Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.796
Filter
1.
Sci Rep ; 14(1): 10568, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719877

ABSTRACT

Early diagnosis and treatment of pre- and early-stage osteoarthritis (OA) is important. However, the cellular and cartilaginous changes occurring during these stages remain unclear. We investigated the histological and immunohistochemical changes over time between pre- and early-stage OA in a rat model of traumatic injury. Thirty-six male rats were divided into two groups, control and OA groups, based on destabilization of the medial meniscus. Histological and immunohistochemical analyses of articular cartilage were performed on days 1, 3, 7, 10, and 14 postoperatively. Cell density of proteins associated with cartilage degradation increased from postoperative day one. On postoperative day three, histological changes, including chondrocyte death, reduced matrix staining, and superficial fibrillation, were observed. Simultaneously, a compensatory increase in matrix staining was observed. The Osteoarthritis Research Society International score increased from postoperative day seven, indicating thinner cartilage. On postoperative day 10, the positive cell density decreased, whereas histological changes progressed with fissuring and matrix loss. The proteoglycan 4-positive cell density increased on postoperative day seven. These findings will help establish an experimental model and clarify the mechanism of the onset and progression of pre- and early-stage traumatic OA.


Subject(s)
Cartilage, Articular , Disease Models, Animal , Disease Progression , Immunohistochemistry , Osteoarthritis , Animals , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Male , Rats , Osteoarthritis/pathology , Osteoarthritis/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Rats, Sprague-Dawley , Proteoglycans/metabolism
2.
Medicine (Baltimore) ; 103(19): e38065, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728521

ABSTRACT

Knee varus (KV) deformity leads to abnormal forces in the different compartments of the joint cavity and abnormal mechanical loading thus leading to knee osteoarthritis (KOA). This study used computer-aided design to create 3-dimensional simulation models of KOA with varying varus angles to analyze stress distribution within the knee joint cavity using finite element analysis for different varus KOA models and to compare intra-articular loads among these models. Additionally, we developed a cartilage loading model of static KV deformity to correlate with dynamic clinical cases of cartilage injury. Different KV angle models were accurately simulated with computer-aided design, and the KV angles were divided into (0°, 3°, 6°, 9°, 12°, 15°, and 18°) 7 knee models, and then processed with finite element software, and the Von-Mises stress distribution and peak values of the cartilage of the femoral condyles, medial tibial plateau, and lateral plateau were obtained by simulating the human body weight in axial loading while performing the static extension position. Finally, intraoperative endoscopy visualization of cartilage injuries in clinical cases corresponding to KV deformity subgroups was combined to find cartilage loading and injury correlations. With increasing varus angle, there was a significant increase in lower limb mechanical axial inward excursion and peak Von-Mises stress in the medial interstitial compartment. Analysis of patients' clinical data demonstrated a significant correlation between varus deformity angle and cartilage damage in the knee, medial plateau, and patellofemoral intercompartment. Larger varus deformity angles could be associated with higher medial cartilage stress loads and increased cartilage damage in the corresponding peak stress area. When the varus angle exceeds 6°, there is an increased risk of cartilage damage, emphasizing the importance of early surgical correction to prevent further deformity and restore knee function.


Subject(s)
Cartilage, Articular , Finite Element Analysis , Knee Joint , Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/surgery , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Knee Joint/physiopathology , Male , Weight-Bearing/physiology , Biomechanical Phenomena , Middle Aged , Stress, Mechanical , Female , Computer Simulation , Aged
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732111

ABSTRACT

Glycosphingolipids (GSLs), a subtype of glycolipids containing sphingosine, are critical components of vertebrate plasma membranes, playing a pivotal role in cellular signaling and interactions. In human articular cartilage in osteoarthritis (OA), GSL expression is known notably to decrease. This review focuses on the roles of gangliosides, a specific type of GSL, in cartilage degeneration and regeneration, emphasizing their regulatory function in signal transduction. The expression of gangliosides, whether endogenous or augmented exogenously, is regulated at the enzymatic level, targeting specific glycosyltransferases. This regulation has significant implications for the composition of cell-surface gangliosides and their impact on signal transduction in chondrocytes and progenitor cells. Different levels of ganglioside expression can influence signaling pathways in various ways, potentially affecting cell properties, including malignancy. Moreover, gene manipulations against gangliosides have been shown to regulate cartilage metabolisms and chondrocyte differentiation in vivo and in vitro. This review highlights the potential of targeting gangliosides in the development of therapeutic strategies for osteoarthritis and cartilage injury and addresses promising directions for future research and treatment.


