Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 374
Filter
1.
Georgian Med News ; (349): 54-59, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38963202

ABSTRACT

Doxorubicin is the common chemotherapeutic agent that has been harnessed for the treatment of various types of malignancy including the treatment of soft tissue and osteosarcoma and cancers of the vital organs like breast, ovary, bladder, and thyroid. It is also used to treat leukaemia and lymphoma, however, this is an obstacle because of their prominent side effects including cardiotoxicity and lung fibrosis, we do aim to determine the role of CoQ10 as an antioxidant on the impeding the deleterious impacts of doxorubicin on tissue degenerative effects. To do so, 27 rats were subdivided into 3 groups of 9 each; CoQ10 exposed group, Doxorubicin exposed group, and CoQ10 plus Doxorubicin group. At the end of the study, the animals were sacrificed and lungs with hearts were harvested, and slides were prepared for examination under a microscope. The results indicated that doxorubicin induced abnormal cellular structure resulting in damaging cellular structures of the lung and heart while CoQ10 impeded these damaging effects and nearly restoring normal tissue structure. As a result, CoQ10 will maintain normal tissue of the lung and heart.


Subject(s)
Doxorubicin , Lung , Ubiquinone , Animals , Doxorubicin/adverse effects , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Rats , Lung/drug effects , Lung/pathology , Antibiotics, Antineoplastic/adverse effects , Antibiotics, Antineoplastic/toxicity , Myocardium/pathology , Male , Antioxidants/pharmacology , Cardiotoxicity/etiology , Cardiotoxicity/pathology , Heart/drug effects
2.
Cell Physiol Biochem ; 58(3): 273-287, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38881348

ABSTRACT

BACKGROUND/AIMS: Inhaled particulate air pollution is associated with cardiotoxicity with underlying mechanisms including oxidative stress and inflammation. Carnosol, commonly found in rosemary and sage, is known to possess a broad range of therapeutic properties such as antioxidant, anti-inflammatory and antiapoptotic. However, its cardioprotective effects on diesel exhaust particles (DEPs)-induced toxicity have not been studied yet. Hence, we evaluated the potential ameliorative effects of carnosol on DEPs-induced heart toxicity in mice, and the underlying mechanisms involved. METHODS: Mice were intratracheally instilled with DEPs (1 mg/kg) or saline, and 1 hour prior to instillation they were given intraperitoneally either carnosol (20 mg/kg) or saline. Twenty-four hours after the DEPs instillation, multiple parameters were evaluated in the heart by enzyme-linked immunosorbent assay, colorimetric assay, Comet assay and Western blot technique. RESULTS: Carnosol has significantly reduced the elevation in the plasma levels of lactate hydrogenase and brain natriuretic peptide induced by DEPs. Likewise, the augmented cardiac levels of proinflammatory cytokines, lipid peroxidation, and total nitric oxide in DEPs-treated groups were significantly normalized with the treatment of carnosol. Moreover, carnosol has markedly reduced the heart mitochondrial dysfunction, as well as DNA damage and apoptosis of mice treated with DEPs. Similarly, carnosol significantly reduced the elevated expressions of phosphorylated nuclear factor-кB (NF-кB) and mitogen-activated protein kinases (MAPKs) in the hearts. Furthermore, the treatment with carnosol has restored the decrease in the expression of sirtuin-1 in the hearts of mice exposed to DEPs. CONCLUSION: Carnosol significantly attenuated DEP-induced cardiotoxicity in mice by suppressing inflammation, oxidative stress, DNA damage, and apoptosis, at least partly via mechanisms involving sirtuin-1 activation and the inhibition of NF-кB and MAPKs activation.


Subject(s)
Abietanes , Cardiotoxicity , NF-kappa B , Oxidative Stress , Vehicle Emissions , Animals , Mice , NF-kappa B/metabolism , Oxidative Stress/drug effects , Vehicle Emissions/toxicity , Abietanes/pharmacology , Abietanes/therapeutic use , Male , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Cardiotoxicity/prevention & control , Cardiotoxicity/drug therapy , Cardiotoxicity/pathology , Nitrosative Stress/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Inflammation/chemically induced , MAP Kinase Signaling System/drug effects , Antioxidants/pharmacology , Apoptosis/drug effects , Signal Transduction/drug effects , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Sirtuin 1/metabolism , Sirtuin 1/genetics , DNA Damage/drug effects
3.
Sci Transl Med ; 16(752): eadl5931, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896605

ABSTRACT

Clinical treatment of acute myeloid leukemia (AML) largely relies on intensive chemotherapy. However, the application of chemotherapy is often hindered by cardiotoxicity. Patient sequence data revealed that angiotensin II receptor type 1 (AGTR1) is a shared target between AML and cardiovascular disease (CVD). We found that inhibiting AGTR1 sensitized AML to chemotherapy and protected the heart against chemotherapy-induced cardiotoxicity in a human AML cell-transplanted mouse model. These effects were regulated by the AGTR1-Notch1 axis in AML cells and cardiomyocytes from mice. In mouse cardiomyocytes, AGTR1 was hyperactivated by AML and chemotherapy. AML leukemogenesis increased the expression of the angiotensin-converting enzyme and led to increased production of angiotensin II, the ligand of AGTR1, in an MLL-AF9-driven AML mouse model. In this model, the AGTR1-Notch1 axis regulated a variety of genes involved with cell stemness and chemotherapy resistance. AML cell stemness was reduced after Agtr1a deletion in the mouse AML cell transplant model. Mechanistically, Agtr1a deletion decreased γ-secretase formation, which is required for transmembrane Notch1 cleavage and release of the Notch1 intracellular domain into the nucleus. Using multiomics, we identified AGTR1-Notch1 signaling downstream genes and found decreased binding between these gene sequences with Notch1 and chromatin enhancers, as well as increased binding with silencers. These findings describe an AML/CVD association that may be used to improve AML treatment.


