Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 450
Filter
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 540-545, 2024 May 10.
Article in Chinese | MEDLINE | ID: mdl-38684297

ABSTRACT

OBJECTIVE: To explore the clinical, biochemical and genetic characteristics of three children with Isoleucine metabolic disorders due to variants of HSD17B10 and ACAT1 genes. METHODS: Two children with 17ß hydroxysteroid dehydrogenase 10 (HSD17B10) deficiency and a child with ß-ketothiolase deficiency (BKD) diagnosed at Shanghai Children's Hospital between 2014 and 2021 were selected as the study subjects. Clinical data of the children were collected. The children were subjected to blood acylcarnitine, urinary organic acid and genetic testing, and candidate variants were analyzed with bioinformatic tools. RESULTS: The main symptoms of the three children had included epilepsy, developmental delay, hypotonia and acidosis. Their blood acylcarnitine methylcrotonyl carnitine (C5:1), 3-hydroxyisovalerylcarnitine (C5-OH) and 3-hydroxybutylcarnitine (C4OH) were increased to various extents, and urine organic acids including methyl crotonylglycine and 2-methyl-3-hydroxybutyric acid were significantly increased. Child 1 and child 2 were respectively found to harbor a c.347G>A (p.R116Q) variant and a c.274G>A (p.A92T) variant of the HSD17B10 gene, and child 3 was found to harbor compound heterozygous variants of the ACAT1 gene, namely c.547G>A (p.G183R) and a c.331G>C (p.A111P). Among these, the c.274G>A (p.A92T) and c.331G>C (p.A111P) variants were unreported previously. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), they were respectively classified as variant of unknown significance (PP3_Strong+PM2_supporting) and likely pathogenic (PM3+PM2_Supporting+PP3_Moderate+PP4). CONCLUSION: Both the HSD17B10 deficiency and BKD can lead to Isoleucine metabolism disorders, which may be difficult to distinguish clinically. Genetic testing can further confirm the diagnosis. Discoveries of the HSD17B10: c.274G>A (p.A92T) variant and the ACAT1: c.331G>C (p.A111P) variant have enriched the mutational spectrum of the two diseases.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases , Acetyl-CoA C-Acetyltransferase , Acetyl-CoA C-Acyltransferase/deficiency , Amino Acid Metabolism, Inborn Errors , Isoleucine , Humans , Male , Female , Acetyl-CoA C-Acetyltransferase/genetics , Isoleucine/genetics , Infant , Child, Preschool , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/diagnosis , Child , Mutation , Carnitine/analogs & derivatives , Carnitine/blood , Carnitine/urine
2.
J Pediatr Endocrinol Metab ; 34(12): 1611-1614, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34517439

ABSTRACT

OBJECTIVES: The impact of coronavirus disease-19 (COVID-19) on metabolic outcome in patients with inborn errors of metabolism has rarely been discussed. Herein, we report a case with an acute encephalopathic crisis at the course of COVID-19 disease as the first sign of glutaric aciduria type 1 (GA-1). CASE PRESENTATION: A 9-month-old patient was admitted with encephalopathy and acute loss of acquired motor skills during the course of COVID-19 disease. She had lethargy, hypotonia, and choreoathetoid movements. In terms of COVID-19 encephalopathy, the reverse transcription-polymerase chain reaction assay test for COVID-19 was negative in cerebral spinal fluid. Brain imaging showed frontotemporal atrophy, bilateral subcortical and periventricular white matter, basal ganglia, and thalamic involvement. Elevated glutarylcarnitine in plasma and urinary excretion of glutaric and 3-OH-glutaric acids was noted. A homozygote mutation in the glutaryl-CoA dehydrogenase gene led to the diagnosis of GA-1. CONCLUSIONS: With this report, neurological damage associated with COVID-19 has been reported in GA-1 patients for the first time in literature.


Subject(s)
Amino Acid Metabolism, Inborn Errors/complications , Brain Diseases, Metabolic/complications , Brain Diseases/etiology , COVID-19/complications , Glutaryl-CoA Dehydrogenase/deficiency , Amino Acid Metabolism, Inborn Errors/diagnostic imaging , Amino Acid Metabolism, Inborn Errors/genetics , Brain/diagnostic imaging , Brain Diseases/complications , Brain Diseases/diagnostic imaging , Brain Diseases, Metabolic/diagnostic imaging , Brain Diseases, Metabolic/genetics , COVID-19/diagnosis , COVID-19/diagnostic imaging , COVID-19 Testing , Carnitine/analogs & derivatives , Carnitine/blood , Carnitine/urine , Female , Genetic Testing , Glutarates/blood , Glutarates/urine , Glutaryl-CoA Dehydrogenase/genetics , Humans , Infant , Magnetic Resonance Imaging , Motor Skills , Movement Disorders/etiology , Muscle Hypotonia/etiology
3.
Funct Integr Genomics ; 21(5-6): 645-653, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34585279