Subject(s)
Cartilage, Articular , Chondrocytes , Glycosphingolipids , Osteoarthritis , Regeneration , Humans , Osteoarthritis/therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Animals , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , Glycosphingolipids/metabolism , Signal Transduction , Gangliosides/metabolism
4.
Jt Dis Relat Surg ; 35(2): 330-339, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727112

ABSTRACT

OBJECTIVES: The study aims to investigate the relationship between the vastus medialis obliquus (VMO) muscle distal insertion features and patellar chondral lesion presence. PATIENTS AND METHODS: This cross-sectional study included a total of 100 patients (18 males, 82 females, mean age 67.2±7.1 years; range, 50 to 86 years) who underwent total knee arthroplasty (TKA). Radiological assessments, including merchant view and standing orthoroentgenograms, were conducted. The current osteoarthritis stage, varus angle, quadriceps angle (Q angle), patella-patellar tendon angle (P-PT angle), congruence angle, and sulcus angle were calculated. The VMO tendon length, muscle fiber angle, tendon insertion width measurements, and patellar chondral lesion localization data were obtained intraoperatively. Grouping was done according to the distal insertion width of the VMO tendon to the medial edge of the patella. The medial rim of the patella was divided into three equal-sized sectors. The first group (Group 1, n=31) consisted of patients who had an insertion from the quadriceps tendon into the upper one-third of the patella. The second group (Group 1, n=48) consisted of patients with a distal insertion expanding into the middle one-third of the patella. The third group (Group 3, n=21) consisted of patients who had a distal insertion extending into the distal third region of the medial patella margin. The patella joint surface was divided into sectors, and the presence and location of cartilage lesions were noted in detail. RESULTS: The mean tendon insertion width rate was 45.99±16.886% (range, 16.7 to 83.3%). The mean muscle fiber insertion angle was 51.85±11.67º (range, 20º to 80º). The mean tendon length was 12.45±3.289 (range, 4 to 20) mm. There was no significant difference between the mean age, weight, height, body mass index, BMI, fiber angle, tendon length, varus angle, Q angle, sulcus angle, and congruence angle data among the groups. In terms of the P-PT angle, Groups 1 and 2 had a significant relationship (p=0.008). No relationship was found between the mean fiber insertion angle, mean tendon length, or the presence of chondral lesions. There was a statistically significant difference among the groups regarding the presence of chondral lesions. The highest percentage of chondral lesion frequency was observed in Group 3 (95.24%), followed by Group 1 (90.3%) and Group 2 (89.6%), respectively. Compared to the other two groups, Group 3 had a higher average ratio of lesion areas per patient. CONCLUSION: Our study results demonstrate that the formation and localization of the patellar chondral lesions are affected by the insertion width type of the VMO muscle into the patella. Group 2-type insertion is associated with a lower lesion frequency rate than Groups 1 and 3.