Subject(s)
Cardiotoxicity , Disease Models, Animal , Leukemia, Myeloid, Acute , Receptor, Angiotensin, Type 1 , Receptor, Notch1 , Animals , Humans , Mice , Amyloid Precursor Protein Secretases/metabolism , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , Cell Line, Tumor , Heart/drug effects , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/genetics , Receptor, Notch1/metabolism , Signal Transduction/drug effects
4.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928231

ABSTRACT

Ibogaine is an organic indole alkaloid that is used in alternative medicine to combat addiction. Numerous cases of life-threatening complications and sudden deaths associated with ibogaine use have been reported, and it has been hypothesized that the adverse effects are related to ibogaine's tendency to induce cardiac arrhythmias. Considering that the bioavailability of ibogaine and its primary metabolite noribogaine is two to three times higher in female rats than in male rats, we here investigated the effect of a single oral dose (1 or 20 mg/kg) of ibogaine on cardiac histopathology and oxidative/antioxidant balance. Our results show that ibogaine induced dose-dependent cardiotoxic necrosis 6 and 24 h after treatment and that this necrosis was not a consequence of inflammation. In addition, no consistent dose- and time-dependent changes in antioxidant defense or indicators of oxidative damage were observed. The results of this study may contribute to a better understanding of ibogaine-induced cardiotoxicity, which is one of the main side effects of ibogaine use in humans and is often fatal. Nevertheless, based on this experiment, it is not possible to draw a definitive conclusion regarding the role of redox processes or oxidative stress in the occurrence of cardiotoxic necrosis after ibogaine administration.


Subject(s)
Ibogaine , Necrosis , Oxidation-Reduction , Oxidative Stress , Animals , Ibogaine/analogs & derivatives , Ibogaine/pharmacology , Ibogaine/adverse effects , Rats , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Male , Female , Cardiotoxicity/etiology , Cardiotoxicity/pathology , Antioxidants/pharmacology , Myocardium/metabolism , Myocardium/pathology , Rats, Wistar
5.
Free Radic Biol Med ; 218: 94-104, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582228

ABSTRACT

Lamin A/C, essential inner nuclear membrane proteins, have been linked to progeria, a disease of accelerated aging, and many other diseases, which include cardiac disorder. Lamin A/C mutation and its phosphorylation are associated with altering nuclear shape and size. The role of lamin A/C in regulating normal cardiac function was reported earlier. In the present study, we hypothesized that Doxorubicin (Dox) may alter total lamin A/C expression and phosphorylation, thereby taking part in cardiac injury. An in vitro cellular injury model was generated with Dox (0.1-10.0 µM) treatment on cardiomyoblast cells (H9c2) to prove our hypothesis. Increased size and irregular (ameboid) nucleus shape were observed in H9c2 cells after Dox treatment. Similarly, we have observed a significant increase in cell death on increasing the Dox concentration. The expression of lamin A/C and its phosphorylation at serine 22 significantly decreased and increased, respectively in H9c2 cells and rat hearts after Dox exposure. Phosphorylation led to depolymerization of the lamin A/C in the inner nuclear membrane and was evidenced by their presence throughout the nucleoplasm as observed by immunocytochemistry techniques. Thinning and perforation on the walls of the nuclear membrane were observed in Dox-treated H9c2 cells. LMNA-overexpression in H9c2 protected the cells from Dox-induced cell death, reversing all changes described above. Further, improvement of lamin A/C levels was observed in Dox-treated H9c2 cells when treated with Purvalanol A, a CDK1 inhibitor and N-acetylcysteine, an antioxidant. The study provides new insight regarding Dox-induced cardiac injury with the involvement of lamin A/C and alteration of inner nuclear membrane structure.


Subject(s)
Cardiotoxicity , Doxorubicin , Lamin Type A , Nuclear Envelope , Doxorubicin/toxicity , Lamin Type A/metabolism , Lamin Type A/genetics , Animals , Phosphorylation/drug effects , Nuclear Envelope/metabolism , Nuclear Envelope/drug effects , Rats , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , Cardiotoxicity/etiology , Cell Line , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Antibiotics, Antineoplastic/toxicity , Male , Rats, Sprague-Dawley
6.
Free Radic Biol Med ; 219: 127-140, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614228

ABSTRACT

Doxorubicin (DOX) is a widely utilized chemotherapeutic agent in clinical oncology for treating various cancers. However, its clinical use is constrained by its significant side effects. Among these, the development of cardiomyopathy, characterized by cardiac remodeling and eventual heart failure, stands as a major concern following DOX chemotherapy. In our current investigation, we have showcased the efficacy of MLN4924 in mitigating doxorubicin-induced cardiotoxicity through direct inhibition of the NEDD8-activating enzyme, NAE. MLN4924 demonstrated the ability to stabilize mitochondrial function post-doxorubicin treatment, diminish cardiomyocyte apoptosis, alleviate oxidative stress-induced damage in the myocardium, enhance cardiac contractile function, mitigate cardiac fibrosis, and impede cardiac remodeling associated with heart failure. At the mechanistic level, MLN4924 intervened in the neddylation process by inhibiting the NEDD8 activating enzyme, NAE, within the murine cardiac tissue subsequent to doxorubicin treatment. This intervention resulted in the suppression of NEDD8 protein expression, reduction in neddylation activity, and consequential manifestation of cardioprotective effects. Collectively, our findings posit MLN4924 as a potential therapeutic avenue for mitigating doxorubicin-induced cardiotoxicity by attenuating heightened neddylation activity through NAE inhibition, thereby offering a viable and promising treatment modality for afflicted patients.