ABSTRACT

Metabolomics has become an important tool for clinical research, especially for analyzing inherited metabolic disorders (IMDs). The purpose of this study was to explore the performance of metabolomics in diagnosing IMDs using an untargeted metabolomic approach. A total of 40 urine samples were collected: 20 samples from healthy children and 20 from pediatric patients, of whom 13 had confirmed IMDs and seven had suspected IMDs. Samples were analyzed by Orbitrap mass spectrometry in positive and negative mode alternately, coupled with ultra-high liquid chromatography. Raw data were processed using Compound Discovery 2.0 ™ and then exported for partial least squares discriminant analysis (PLS-DA) by SIMCA-P 14.1. After comparing with m/zCloud and chemSpider libraries, compounds with similarity above 80% were selected and normalized for subsequent relative quantification analysis. The uncommon compounds discovered were analyzed based on the Kyoto Encyclopedia of Genes and Genomes to explore their possible metabolic pathways. All IMDs patients were successfully distinguished from controls in the PLS-DA. Untargeted metabolomics revealed a broader metabolic spectrum in patients than what is observed using routine chromatographic methods for detecting IMDs. Higher levels of certain compounds were found in all 13 confirmed IMD patients and 5 of 7 suspected IMD patients. Several potential novel markers emerged after relative quantification. Untargeted metabolomics may be able to diagnose IMDs from urine and may deepen insights into the disease by revealing changes in various compounds such as amino acids, acylcarnitines, organic acids, and nucleosides. Such analyses may identify biomarkers to improve the study and treatment of IMDs.


Subject(s)
Metabolic Diseases/diagnosis , Metabolic Diseases/urine , Metabolomics , Amino Acids/metabolism , Amino Acids/urine , Biomarkers/metabolism , Biomarkers/urine , Carnitine/analogs & derivatives , Carnitine/metabolism , Carnitine/urine , Child , Humans , Mass Spectrometry , Metabolic Diseases/metabolism , Nucleosides/metabolism , Nucleosides/urine
4.
Anal Bioanal Chem ; 413(21): 5349-5360, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34258650

ABSTRACT

Trimethylamine-N-oxide (TMAO), a microbiome-derived metabolite from the metabolism of choline, betaine, and carnitines, is associated to adverse cardiovascular outcomes. A method suitable for routine quantification of TMAO and its precursors (trimethylamine (TMA), choline, betaine, creatinine, and propionyl-, acetyl-, and L-carnitine) in clinical and food samples has been developed based on LC-MS. TMA was successfully derivatized using iodoacetonitrile, and no cross-reactions with TMAO or the other methylamines were detected. Extraction from clinical samples (plasma and urine) was performed after protein precipitation using acetonitrile:methanol. For food samples (meatballs and eggs), water extraction was shown to be sufficient, but acid hydrolysis was required to release bound choline before extraction. Baseline separation of the methylamines was achieved using a neutral HILIC column and a mobile phase consisting of 25 mmol/L ammonium formate in water:ACN (30:70). Quantification was performed by MS using external calibration and isotopic labelled internal standards. The assay proved suitable for both clinical and food samples and was linear from ≈ 0.1 up to 200 µmol/L for all methylamines except for TMA and TMAO, which were linear up to 100 µmol/L. Recoveries were 91-107% in clinical samples and 76-98% in food samples. The interday (n=8, four duplicate analysis) CVs were below 9% for all metabolites in clinical and food samples. The method was applied successfully to determine the methylamine concentrations in plasma and urine from the subjects participating in an intervention trial (n=10) to determine the effect of animal food ingestion on methylamine concentrations.


Subject(s)
Betaine/analysis , Carnitine/analysis , Choline/analysis , Creatinine/analysis , Methylamines/analysis , Betaine/blood , Betaine/urine , Carnitine/analogs & derivatives , Carnitine/blood , Carnitine/urine , Choline/blood , Choline/urine , Chromatography, Liquid/methods , Creatinine/blood , Creatinine/urine , Female , Food Analysis/methods , Humans , Limit of Detection , Male , Methylamines/blood , Methylamines/urine , Middle Aged , Tandem Mass Spectrometry/methods
5.
Nutrients ; 13(4)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916877

ABSTRACT

The western dietary pattern is known for its frequent meals rich in saturated fat and protein, resulting in a postprandial state for a large part of the day. Therefore, our aim was to investigate the postprandial glucose and lipid metabolism in response to high (HP) or normal (NP) protein, high-fat hypercaloric diet and to identify early biomarkers of protein intake and hepatic lipid accumulation. In a crossover design, 17 healthy subjects were randomly assigned to consume a HP or NP hypercaloric diet for two weeks. In parallel, a control group (CD; n = 10) consumed a weight-maintaining control diet. Biomarkers of postprandial lipid and glucose metabolism were measured in 24 h urine and in plasma before and following a meal challenge. The metabolic profile of urine but not plasma, showed increased excretion of 13C, carnitine and short chain acyl-carnitines after adaptation to the HP diet. Urinary excretion of decatrienoylcarnitine and octenoylcarnitine increased after adaptation to the NP diet. Our results suggest that the higher excretion of short-chain urinary acyl-carnitines could facilitate the elimination of excess fat of the HP diet and thereby reduce hepatic fat accumulation previously reported, whereas the higher excretion medium-chains acyl-carnitine could be early biomarkers of hepatic lipid accumulation.


