lung cancer. However, the biological importance of newly discovered ubiquitin-specific peptidase (USP) 52 (USP52) in NSCLC remained unclear. Here, our findings identify USP52 as a novel tumor suppressor of NSCLC, the low expression of USP52 predicts a poor prognosis for NSCLC patients. The present study demonstrates that USP52 inhibits cancer cell proliferation through down-regulation of cyclin D1 (CCND1) as well as AKT/mTOR signaling pathway inhibition. Meanwhile, USP25 also suppresses NSCLC progression via enhancing phosphatase and tensin homolog (PTEN) stability in cancer cells, which further indicates the significance/importance of USP52 in NSCLC suppression.


Subject(s)
Carcinoma, Non-Small-Cell Lung/enzymology , Cell Proliferation , Exoribonucleases/metabolism , Lung Neoplasms/enzymology , PTEN Phosphohydrolase/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cyclin D1/metabolism , Enzyme Stability , Exoribonucleases/genetics , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , PTEN Phosphohydrolase/genetics , Proteolysis , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...