Subject(s)
Cardiotoxicity , Cyclopentanes , Doxorubicin , Myocytes, Cardiac , NEDD8 Protein , Pyrimidines , Animals , Mice , Apoptosis/drug effects , Cardiotoxicity/drug therapy , Cardiotoxicity/pathology , Cardiotoxicity/prevention & control , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/therapeutic use , Doxorubicin/adverse effects , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NEDD8 Protein/metabolism , NEDD8 Protein/antagonists & inhibitors , Oxidative Stress/drug effects , Pyrimidines/pharmacology , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Activating Enzymes/genetics
7.
Cell Stress Chaperones ; 29(2): 349-357, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485043

ABSTRACT

This comprehensive review delves into the pivotal role of mitochondria in doxorubicin-induced cardiotoxicity, a significant complication limiting the clinical use of this potent anthracycline chemotherapeutic agent. Doxorubicin, while effective against various malignancies, is associated with dose-dependent cardiotoxicity, potentially leading to irreversible cardiac damage. The review meticulously dissects the molecular mechanisms underpinning this cardiotoxicity, particularly focusing on mitochondrial dysfunction, a central player in this adverse effect. Central to the discussion is the concept of mitochondrial quality control, including mitochondrial dynamics (fusion/fission balance) and mitophagy. The review presents evidence linking aberrations in these processes to cardiotoxicity in doxorubicin-treated patients. It elucidates how doxorubicin disrupts mitochondrial dynamics, leading to an imbalance between mitochondrial fission and fusion, and impairs mitophagy, culminating in the accumulation of dysfunctional mitochondria and subsequent cardiac cell damage. Furthermore, the review explores emerging therapeutic strategies targeting mitochondrial dysfunction. It highlights the potential of modulating mitochondrial dynamics and enhancing mitophagy to mitigate doxorubicin-induced cardiac damage. These strategies include pharmacological interventions with mitochondrial fission inhibitors, fusion promoters, and agents that modulate mitophagy. The review underscores the promising results from preclinical studies while advocating for more extensive clinical trials to validate these approaches in human patients. In conclusion, this review offers valuable insights into the intricate relationship between mitochondrial dysfunction and doxorubicin-mediated cardiotoxicity. It underscores the need for continued research into targeted mitochondrial therapies as a means to improve the cardiac safety profile of doxorubicin, thereby enhancing the overall treatment outcomes for cancer patients.


Subject(s)
Cardiotoxicity , Mitochondrial Diseases , Humans , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , Doxorubicin/adverse effects , Mitochondria , Antibiotics, Antineoplastic/adverse effects , Mitochondrial Diseases/complications , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Myocytes, Cardiac
8.
Aging (Albany NY) ; 16(5): 4889-4903, 2024 03 10.
Article in English | MEDLINE | ID: mdl-38462693

ABSTRACT

Anthracycline chemotherapeutics like doxorubicin (DOX) are widely used against various cancers but are accompanied by severe cardiotoxic effects that can lead to heart failure. Through whole transcriptome sequencing and pathological tissue analysis in a murine model, our study has revealed that DOX impairs collagen expression in the early phase, causing extracellular matrix anomalies that weaken the mechanical integrity of the heart. This results in ventricular wall thinning and dilation, exacerbating cardiac dysfunction. In this work, we have identified 5-hydroxytryptophan (5-HTP) as a potent inhibitor of gap junction communication. This inhibition is key to limiting the spread of DOX-induced cardiotoxicity. Treatment with 5-HTP effectively countered the adverse effects of DOX on the heart, preserving ventricular structure and ejection fraction. Moreover, 5-HTP enhanced mitochondrial respiratory function, as shown by the O2k mitochondrial function assay, by improving mitochondrial complex activity and ATP production. Importantly, the cardioprotective benefits of 5-HTP did not interfere with DOX's ability to combat cancer. These findings shed light on the cardiotoxic mechanisms of DOX and suggest that 5-HTP could be a viable strategy to prevent heart damage during chemotherapy, offering a foundation for future clinical development. This research opens the door for 5-HTP to be considered a dual-purpose agent that can protect the heart without compromising the oncological efficacy of anthracycline chemotherapy.