Subject(s)
Carnitine/analogs & derivatives , Diet, High-Fat/adverse effects , Diet, High-Protein/adverse effects , Diet, Western/adverse effects , Metabolic Syndrome/diagnosis , Adult , Biomarkers/urine , Carnitine/metabolism , Carnitine/urine , Cross-Over Studies , Dietary Fats/adverse effects , Dietary Fats/metabolism , Dietary Proteins/metabolism , Energy Intake/physiology , Female , Glucose/metabolism , Healthy Volunteers , Humans , Lipid Metabolism/physiology , Liver/metabolism , Male , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Metabolic Syndrome/urine , Postprandial Period/physiology , Renal Elimination/physiology , Young Adult
6.
Biofactors ; 47(4): 645-657, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33836111

ABSTRACT

Diabetes is considered one of the most important health emergencies worldwide and Egypt has 8.2 million diabetic patients according to the International Diabetes Federation report in 2017. The objective of this study was to monitor the time-course variation in the metabolic profile of diabetic rats to detect urinary metabolic biomarkers using the metabolomics approach. Type 2 diabetes was induced in male Wistar albino rats using a single intraperitoneal injection of 40 mg/kg of streptozotocin following oral administration of 10% fructose in drinking water for 3 weeks. Then, urine was collected for 24 h from rats at three time points (0, 2, and 4 weeks after confirmation of diabetes), and were analyzed by nuclear magnetic resonance (H1 -NMR), followed by multivariate data analysis. The results from H1 -NMR pointed out that d-glucose, taurine, l-carnitine, l-fucose, 1,5-anhydrosorbitol, and d-galactose levels showed consistent significant variation (p < 0.05) between the positive (diabetic) and negative (normal) controls during the whole experimental period. Also, with the disease progression, myoinositol, and l-phenylalanine levels were significantly altered (p < 0.05) after 2 weeks and this alteration was maintained till the end of the 4-week experimental period in the positive control group. From the results of the present study, it could be concluded that we cannot depend only on glucose levels for prognostic purposes since there are other metabolic disturbances in diabetes which need to be tracked for better disease prognosis.


Subject(s)
Diabetes Mellitus, Experimental/urine , Glycosuria/urine , Metabolomics/methods , Animals , Biomarkers/urine , Carnitine/urine , Cluster Analysis , Deoxyglucose/urine , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Disease Progression , Fructose/administration & dosage , Fucose/urine , Galactose/urine , Glycosuria/chemically induced , Glycosuria/genetics , Glycosuria/pathology , Inositol/urine , Magnetic Resonance Spectroscopy , Male , Metabolome , Phenylalanine/urine , Rats , Rats, Wistar , Streptozocin/administration & dosage , Taurine/urine , Time Factors
7.
Sci Rep ; 11(1): 6197, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737653

ABSTRACT

The number of people affected by Type 2 diabetes mellitus (T2DM) is close to half a billion and is on a sharp rise, representing a major and growing public health burden. Given its mild initial symptoms, T2DM is often diagnosed several years after its onset, leaving half of diabetic individuals undiagnosed. While several classical clinical and genetic biomarkers have been identified, improving early diagnosis by exploring other kinds of omics data remains crucial. In this study, we have combined longitudinal data from two population-based cohorts CoLaus and DESIR (comprising in total 493 incident cases vs. 1360 controls) to identify new or confirm previously implicated metabolomic biomarkers predicting T2DM incidence more than 5 years ahead of clinical diagnosis. Our longitudinal data have shown robust evidence for valine, leucine, carnitine and glutamic acid being predictive of future conversion to T2DM. We confirmed the causality of such association for leucine by 2-sample Mendelian randomisation (MR) based on independent data. Our MR approach further identified new metabolites potentially playing a causal role on T2D, including betaine, lysine and mannose. Interestingly, for valine and leucine a strong reverse causal effect was detected, indicating that the genetic predisposition to T2DM may trigger early changes of these metabolites, which appear well-before any clinical symptoms. In addition, our study revealed a reverse causal effect of metabolites such as glutamic acid and alanine. Collectively, these findings indicate that molecular traits linked to the genetic basis of T2DM may be particularly promising early biomarkers.


Subject(s)
Carnitine/blood , Diabetes Mellitus, Type 2/diagnosis , Genetic Predisposition to Disease , Glutamic Acid/blood , Leucine/blood , Metabolome/genetics , Valine/blood , Adult , Aged , Betaine/blood , Betaine/urine , Biomarkers/blood , Biomarkers/urine , Carnitine/urine , Case-Control Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/urine , Early Diagnosis , Female , Glutamic Acid/urine , Humans , Leucine/urine , Lysine/blood , Lysine/urine , Male , Mannose/blood , Mannose/urine , Mendelian Randomization Analysis , Middle Aged , Valine/urine
8.
Clin Nutr ; 40(4): 2109-2120, 2021 04.
Article in English | MEDLINE | ID: mdl-33071013