Subject(s)
Patella , Quadriceps Muscle , Humans , Female , Male , Middle Aged , Aged , Quadriceps Muscle/pathology , Quadriceps Muscle/diagnostic imaging , Cross-Sectional Studies , Aged, 80 and over , Patella/pathology , Patella/diagnostic imaging , Patella/anatomy & histology , Arthroplasty, Replacement, Knee , Osteoarthritis, Knee/surgery , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/diagnostic imaging , Cartilage, Articular/pathology , Cartilage, Articular/diagnostic imaging , Radiography , Knee Joint/pathology , Knee Joint/surgery , Knee Joint/diagnostic imaging
5.
Jt Dis Relat Surg ; 35(2): 361-367, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38727116

ABSTRACT

OBJECTIVES: This study aims to compare the radiological, biomechanical, and histopathological results of microfracture treatment and osteochondral damage repair treatment with a new scaffold product produced by the three-dimensional (3D) bioprinting method containing gelatin-hyaluronic acid-alginate in rabbits with osteochondral damage. MATERIALS AND METHODS: A new 3D bioprinted scaffold consisting of gelatin, hyaluronic acid, and alginate designed by us was implanted into the osteochondral defect created in the femoral trochlea of 10 rabbits. By randomization, it was determined which side of 10 rabbits would be repaired with a 3D bioprinted scaffold, and microfracture treatment was applied to the other knees of the rabbits. After six months of follow-up, the rabbits were sacrificed. The results of both treatment groups were compared radiologically, biomechanically, and histopathologically. RESULTS: None of the rabbits experienced any complications. The magnetic resonance imaging evaluation showed that all osteochondral defect areas were integrated with healthy cartilage in both groups. There was no significant difference between the groups in the biomechanical load test (p=0.579). No statistically significant difference was detected in the histological examination using the modified Wakitani scores (p=0.731). CONCLUSION: Our study results showed that 3D bioprinted scaffolds exhibited comparable radiological, biomechanical, and histological properties to the conventional microfracture technique for osteochondral defect treatment.


Subject(s)
Alginates , Bioprinting , Cartilage, Articular , Gelatin , Hyaluronic Acid , Knee Joint , Printing, Three-Dimensional , Tissue Scaffolds , Animals , Rabbits , Alginates/chemistry , Gelatin/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/therapeutic use , Tissue Scaffolds/chemistry , Cartilage, Articular/pathology , Cartilage, Articular/injuries , Cartilage, Articular/surgery , Knee Joint/surgery , Knee Joint/pathology , Bioprinting/methods , Disease Models, Animal , Biomechanical Phenomena , Magnetic Resonance Imaging , Arthroplasty, Subchondral/methods
6.
BMC Musculoskelet Disord ; 25(1): 398, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773475

ABSTRACT

OBJECTIVE: to investigate the association between cartilage lesion-related features observed in knee osteoarthritis (OA) patients' first MRI examination and incident knee surgery within 5 years. Additionally, to assess the predictive value of these features for the incident knee surgery. METHODS: We identified patients diagnosed with knee OA and treated at our institution between January 2015 and January 2018, and retrieved their baseline clinical data and first MRI examination films from the information system. Next, we proceeded to determine joint space narrowing grade, cartilage lesion size grade, cartilage full-thickness loss grade and cartilage lesion sum score for the medial and lateral compartments, respectively. Generalized linear regression models examined the association of these features with 5-year incident knee surgery. Positive and negative predictive values (PPVs and NPVs) were determined referring to 5-year incident knee surgery. RESULTS: Totally, 878 participants (knees) were found eligible to form the study population. Within the 5 years, surgery was performed on 61 knees. None of the cartilage-related features had been found significantly associated with incident surgery. The results were similar for medial and lateral compartments. The PPVs were low for all the features. CONCLUSIONS: Among symptomatic clinically diagnosed OA knees, cartilage lesions observed in the first MRI examinations were not found to be associated with the occurrence of joint surgery within a 5-year period. All these cartilage-related features appear to have no additional value in predicting 5-year incident joint surgery.