Subject(s)
Mitochondrial Diseases , Myocytes, Cardiac , Mice , Animals , Myocytes, Cardiac/metabolism , 5-Hydroxytryptophan/metabolism , 5-Hydroxytryptophan/pharmacology , Doxorubicin/toxicity , Antibiotics, Antineoplastic/pharmacology , Cardiotoxicity/pathology , Mitochondrial Diseases/metabolism , Apoptosis
9.
J Gene Med ; 26(3): e3681, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38484722

ABSTRACT

Doxorubicin is a commonly used anti-cancer drug used in treating a variety of malignancies. However, a major adverse effect is cardiotoxicity, which is dose dependent and can be either acute or chronic. Doxorubicin causes injury by DNA damage, the formation of free reactive oxygen radicals and induction of apoptosis. Our aim is to induce expression of the multidrug resistance-associated protein 1 (MRP1) in cardiomyocytes derived from human iPS cells (hiPSC-CM), to determine whether this will allow cells to effectively remove doxorubicin and confer cardioprotection. We generated a lentivirus vector encoding MRP1 (LV.MRP1) and validated its function in HEK293T cells and stem cell-derived cardiomyocytes (hiPSC-CM) by quantitative PCR and western blot analysis. The activity of the overexpressed MRP1 was also tested, by quantifying the amount of fluorescent dye exported from the cell by the transporter. We demonstrated reduced dye sequestration in cells overexpressing MRP1. Finally, we demonstrated that hiPSC-CM transduced with LV.MRP1 were protected against doxorubicin injury. In conclusion, we have shown that we can successfully overexpress MRP1 protein in hiPSC-CM, with functional transporter activity leading to protection against doxorubicin-induced toxicity.


Subject(s)
Cardiotoxicity , Multidrug Resistance-Associated Proteins , Myocytes, Cardiac , Humans , Cardiotoxicity/prevention & control , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , HEK293 Cells , Doxorubicin/pharmacology
10.
Circ Res ; 134(5): 482-501, 2024 03.
Article in English | MEDLINE | ID: mdl-38323474

ABSTRACT

BACKGROUND: Mitochondrial dysfunction is a primary driver of cardiac contractile failure; yet, the cross talk between mitochondrial energetics and signaling regulation remains obscure. Ponatinib, a tyrosine kinase inhibitor used to treat chronic myeloid leukemia, is among the most cardiotoxic tyrosine kinase inhibitors and causes mitochondrial dysfunction. Whether ponatinib-induced mitochondrial dysfunction triggers the integrated stress response (ISR) to induce ponatinib-induced cardiotoxicity remains to be determined. METHODS: Using human induced pluripotent stem cells-derived cardiomyocytes and a recently developed mouse model of ponatinib-induced cardiotoxicity, we performed proteomic analysis, molecular and biochemical assays to investigate the relationship between ponatinib-induced mitochondrial stress and ISR and their role in promoting ponatinib-induced cardiotoxicity. RESULTS: Proteomic analysis revealed that ponatinib activated the ISR in cardiac cells. We identified GCN2 (general control nonderepressible 2) as the eIF2α (eukaryotic translation initiation factor 2α) kinase responsible for relaying mitochondrial stress signals to trigger the primary ISR effector-ATF4 (activating transcription factor 4), upon ponatinib exposure. Mechanistically, ponatinib treatment exerted inhibitory effects on ATP synthase activity and reduced its expression levels resulting in ATP deficits. Perturbed mitochondrial function resulting in ATP deficits then acts as a trigger of GCN2-mediated ISR activation, effects that were negated by nicotinamide mononucleotide, an NAD+ precursor, supplementation. Genetic inhibition of ATP synthase also activated GCN2. Interestingly, we showed that the decreased abundance of ATP also facilitated direct binding of ponatinib to GCN2, unexpectedly causing its activation most likely because of a conformational change in its structure. Importantly, administering an ISR inhibitor protected human induced pluripotent stem cell-derived cardiomyocytes against ponatinib. Ponatinib-treated mice also exhibited reduced cardiac function, effects that were attenuated upon systemic ISRIB administration. Importantly, ISRIB does not affect the antitumor effects of ponatinib in vitro. CONCLUSIONS: Neutralizing ISR hyperactivation could prevent or reverse ponatinib-induced cardiotoxicity. The findings that compromised ATP production potentiates GCN2-mediated ISR activation have broad implications across various cardiac diseases. Our results also highlight an unanticipated role of ponatinib in causing direct activation of a kinase target despite its role as an ATP-competitive kinase inhibitor.


Subject(s)
Imidazoles , Induced Pluripotent Stem Cells , Mitochondrial Diseases , Pyridazines , Humans , Animals , Mice , Protein Serine-Threonine Kinases/metabolism , Cardiotoxicity/pathology , Proteomics , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Protein Kinase Inhibitors/toxicity , Mitochondrial Diseases/pathology , Adenosine Triphosphate
11.
Toxicol Appl Pharmacol ; 483: 116838, 2024 02.
Article in English | MEDLINE | ID: mdl-38278497

ABSTRACT

Cyclophosphamide (CP), although a potent anti-cancer drug, causes cardiotoxicity as a side effect that limits its use. Hence, a specific medicine that can lower cardiotoxicity and be utilised as an adjuvant in cancer treatment is very much needed. In this light, we intended to assess the protective potential of levocabastine (LEV) on CP-induced cardiotoxicity in Swiss albino mice. Mice were administered LEV (50 and 100 µg/kg, i.p.) daily for 14 days and CP at 200 mg/kg, intraperitoneally once on the 7th day. On the 15th day, mice were weighed, blood withdrawn then sacrificed and hearts were removed to estimate various biochemical and histopathological parameters. CP 200 mg/kg significantly increased cardiac troponin T, LDH, CK-MB, interleukin-1ß, IL-6, TNF-α, TBARS, nitrite, and decreased CAT, GSH, and SOD levels, thus, manifested cardiac damage, inflammation, oxidative stress, and nitrative stress, cumulatively causing cardiotoxicity. CP also elevated the expression of various markers including cleaved caspase-3, NF-κB, TLR4, NLRP3, and fibrotic lesions in cardiac tissues, whereas decreased hematological parameters (RBCs, platelets, and Hb) to confirm cardiotoxicity. LEV and fenofibrate (FF) treatment reversed these changes towards normal and showed a significant protective effect against CP. The results showed the protective role of LEV in restoring CP-induced cardiotoxicity in terms of inflammation, apoptosis, oxidative stress, cardiac injury and histopathological damage. Thus, levocabastine can be used as an adjuvant to cyclophosphamide in cancer treatment but a thorough study with various animal cancer models is further needed to establish the fact.