ABSTRACT

BACKGROUND: Leucine is an essential amino acid and a potent stimulator of muscle protein synthesis. Since muscle wasting is a major risk factor for mortality in kidney transplant recipients (KTR), dietary leucine intake might be linked to long-term mortality. Urinary 3-hydroxyisovaleryl carnitine (3-HIC) excretion, a functional marker of marginal biotin deficiency, may also serve as a marker for dietary leucine intake. OBJECTIVE: In this study we aimed to investigate the cross-sectional determinants of urinary 3-HIC excretion and to prospectively investigate the association of urinary 3-HIC excretion with all-cause mortality in KTR. DESIGN: Urinary 3-HIC excretion and plasma biotin were measured in a longitudinal cohort of 694 stable KTR. Cross-sectional and prospective analyses were performed using ordinary least squares linear regression analyses and Cox regression analyses, respectively. RESULTS: In KTR (57% male, 53 ± 13 years, estimated glomerular filtration rate 45 ± 19 mL/min/1.73 m2), urinary 3-HIC excretion (0.80 [0.57-1.16] µmol/24 h) was significantly associated with plasma biotin (std. ß = -0.17; P < 0.001). Subsequent adjustment for potential covariates revealed urinary creatinine excretion (std. ß = 0.24; P < 0.001) and urinary urea excretion (std. ß = 0.53; P < 0.001) as the primary determinant of urinary 3-HIC excretion. Whereas plasma biotin explained only 1% of the variance in urinary 3-HIC excretion, urinary urea excretion explained >45%. During median follow-up for 5.4 [4.8-6.1] years, 150 (22%) patients died. Log2-transformed urinary 3-HIC excretion was inversely associated with all-cause mortality (HR: 0.52 [0.43-0.63]; P < 0.001). This association was independent of potential confounders. CONCLUSIONS: Urinary 3-HIC excretion more strongly serves as a marker of leucine intake than of biotin status. A higher urinary 3-HIC excretion is associated with a lower risk of all-cause mortality. Future studies are warranted to explore the underlying mechanism. TRIAL REGISTRATION ID: NCT02811835. TRIAL REGISTRATION URL: https://clinicaltrials.gov/ct2/show/NCT02811835.


Subject(s)
Carnitine/analogs & derivatives , Kidney Transplantation/mortality , Protein-Energy Malnutrition/epidemiology , Adult , Aged , Biotin/blood , Biotin/deficiency , Carnitine/urine , Cohort Studies , Cross-Sectional Studies , Diet , Female , Glomerular Filtration Rate , Humans , Leucine/administration & dosage , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Protein-Energy Malnutrition/physiopathology , Risk Factors , Transplant Recipients/statistics & numerical data
9.
Am J Obstet Gynecol ; 224(2): 215.e1-215.e7, 2021 02.
Article in English | MEDLINE | ID: mdl-32739399

ABSTRACT

BACKGROUND: Aberrant fetal programming in gestational diabetes mellitus seems to increase the risk of obesity, type 2 diabetes, and cardiovascular disease. The inability to accurately identify gestational diabetes mellitus in the first trimester of pregnancy has thwarted ascertaining whether early therapeutic interventions reduce the predisposition to these prevalent medical disorders. OBJECTIVE: A metabolomics study was conducted to determine whether advanced analytical methods could identify accurate predictors of gestational diabetes mellitus in early pregnancy. STUDY DESIGN: This nested observational case-control study was composed of 92 gravidas (46 in the gestational diabetes mellitus group and 46 in the control group) in early pregnancy, who were matched by maternal age, body mass index, and gestational age at urine collection. Gestational diabetes mellitus was diagnosed according to community standards. A comprehensive metabolomics platform measured 626 endogenous metabolites in randomly collected urine. Consensus multivariate criteria or the most important by 1 method identified low-molecular weight metabolites independently associated with gestational diabetes mellitus, and a classification tree selected a subset most predictive of gestational diabetes mellitus. RESULTS: Urine for both groups was collected at a mean gestational age of 12 weeks (range, 6-19 weeks' gestation). Consensus multivariate analysis identified 11 metabolites independently linked to gestational diabetes mellitus. Classification tree analysis selected a 7-metabolite subset that predicted gestational diabetes mellitus with an accuracy of 96.7%, independent of maternal age, body mass index, and time of urine collection. CONCLUSION: Validation of this high-accuracy model by a larger study is now needed to support future studies to determine whether therapeutic interventions in the first trimester of pregnancy for gestational diabetes mellitus reduce short- and long-term morbidity.


Subject(s)
Diabetes, Gestational/urine , Gestational Age , Metabolomics , Adult , Alanine/analogs & derivatives , Alanine/urine , Arginine/analogs & derivatives , Arginine/urine , Carnitine/analogs & derivatives , Carnitine/urine , Case-Control Studies , Diabetes, Gestational/diagnosis , Diabetes, Gestational/therapy , Diet Therapy , Dopamine/urine , Early Diagnosis , Epigenesis, Genetic , Female , Fetal Development/genetics , Glucose Tolerance Test , Glucuronides/urine , Humans , Hypoglycemic Agents/therapeutic use , Lactones/urine , Lysine/analogs & derivatives , Lysine/urine , Meglutol/analogs & derivatives , Meglutol/urine , Neopterin/analogs & derivatives , Neopterin/urine , Orotic Acid/analogs & derivatives , Orotic Acid/urine , Phenols/urine , Pregnancy , Ribonucleosides/urine , Sulfides/urine
10.
J Sports Sci ; 39(9): 969-978, 2021 May.
Article in English | MEDLINE | ID: mdl-33320058

ABSTRACT

The objective was to compare the metabolic responses of high-level national swimmers to threshold or polarised training. 22 swimmers (n = 12 males and 10 females) participated in a 28-week cross-over intervention study consisting of 2 × 6 period weeks of training. Swimmers were assigned randomly to either training group for the first period: polarised (POL) (81% in energetic zone 1: blood lactate [La]b ≤ 2 mmol.L-1; 4% in zone 2: 2 mmol.L-1 <[La]b ≤ 4 mmol.L-1; 15% in zone 3: [La]b > 4 mmol.L-1) or threshold (THR) (65%/25%/10%). Before and after each training period, urine samples were collected for non-targeted metabolomics analysis. Mixed model analysis was performed on metabolomics data including fatigue class factors and/or training and/or interaction. Ion intensities of 6-keto-decanoylcarnitine (+31%), pregnanediol-3-glucuronide (+81%), P-cresol sulphate (+18%) were higher in the threshold group (P < 0.05) indicating higher glycogenic depletion and inflammation without alteration of the neuroendocrine stress axis. 4-phenylbutanic acid sulphate was 200% higher in less fatigued swimmers (P < 0.01) linking the anti-inflammatory activity at the cell membrane level to the subjective perception of fatigue. This research suggests the importance of replenishing glycogen stores and reducing inflammation during high thresholds training loads.


Subject(s)
Athletes , Fatigue/urine , Mass Spectrometry/methods , Stress, Physiological , Swimming , Adolescent , Butyric Acid/urine , Carnitine/analogs & derivatives , Carnitine/urine , Cresols/urine , Cross-Over Studies , Female , Glycogen/metabolism , Humans , Inflammation/metabolism , Lactic Acid/blood , Male , Metabolomics , Osmolar Concentration , Pregnanediol/analogs & derivatives , Pregnanediol/urine , Random Allocation , Sulfuric Acid Esters/urine
11.
Nutrients ; 12(12)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352627

ABSTRACT

Frailty is an expression that reconciles and condenses loss of autonomy, both physical and cognitive decline and a wide spectrum of adverse outcomes due to aging. The decrease in physical and cognitive activity is associated with altered mitochondrial function, and energy loss and consequently morbidity and mortality. In this cross-sectional study, we evaluated the carnitine levels in frailty status. The mean serum concentrations of total carnitine (TC) were lower in frail elderly subjects than in prefrail ones (p = 0.0006), higher in frail vs. robust subjects (p < 0.0001), and higher in prefrail vs. robust subjects (p < 0.0001). The mean serum concentrations of free carnitine (FC) were lower in frail elderly subjects than in prefrail ones (p < 0.0001), lower in frail vs. robust subjects (p < 0.0001) and lower in prefrail vs. robust subjects (p = 0.0009). The mean serum concentrations of acylcarnitine (AC) were higher in frail elderly subjects than in prefrail ones (p = 0.054) and were higher in pre-frail vs. robust subjects (p = 0.0022). The mean urine concentrations of TC were lower in frail elderly subjects than in prefrail ones (p < 0.05) and lower in frail vs. robust subjects (p < 0.0001). The mean urine concentrations of free carnitine were lower in frail elderly vs. robust subjects (p < 0.05). The mean urine concentrations of acyl carnitines were lower in frail elderly subjects than those in both prefrail (p < 0.0001) and robust subjects (p < 0.0001). Conclusion: high levels of carnitine may have a favorable effect on the functional status and may treat the frailty status in older subjects.


Subject(s)
Carnitine/analogs & derivatives , Carnitine/blood , Frail Elderly , Frailty/blood , Aged , Aged, 80 and over , Carnitine/urine , Cross-Sectional Studies , Female , Geriatric Assessment , Humans , Male , Nutritional Status
12.
Physiol Rep ; 8(22): e14638, 2020 11.
Article in English | MEDLINE | ID: mdl-33207081

ABSTRACT

Many drug candidates have shown significant renoprotective effects in preclinical models; however, there is no clinically used effective pharmacotherapy for acute kidney injury. The failure to translate from bench to bedside could be due to misleading results from experimental animals with undetected congenital kidney defects. This study was performed to assess the effects of congenital hydronephrosis on the functional capacity of tubular renal transporters as well as kidney sensitivity to ischemia-reperfusion (I-R)-induced injury in male Wistar rats. Ultrasonography was used to distinguish healthy control rats from rats with hydronephrosis. L-carnitine or furosemide was administered, and serial blood samples were collected and analyzed to assess the effects of hydronephrosis on the pharmacokinetic parameters. Renal injury was induced by clamping the renal pedicles of both kidneys for 30 min with subsequent 24 hr reperfusion. The prevalence of hydronephrosis reached ~30%. The plasma concentrations after administration of L-carnitine or furosemide were similar in both groups. I-R induced more pronounced renal injury in the hydronephrotic rats than the control rats, which was evident by a significantly higher kidney injury molecule-1 concentration and lower creatinine concentration in the urine of the hydronephrotic rats than the control rats. After I-R, the gene expression levels of renal injury markers were significantly higher in the hydronephrotic kidneys than in the kidneys of control group animals. In conclusion, our results demonstrate that hydronephrotic kidneys are more susceptible to I-R-induced damage than healthy kidneys. Unilateral hydronephrosis does not affect the pharmacokinetics of substances secreted or absorbed in the renal tubules.