Subject(s)
Cardiotoxicity , NF-kappa B , Piperidines , Mice , Animals , Cardiotoxicity/pathology , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cyclophosphamide/toxicity , Oxidative Stress , Signal Transduction , Inflammation/metabolism , Apoptosis
12.
Apoptosis ; 29(5-6): 816-834, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38281279

ABSTRACT

Doxorubicin (DOX) is an anthracycline antibiotic used as an antitumor treatment. However, its clinical application is limited due to severe side effects such as cardiotoxicity. In recent years, numerous studies have demonstrated that cellular aging has become a therapeutic target for DOX-induced cardiomyopathy. However, the underlying mechanism and specific molecular targets of DOX-induced cardiomyocyte aging remain unclear. Poly (ADP-ribose) polymerase (PARP) is a family of protein post-translational modification enzymes in eukaryotic cells, including 18 members. PARP-1, the most well-studied member of this family, has become a potential molecular target for the prevention and treatment of various cardiovascular diseases, such as DOX cardiomyopathy and heart failure. PARP-1 and PARP-2 share 69% homology in the catalytic regions. However, they do not entirely overlap in function. The role of PARP-2 in cardiovascular diseases, especially in DOX-induced cardiomyocyte aging, is less studied. In this study, we found for the first time that down-regulation of PARP-2 can inhibit DOX-induced cellular aging in cardiomyocytes. On the contrary, overexpression of PARP-2 can aggravate DOX-induced cardiomyocyte aging and injury. Further research showed that PARP-2 inhibited the expression and activity of SIRT1, which in turn was involved in the development of DOX-induced cardiomyocyte aging and injury. Our findings provide a preliminary experimental basis for establishing PARP-2 as a new target for preventing and treating DOX cardiomyopathy and related drug development.


Subject(s)
Cellular Senescence , Doxorubicin , Myocytes, Cardiac , Poly(ADP-ribose) Polymerases , Sirtuin 1 , Doxorubicin/adverse effects , Doxorubicin/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , Animals , Cellular Senescence/drug effects , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerases/genetics , Rats , Cardiotoxicity/pathology , Cardiotoxicity/metabolism , Cardiotoxicity/prevention & control , Cardiotoxicity/etiology , Apoptosis/drug effects , Rats, Sprague-Dawley , Antibiotics, Antineoplastic/toxicity , Antibiotics, Antineoplastic/adverse effects , Antibiotics, Antineoplastic/pharmacology , Cardiomyopathies/chemically induced , Cardiomyopathies/pathology , Cardiomyopathies/metabolism , Cardiomyopathies/genetics , Humans
13.
Am J Clin Oncol ; 47(2): 81-87, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37916961

ABSTRACT

INTRODUCTION: The role of internal mammary nodal irradiation (IMNI) as a component of regional nodal radiotherapy is a controversial issue in breast radiation oncology with conflicting results presented in recent landmark trials. We thus created a meta-analysis of available data to better ascertain the potential benefit of IMNI. We hypothesize that with the increased power available within a meta-analysis, IMNI will prove to improve overall survival (OS) in breast cancer. METHODS: Literature search was conducted for prospective studies comparing IMNI to no IMNI. Primary endpoint was OS and secondary endpoints included local recurrence, regional recurrence, disease-free survival (DFS), breast cancer mortality (BCM), distant metastasis-free survival (DMFS), grade 2+ skin toxicity, cardiac events, and pneumonitis events. Subgroup analyses were performed for tumor location (medial/central vs. lateral), and nodal status (pN+ vs. pN0). Fixed-effect model was used if there was no heterogeneity, random-effects model otherwise. RESULTS: Four studies with a total of 5258 patients (IMNI: n=2592; control: n=2666) were included in the study. Pooled results showed IMNI significantly improved OS for all-comers (hazard ratio [HR]=0.89; 95% CI 0.81-0.97; P =0.008), as well as subgroups of pN+ with medial/central tumor location (HR=0.84; 95% CI 0.73-0.96; P =0.01) and pN+ with lateral tumor location (HR=0.87; 95% CI 0.77-0.99; P =0.04). There was no significant difference in OS for subgroups of pN0 and medial/central tumor location. There was no difference in local recurrence, but regional recurrence was significantly improved ( P =0.04). Endpoints of DFS (HR 0.91, 95% CI 0.84-0.99 P =0.03), BCM (HR 0.87, 95% CI 0.77-0.98, P =0.03), and DMFS (HR=0.87; 95% CI, 0.78-0.98; P =0.02) were all improved with IMNI. Grade 2+ skin toxicity, cardiac events and pneumonitis events were not significantly different between patient in the IMNI and no IMNI groups. CONCLUSION: Inclusion of IMN irradiation improves OS, DFS, BCM, and DMFS in breast cancer. Largest effect on OS was noted in the subgroup of patients with pN+ and medial/central tumor location.