Subject(s)
Acute Kidney Injury/physiopathology , Hydronephrosis/physiopathology , Kidney/blood supply , Reperfusion Injury/physiopathology , Acute Kidney Injury/complications , Animals , Carnitine/blood , Carnitine/urine , Cell Adhesion Molecules/metabolism , Disease Susceptibility , Diuretics/blood , Diuretics/urine , Furosemide/blood , Furosemide/urine , Hydronephrosis/complications , Kidney/diagnostic imaging , Male , Rats , Rats, Wistar , Reperfusion Injury/complications , Ultrasonography
13.
Sci Rep ; 10(1): 16474, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020500

ABSTRACT

Better risk prediction and new molecular targets are key priorities in type 2 diabetes (T2D) research. Little is known about the role of the urine metabolome in predicting the risk of T2D. We aimed to use non-targeted urine metabolomics to discover biomarkers and improve risk prediction for T2D. Urine samples from two community cohorts of 1,424 adults were analyzed by ultra-performance liquid chromatography/mass spectrometry (UPLC-MS). In a discovery/replication design, three out of 62 annotated metabolites were associated with prevalent T2D, notably lower urine levels of 3-hydroxyundecanoyl-carnitine. In participants without diabetes at baseline, LASSO regression in the training set selected six metabolites that improved prediction of T2D beyond established risk factors risk over up to 12 years' follow-up in the test sample, from C-statistic 0.866 to 0.892. Our results in one of the largest non-targeted urinary metabolomics study to date demonstrate the role of the urine metabolome in identifying at-risk persons for T2D and suggest urine 3-hydroxyundecanoyl-carnitine as a biomarker candidate.


Subject(s)
Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/urine , Metabolome/physiology , Urine/physiology , Aged , Biomarkers/metabolism , Carnitine/urine , Case-Control Studies , Chromatography, Liquid/methods , Female , Humans , Incidence , Male , Metabolomics/methods , Prevalence , Risk Factors , Tandem Mass Spectrometry/methods
14.
Mol Genet Metab ; 131(3): 316-324, 2020 11.
Article in English | MEDLINE | ID: mdl-33127324

ABSTRACT

Propionic acidemia (PA) is caused by inherited deficiency of mitochondrial propionyl-CoA carboxylase (PCC) and results in significant neurodevelopmental and cardiac morbidity. However, relationships among therapeutic intervention, biochemical markers, and disease progression are poorly understood. Sixteen individuals homozygous for PCCB c.1606A > G (p.Asn536Asp) variant PA participated in a two-week suspension of therapy. Standard metabolic markers (plasma amino acids, blood spot methylcitrate, plasma/urine acylcarnitines, urine organic acids) were obtained before and after stopping treatment. These same markers were obtained in sixteen unaffected siblings. Echocardiography and electrocardiography were obtained from all subjects. We characterized the baseline biochemical phenotype of untreated PCCB c.1606A > G homozygotes and impact of treatment on PCC deficiency biomarkers. Therapeutic regimens varied widely. Suspension of therapy did not significantly alter branched chain amino acid levels, their alpha-ketoacid derivatives, or urine ketones. Carnitine supplementation significantly increased urine propionylcarnitine and its ratio to total carnitine. Methylcitrate blood spot and urine levels did not correlate with other biochemical measures or cardiac outcomes. Treatment of PCCB c.1606A > G homozygotes with protein restriction, prescription formula, and/or various dietary supplements has a limited effect on core biomarkers of PCC deficiency. These patients require further longitudinal study with standardized approaches to better understand the relationship between biomarkers and disease burden.


Subject(s)
Carbon-Carbon Ligases/genetics , Heart/physiopathology , Neurodevelopmental Disorders/genetics , Propionic Acidemia/genetics , Acids/blood , Acids/urine , Adolescent , Adult , Amino Acids/blood , Amino Acids/urine , Biomarkers/blood , Biomarkers/urine , Carbon-Carbon Ligases/blood , Carbon-Carbon Ligases/urine , Carnitine/blood , Carnitine/urine , Child , Child, Preschool , Echocardiography , Female , Heart/diagnostic imaging , Humans , Male , Mitochondria/genetics , Mitochondria/metabolism , Mutation/genetics , Neurodevelopmental Disorders/blood , Neurodevelopmental Disorders/diagnostic imaging , Neurodevelopmental Disorders/urine , Organic Chemicals/blood , Organic Chemicals/urine , Phenotype , Propionic Acidemia/blood , Propionic Acidemia/diagnostic imaging , Propionic Acidemia/urine , Young Adult
15.
Ann Biol Clin (Paris) ; 78(5): 537-546, 2020 10 01.
Article in French | MEDLINE | ID: mdl-32933890

ABSTRACT

Biochemical diagnosis of hereditary metabolic diseases requires the detection and simultaneous identification of a large number of compounds, hence the interest in metabolic profiles. Acylcarnitine profile allows the identification and quantification of more than thirty compounds. As part of the accreditation process for medical biology examinations according to standard NF EN ISO 15189, the group from SFEIM recommends an approach to accredit acylcarnitine profile. Validation parameters and recommendations are discussed in this specific framework.


Subject(s)
Carnitine/analogs & derivatives , Clinical Laboratory Services/standards , Diagnostic Tests, Routine/standards , Metabolism, Inborn Errors/diagnosis , Accreditation , Adult , Amniocentesis/methods , Amniocentesis/standards , Amniotic Fluid/chemistry , Blood Chemical Analysis/methods , Blood Chemical Analysis/standards , Blood Specimen Collection/methods , Blood Specimen Collection/standards , Carnitine/analysis , Carnitine/blood , Carnitine/urine , Child , Chromatography, Paper/standards , Female , Humans , Infant, Newborn , Male , Metabolism, Inborn Errors/blood , Metabolism, Inborn Errors/urine , Neonatal Screening/methods , Neonatal Screening/standards , Pre-Analytical Phase/methods , Pre-Analytical Phase/standards , Pregnancy , Prenatal Diagnosis/methods , Prenatal Diagnosis/standards , Urinalysis/methods , Urinalysis/standards , Urine Specimen Collection/methods , Urine Specimen Collection/standards
16.
Sci Rep ; 10(1): 15780, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978457

ABSTRACT

Infections with intestinal worms, such as Ascaris lumbricoides, affect hundreds of millions of people in all tropical and subtropical regions of the world. Through large-scale deworming programs, World Health Organization aims to reduce moderate-to-heavy intensity infections below 1%. Current diagnosis and monitoring of these control programs are solely based on the detection of worm eggs in stool. Here we describe how metabolome analysis was used to identify the A. lumbricoides-specific urine biomarker 2-methyl pentanoyl carnitine (2-MPC). This biomarker was found to be 85.7% accurate in determining infection and 90.5% accurate in determining a moderate-to-heavy infection. Our results also demonstrate that there is a correlation between 2-MPC levels in urine and A. lumbricoides DNA detected in stool. Furthermore, the levels of 2-MPC in urine were shown to rapidly and strongly decrease upon administration of a standard treatment (single oral dose of 400 mg albendazole). In an Ascaris suum infection model in pigs, it was found that, although 2-MPC levels were much lower compared to humans, there was a significant association between urinary 2-MPC levels and both worm counts (p = 0.023) and the number of eggs per gram (epg) counts (p < 0.001). This report demonstrates that urinary 2-MPC can be considered an A. lumbricoides-specific biomarker that can be used to monitor infection intensity.


Subject(s)
Ascariasis/urine , Ascaris lumbricoides/physiology , Carnitine/chemistry , Carnitine/urine , Animals , Ascariasis/metabolism , Biomarkers/urine , Metabolomics , Swine
17.
Nutrients ; 12(8)2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32727157

ABSTRACT

Fortification of human milk (HM) for preterm and very low-birth weight (VLBW) infants is a standard practice in most neonatal intensive care units. The optimal fortification strategy and the most suitable protein source for achieving better tolerance and growth rates for fortified infants are still being investigated. In a previous clinical trial, preterm and VLBW infants receiving supplementation of HM with experimental donkey milk-based fortifiers (D-HMF) showed decreased signs of feeding intolerance, including feeding interruptions, bilious gastric residuals and vomiting, with respect to infants receiving bovine milk-based fortifiers (B-HMF). In the present ancillary study, the urinary metabolome of infants fed B-HMF (n = 27) and D-HMF (n = 27) for 21 days was analyzed by 1H NMR spectroscopy at the beginning (T0) and at the end (T1) of the observation period. Results showed that most temporal changes in the metabolic responses were common in the two groups, providing indications of postnatal adaptation. The significantly higher excretion of galactose in D-HMF and of carnitine, choline, lysine and leucine in B-HMF at T1 were likely due to different formulations. In conclusion, isocaloric and isoproteic HM fortification may result in different metabolic patterns, as a consequence of the different quality of the nutrients provided by the fortifiers.


Subject(s)
Enteral Nutrition/methods , Food, Fortified , Infant, Premature/urine , Milk, Human/metabolism , Nutritional Status , Animals , Carnitine/urine , Cattle , Choline/urine , Equidae , Female , Galactose/urine , Humans , Infant, Newborn , Leucine/urine , Lysine/urine , Male , Metabolome , Milk, Human/chemistry
18.
Nutr Res ; 78: 72-81, 2020 06.
Article in English | MEDLINE | ID: mdl-32544852

ABSTRACT

Diets including red meat and other animal-sourced foods may increase proteolytic fermentation and microbial-generated trimethylamine (TMA) and, subsequently, trimethylamine-N-oxide (TMAO), a metabolite associated with increased risk of cardiovascular disease and dementia. It was hypothesized that compared to usual dietary intake, a maintenance-energy high-protein diet (HPD) would increase products of proteolytic fermentation, whereas adjunctive prebiotic, probiotic, and synbiotic supplementation may mitigate these effects. An exploratory aim was to determine the association of the relative abundance of the TMA-generating taxon, Emergencia timonensis, with serum and urinary TMAO. At 5 time points (usual dietary intake, HPD diet, HPD + prebiotic, HPD + probiotic, and HPD + synbiotic), urinary (24-hour) and serum metabolites and fecal microbiota profile of healthy older women (n = 20) were measured by liquid chromatography-tandem mass spectrometry and 16S rRNA gene amplicon sequencing analyses, respectively. The HPD induced increases in serum levels of l-carnitine, indoxyl sulfate, and phenylacetylglutamine but not TMAO or p-cresyl sulfate. Urinary excretion of l-carnitine, indoxyl sulfate, phenylacetylglutamine, and TMA increased with the HPD but not TMAO or p-cresyl sulfate. Most participants had undetectable levels of E.timonensis at baseline and only 50% during the HPD interventions, suggesting other taxa are responsible for the microbial generation of TMA in these individuals. An HPD diet with or without a prebiotic, probiotic, or synbiotic elicited an increase in products of proteolytic fermentation. The urinary l-carnitine response suggests that the additional dietary l-carnitine provided was primarily bioavailable, providing little substrate for microbial conversion to TMA and subsequent TMAO formation.