Subject(s)
Breast Neoplasms , Pneumonia , Humans , Female , Breast Neoplasms/radiotherapy , Prospective Studies , Cardiotoxicity/pathology , Lymph Nodes/pathology , Disease-Free Survival , Pneumonia/pathology
14.
Eur Radiol ; 34(4): 2699-2710, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37823922

ABSTRACT

OBJECTIVES: MRI-derived extracellular volume (ECV) allows characterization of myocardial changes before the onset of overt pathology, which may be caused by cancer therapy cardiotoxicity. Our purpose was to review studies exploring the role of MRI-derived ECV as an early cardiotoxicity biomarker to guide timely intervention. MATERIALS AND METHODS: In April 2022, we performed a systematic search on EMBASE and PubMed for articles on MRI-derived ECV as a biomarker of cancer therapy cardiotoxicity. Two blinded researchers screened the retrieved articles, including those reporting ECV values at least 3 months from cardiotoxic treatment. Data extraction was performed for each article, including clinical and technical data, and ECV values. Pooled ECV was calculated using the random effects model and compared among different treatment regimens and among those who did or did not experience overt cardiac dysfunction. Meta-regression analyses were conducted to appraise which clinical or technical variables yielded a significant impact on ECV. RESULTS: Overall, 19 studies were included. Study populations ranged from 9 to 236 patients, for a total of 1123 individuals, with an average age ranging from 12.5 to 74 years. Most studies included patients with breast or esophageal cancer, treated with anthracyclines and chest radiotherapy. Pooled ECV was 28.44% (95% confidence interval, CI, 26.85-30.03%) among subjects who had undergone cardiotoxic cancer therapy, versus 25.23% (95%CI 23.31-27.14%) among those who had not (p = .003). CONCLUSION: A higher ECV in patients who underwent cardiotoxic treatment could imply subclinical changes in the myocardium, present even before overt cardiac pathology is detectable. CLINICAL RELEVANCE STATEMENT: The ability to detect subclinical changes in the myocardium displayed by ECV suggests its use as an early biomarker of cancer therapy-related cardiotoxicity. KEY POINTS: • Cardiotoxicity is a common adverse effect of cancer therapy; therefore, its prompt detection could improve patient outcomes. • Pooled MRI-derived myocardial extracellular volume was higher in patients who underwent cardiotoxic cancer therapy than in those who did not (28.44% versus 25.23%, p = .003). • MRI-derived myocardial extracellular volume represents a potential early biomarker of cancer therapy cardiotoxicity.


Subject(s)
Cardiotoxicity , Neoplasms , Humans , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Cardiotoxicity/diagnostic imaging , Cardiotoxicity/etiology , Cardiotoxicity/pathology , Magnetic Resonance Imaging , Myocardium/pathology , Biomarkers , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/pathology , Magnetic Resonance Imaging, Cine , Predictive Value of Tests
15.
Inflammation ; 47(1): 264-284, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37833616

ABSTRACT

Doxorubicin (DOX) is a topoisomerase II inhibitor used in cancer therapy. Despite its efficacy, DOX causes serious adverse effects, such as short- and long-term cardiotoxicity. This work aimed to assess the short- and long-term cardiotoxicity of DOX and the role of inflammation and antioxidant defenses on that cardiotoxicity in a mice model. Adult CD-1 male mice received a cumulative dose of 9.0 mg/kg of DOX (2 biweekly intraperitoneal injections (ip), for 3 weeks). One week (1W) or 5 months (5M) after the last DOX administration, the heart was collected. One week after DOX, a significant increase in p62, tumor necrosis factor receptor (TNFR) 2, glutathione peroxidase 1, catalase, inducible nitric oxide synthase (iNOS) cardiac expression, and a trend towards an increase in interleukin (IL)-6, TNFR1, and B-cell lymphoma 2 associated X (Bax) expression was observed. Moreover, DOX induced a decrease on nuclear factor erythroid-2 related factor 2 (Nrf2) cardiac expression. In both 1W and 5M, DOX led to a high density of infiltrating M1 macrophages, but only the 1W-DOX group had a significantly higher number of nuclear factor κB (NF-κB) p65 immunopositive cells. As late effects (5M), an increase in Nrf2, myeloperoxidase, IL-33, tumor necrosis factor-α (TNF-α), superoxide dismutase 2 (SOD2) expression, and a trend towards increased catalase expression were observed. Moreover, B-cell lymphoma 2 (Bcl-2), cyclooxygenase-2 (COX-2), and carbonylated proteins expression decreased, and a trend towards decreased p38 mitogen-activated protein kinase (MAPK) expression were seen. Our study demonstrated that DOX induces adverse outcome pathways related to inflammation and oxidative stress, although activating different time-dependent response mechanisms.