Subject(s)
Diet, High-Protein , Meat , Methylamines/blood , Methylamines/urine , Aged , Carnitine/blood , Carnitine/urine , Clostridiales/isolation & purification , Cresols/blood , Cresols/urine , Cross-Over Studies , Feces/microbiology , Female , Gastrointestinal Microbiome , Glutamine/analogs & derivatives , Glutamine/urine , Humans , Indican/blood , Indican/urine , Prebiotics , Probiotics , Sulfuric Acid Esters/blood , Sulfuric Acid Esters/urine , Synbiotics
19.
Am J Clin Nutr ; 112(2): 381-388, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32492168

ABSTRACT

BACKGROUND: Acylcarnitines (ACs) play a major role in fatty acid metabolism and are potential markers of metabolic dysfunction with higher blood concentrations reported in obese and diabetic individuals. Diet, and in particular red and processed meat intake, has been shown to influence AC concentrations but data on the effect of meat consumption on AC concentrations is limited. OBJECTIVES: To investigate the effect of red and processed meat intake on AC concentrations in plasma and urine using a randomized controlled trial with replication in an observational cohort. METHODS: In the randomized crossover trial, 12 volunteers successively consumed 2 different diets containing either pork or tofu for 3 d each. A panel of 44 ACs including several oxidized ACs was analyzed by LC-MS in plasma and urine samples collected after the 3-d period. ACs that were associated with pork intake were then measured in urine (n = 474) and serum samples (n = 451) from the European Prospective Investigation into Cancer and nutrition (EPIC) study and tested for associations with habitual red and processed meat intake derived from dietary questionnaires. RESULTS: In urine samples from the intervention study, pork intake was positively associated with concentrations of 18 short- and medium-chain ACs. Eleven of these were also positively associated with habitual red and processed meat intake in the EPIC cross-sectional study. In blood, C18:0 was positively associated with red meat intake in both the intervention study (q = 0.004, Student's t-test) and the cross-sectional study (q = 0.033, linear regression). CONCLUSIONS: AC concentrations in urine and blood were associated with red meat intake in both a highly controlled intervention study and in subjects of a cross-sectional study. Our data on the role of meat intake on this important pathway of fatty acid and energy metabolism may help understanding the role of red meat consumption in the etiology of some chronic diseases. This trial was registered at Clinicaltrials.gov as NCT03354130.


Subject(s)
Carnitine/analogs & derivatives , Meat Products/analysis , Adult , Animals , Carnitine/blood , Carnitine/chemistry , Carnitine/urine , Cross-Sectional Studies , Female , Humans , Male , Metabolomics , Prospective Studies , Swine
20.
Article in English | MEDLINE | ID: mdl-32590215

ABSTRACT

Our previous studies have shown that uterine fibroids are associated with nonylphenol (NP) exposure, and the changes of carnitines in critical reproductive tissues and body fluids could be used to indicate the female reproductive toxicity caused by NP exposure. In this work, on the basis of further clarifying the correlation between NP exposure level and uterine fibroids, the possibility of the urinary carnitine levels as a potential indicator of uterine fibroids caused by NP exposure was discussed. The urine samples were collected from 84 female volunteers: the control group of 34 healthy women without gynecological disease and 50 uterine fibroids patients, respectively. Methods were respectively established for the determination of NP and eight carnitines in human urine samples by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results showed that the NP level of uterine fibroids group was significantly higher than that of control group (P = 0.002), indicating that NP exposure was an important environmental factor in the occurrence of uterine fibroids. It was further found that in urine samples of the uterine fibroids group, the levels of L-Carnitine (C0), L-Acetyl-carnitine (C2), L-Octanoyl-carnitine (C8), Tetradecanoyl-carnitine (C14), Oleoyl-carnitine (C18:1) and Linoleoyl-carnitine (C18:2) had obviously increased compared with those in the control group (P < 0.001; < 0.001; < 0.001; = 0.003; < 0.001; = 0.010). The concentrations of L-Hexanoyl-carnitine (C6) and L-Palmitoyl-carnitine (C16) in the uterine fibroids group were also higher than those in the control group, although the difference was not statistically significant (P > 0.05). The results suggested that the changes in urinary carnitine levels might be a potential indicator to help to warn of the risk of uterine fibroids caused by NP exposure at the early stage.


Subject(s)
Carnitine/urine , Environmental Exposure , Leiomyoma , Phenols/adverse effects , Adult , Case-Control Studies , Chromatography, High Pressure Liquid/methods , Female , Humans , Leiomyoma/chemically induced , Leiomyoma/metabolism , Limit of Detection , Linear Models , Middle Aged , Reproducibility of Results , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...