Subject(s)
Cardiotoxicity , NF-E2-Related Factor 2 , Mice , Male , Animals , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , NF-E2-Related Factor 2/metabolism , Catalase/metabolism , Cardio-Oncology , Doxorubicin/adverse effects , Oxidative Stress , Interleukin-6/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Inflammation/drug therapy , Apoptosis
16.
Toxicol Appl Pharmacol ; 482: 116794, 2024 01.
Article in English | MEDLINE | ID: mdl-38142782

ABSTRACT

Doxorubicin (Dox) is a widely used antitumor agent with dose-dependent and cumulative cardiotoxic effects. Resveratrol (Res) is a natural non-flavonoid polyphenol that can potentially provide cardiovascular benefits. We aimed to estimate the protective effect of Res on Dox-induced cardiotoxicity (DIC) and explore whether it was related to attenuating ferroptosis. We established DIC models in C57BL/6 J mice, H9C2 cardiomyoblasts, and neonatal rat cardiomyocytes (NRCMs). We further treated H9C2 cells with RSL3, a ferroptosis agonist, to investigate whether Res exerted protective effects through inhibiting ferroptosis. Ferrostatin-1 (Fer-1) was applied to suppress ferroptosis. Dox treatment caused cardiac dysfunction and resulted in apparent ferroptotic damage in cardiac tissue, involving increased iron accumulation, glutathione depletion, increased expression of ferroptosis-related proteins, and decreased expression of glutathione peroxidase 4, which were alleviated by Fer-1 and Res administration. These findings were also confirmed in Dox-treated H9C2 cells and NRCMs, with Fer-1 and Res effectively attenuating Dox-induced cytotoxicity and ferroptosis. Furthermore, Res protected H9C2 cells from RSL3-induced ferroptotic cell death, and the protective effect was similar to that of Fer-1. Both Dox and RSL3 treatment increased the phosphorylation levels of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinases; however, these changes were hindered by Res. This study demonstrates that Res effectively alleviates DIC by suppressing ferroptosis possibly through modulating the MAPK signaling pathway. Our results highlight that targeting ferroptosis can be a potential cardioprotective strategy for DIC.


Subject(s)
Cardiotoxicity , Ferroptosis , Mice , Rats , Animals , Resveratrol/pharmacology , Cardiotoxicity/pathology , Apoptosis , Cell Line , Mice, Inbred C57BL , Signal Transduction , Doxorubicin/pharmacology , Myocytes, Cardiac , Oxidative Stress
17.
Aging (Albany NY) ; 15(21): 11845-11859, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37916995

ABSTRACT

BACKGROUND: Capsaicin (CAP), a frequently occurring alkaloid component found in spicy peppers, has demonstrated therapeutic potential against tumors, metabolic disease, and cardiovascular disorders. Doxorubicin (DOX), a widely used anthracycline drug in chemotherapy, is notorious for its cardiotoxicity. This study aimed to investigate the potential of CAP in mitigating DOX toxicity in mouse hearts and H9C2 cells, as well as to explore the underlying mechanisms. METHODS: In our study, we conducted experiments on both mice and H9C2 cells. The mice were divided into four groups and treated with different substances: normal saline, CAP, DOX and CAP+DOX. We evaluated the induction of ferroptosis by DOX and the remission of ferroptosis by CAP using various methods, including echocardiography, Hematoxylin and Eosin (H&E) staining, Masson's trichrome staining, and determination of ferroptosis metabolites, genes and proteins. Additionally, we employed RNA-seq to identify the inhibitory effect of CAP on DOX-induced myocardial apoptosis, which was further confirmed through western blotting. Similar approaches were applied to H9C2 cells, yielding reliable results. RESULTS: Our study demonstrated that treatment with CAP improved the survival rate of DOX-treated mice and reduced myocardial injury. Mechanistically, CAP downregulated transferrin (Trf) and upregulated solute carrier family 40 member 1 (SLC40A1), which helped maintain iron levels in the cells and prevent ferroptosis. Furthermore, CAP inhibited DOX-induced apoptosis by modulating the phosphoinositide 3-kinase (PI3K)- protein kinase B (Akt) signaling pathway. Specifically, CAP activated the PI3K-Akt pathway and regulated downstream BCL2 and BAX to mitigate DOX-induced apoptosis. Therefore, our results suggest that CAP effectively alleviates acute myocardial injury induced by DOX. CONCLUSION: Our findings demonstrate that CAP has the potential to alleviate DOX-induced ferroptosis by regulating iron homeostasis. Additionally, it can inhibit DOX-induced apoptosis by activating PI3K-Akt signaling pathway.


Subject(s)
Heart Injuries , Phosphatidylinositol 3-Kinases , Mice , Animals , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Capsaicin/metabolism , Capsaicin/pharmacology , Myocytes, Cardiac/metabolism , Signal Transduction , Doxorubicin/toxicity , Heart Injuries/chemically induced , Heart Injuries/drug therapy , Cardiotoxicity/drug therapy , Cardiotoxicity/pathology , Apoptosis , Homeostasis , Iron/metabolism
18.
J Transl Med ; 21(1): 823, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978379

ABSTRACT

BACKGROUND: Doxorubicin (DOX)-induced cardiotoxicity (DIC) is a major impediment to its clinical application. It is indispensable to explore alternative treatment molecules or drugs for mitigating DIC. WGX50, an organic extract derived from Zanthoxylum bungeanum Maxim, has anti-inflammatory and antioxidant biological activity, however, its function and mechanism in DIC remain unclear. METHODS: We established DOX-induced cardiotoxicity models both in vitro and in vivo. Echocardiography and histological analyses were used to determine the severity of cardiac injury in mice. The myocardial damage markers cTnT, CK-MB, ANP, BNP, and ferroptosis associated indicators Fe2+, MDA, and GPX4 were measured using ELISA, RT-qPCR, and western blot assays. The morphology of mitochondria was investigated with a transmission electron microscope. The levels of mitochondrial membrane potential, mitochondrial ROS, and lipid ROS were detected using JC-1, MitoSOX™, and C11-BODIPY 581/591 probes. RESULTS: Our findings demonstrate that WGX50 protects DOX-induced cardiotoxicity via restraining mitochondrial ROS and ferroptosis. In vivo, WGX50 effectively relieves doxorubicin-induced cardiac dysfunction, cardiac injury, fibrosis, mitochondrial damage, and redox imbalance. In vitro, WGX50 preserves mitochondrial function by reducing the level of mitochondrial membrane potential and increasing mitochondrial ATP production. Furthermore, WGX50 reduces iron accumulation and mitochondrial ROS, increases GPX4 expression, and regulates lipid metabolism to inhibit DOX-induced ferroptosis. CONCLUSION: Taken together, WGX50 protects DOX-induced cardiotoxicity via mitochondrial ROS and the ferroptosis pathway, which provides novel insights for WGX50 as a promising drug candidate for cardioprotection.


Subject(s)
Cardiotoxicity , Ferroptosis , Mice , Animals , Cardiotoxicity/drug therapy , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , Reactive Oxygen Species/metabolism , Myocytes, Cardiac/pathology , Doxorubicin/adverse effects , Mitochondria/metabolism , Oxidative Stress , Antioxidants/metabolism , Apoptosis
19.
Toxicol Appl Pharmacol ; 479: 116713, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37838222

ABSTRACT

BACKGROUND: Doxorubicin (DOX)-induced cardiotoxicity is an important cause of poor prognosis in cancer patients treated with DOX. Angiotensin IV (Ang IV) has multiple protective effects against cardiovascular diseases, including diabetic cardiomyopathy and myocardial infarction, but its role in DOX-induced cardiotoxicity is currently unclear. In this study, we investigated the effects of Ang IV on DOX-induced cardiotoxicity. METHODS: The viability of primary cardiomyocytes was measured by Cell Counting Kit-8 assays and Hoechst 33342/propidium iodide staining in vitro. ELISAs (serum cTnT and CK-MB) and echocardiography were performed to assess myocardial injury and cardiac function in vivo. Phalloidin staining, haematoxylin and eosin staining and wheat germ agglutinin staining were conducted to detect cardiomyocyte atrophy. We also performed C11 BODIPY staining, measured the levels of Ptgs2 and malondialdehyde and detected the concentrations of ferrous ions, glutathione and oxidized glutathione to indicate ferroptosis. RESULTS: Ang IV not only attenuated DOX-induced atrophy and cardiomyocyte injury in vitro but also alleviated myocardial injury and improved cardiac function in DOX-treated mice in vivo. Moreover, Ang IV reversed DOX-induced downregulation of glutathione peroxidase 4 (GPX4) and inhibited ferroptosis both in vitro and in vivo. Knockdown of GPX4 by siRNA abolished the cardioprotective effects of Ang IV. Furthermore, Ang IV increased GPX4 levels and ameliorated ferroptosis in RAS-selective lethal 3-treated primary cardiomyocytes. CONCLUSIONS: Ang IV ameliorates DOX-induced cardiotoxicity by upregulating GPX4 and inhibiting ferroptosis. Ang IV may be a promising candidate to protect against DOX-induced cardiotoxicity in the future.


Subject(s)
Cardiotoxicity , Ferroptosis , Mice , Humans , Animals , Cardiotoxicity/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/pharmacology , Doxorubicin/adverse effects , Myocytes, Cardiac , Atrophy/chemically induced , Oxidative Stress , Apoptosis
20.
J Control Release ; 361: 147-160, 2023 09.
Article in English | MEDLINE | ID: mdl-37536544

ABSTRACT

Doxorubicin (DOX) with broad-spectrum antitumor activity has been reported to induce effective immunogenic cell death (ICD) effect. However, the serious cardiotoxicity and chemoresistance severely restrict the widely clinical application of DOX. Herein, for the first time, a bio-inspired nanoplatform via co-assembly of DOX-conjugated polyethyleneimine (PEI-DOX), cancer cell membrane (CCM) and TGF-ß1 siRNA (siTGF-ß1) was rationally designed, which can not only overcome the drawbacks of DOX but also display high capability to modulate the tumor microenvironment and prevent the tumor progressing and metastasis. Experimental studies confirmed the pH-sensitivity of PEI-DOX and the homotypic-targeting and immuno-escapable ability of CCM, resulting an enhanced accumulation of DOX and siTGF-ß1 in tumor sites. In addition to this, the bio-inspired nanoplatform could also improve the stability and facilitate the endosomal escape of siTGF-ß1. All these effects ensured the silence efficiency of siTGF-ß1 in tumor sites, which could further modulate the chemoresistant and immunosuppressive tumor microenvironment, resulting a synergistic effect with DOX to prevent tumor progressing and metastasis. Additionally, even trapped in cardiac tissues, siTGF-ß1 could inhibit the production of TGF-ß1 and ROS induced by DOX, resulting a reduced myocardial damage. Therefore, our newly designed bio-inspired nano-delivery system may be a promising nanoplatform with efficient chemoimmunotherapy to ameliorate DOX-induced cardiotoxicity and combat tumor growth and metastasis in chemoresistant cancer.


Subject(s)
Cardiotoxicity , Drug Resistance, Neoplasm , Neoplasms , Humans , Cardiotoxicity/prevention & control , Cardiotoxicity/drug therapy , Cardiotoxicity/pathology , Cell Line, Tumor , Doxorubicin/therapeutic use , Doxorubicin/pharmacology , Drug Delivery Systems , Neoplasms/drug therapy , Transforming Growth Factor beta1 , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...