Subject(s)
Cartilage, Articular , Knee Joint , Magnetic Resonance Imaging , Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/surgery , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/epidemiology , Female , Male , Retrospective Studies , Middle Aged , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Cartilage, Articular/surgery , Aged , Knee Joint/surgery , Knee Joint/diagnostic imaging , Knee Joint/pathology , Arthroplasty, Replacement, Knee/statistics & numerical data
7.
Cell Mol Biol Lett ; 29(1): 64, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698311

ABSTRACT

Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Inflammation , Osteoarthritis , Humans , Osteoarthritis/genetics , Osteoarthritis/therapy , CRISPR-Cas Systems/genetics , Inflammation/genetics , Gene Editing/methods , Animals , Genetic Therapy/methods , Cartilage/metabolism , Cartilage/pathology , Cellular Senescence/genetics , Cartilage, Articular/pathology , Cartilage, Articular/metabolism
8.
Nat Aging ; 4(5): 664-680, 2024 May.
Article in English | MEDLINE | ID: mdl-38760576

ABSTRACT

Hyaline cartilage fibrosis is typically considered an end-stage pathology of osteoarthritis (OA), which results in changes to the extracellular matrix. However, the mechanism behind this is largely unclear. Here, we found that the RNA helicase DDX5 was dramatically downregulated during the progression of OA. DDX5 deficiency increased fibrosis phenotype by upregulating COL1 expression and downregulating COL2 expression. In addition, loss of DDX5 aggravated cartilage degradation by inducing the production of cartilage-degrading enzymes. Chondrocyte-specific deletion of Ddx5 led to more severe cartilage lesions in the mouse OA model. Mechanistically, weakened DDX5 resulted in abundance of the Fn1-AS-WT and Plod2-AS-WT transcripts, which promoted expression of fibrosis-related genes (Col1, Acta2) and extracellular matrix degradation genes (Mmp13, Nos2 and so on), respectively. Additionally, loss of DDX5 prevented the unfolding Col2 promoter G-quadruplex, thereby reducing COL2 production. Together, our data suggest that strategies aimed at the upregulation of DDX5 hold significant potential for the treatment of cartilage fibrosis and degradation in OA.


Subject(s)
Alternative Splicing , DEAD-box RNA Helicases , Fibrosis , G-Quadruplexes , Osteoarthritis , Animals , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Mice , Osteoarthritis/pathology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Fibrosis/metabolism , Fibrosis/genetics , Fibrosis/pathology , Humans , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Disease Models, Animal , Male
9.
Sci Rep ; 14(1): 8046, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580748

ABSTRACT

Osteoarthritis is a common chronic disease and major cause of disability and chronic pain in ageing populations. In this pathology, the entire joint is involved, and the regeneration of articular cartilage still remains one of the main challenges. Here, we investigated the molecular mechanisms underlying cartilage regeneration in young mice using a full-thickness cartilage injury (FTCI) model. FTCI-induced cartilage defects were created in the femoral trochlea of young and adult C57BL/6 mice. To identify key molecules and pathways involved in the early response to cartilage injury, we performed RNA sequencing (RNA-seq) analysis of cartilage RNA at 3 days after injury. Young mice showed superior cartilage regeneration compared to adult mice after cartilage injury. RNA-seq analysis revealed significant upregulation of genes associated with the immune response, particularly in the IFN-γ signaling pathway and qRT-PCR analysis showed macrophage polarization in the early phase of cartilage regeneration (3 days) in young mice after injury, which might promote the removal of damaged or necrotic cells and initiate cartilage regeneration in response to injury. IFN-γR1- and IFN-γ-deficient mice exhibited impaired cartilage regeneration following cartilage injury. DMM-induced and spontaneous OA phenotypes were exacerbated in IFN-γR1-/- mice than in wild-type mice. Our data support the hypothesis that IFN-γ signaling is necessary for cartilage regeneration, as well as for the amelioration of post-traumatic and age-induced OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Mice , Cartilage, Articular/pathology , Disease Models, Animal , Interferon-gamma/genetics , Mice, Inbred C57BL , Osteoarthritis/metabolism , Regeneration , Signal Transduction
10.
Eur Rev Med Pharmacol Sci ; 28(7): 2670-2676, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38639506

ABSTRACT

BACKGROUND: Synovial chondromatosis is a non-malignant synovial disorder characterized by the presence of cartilage formation within the synovial membrane, leading to the emergence of multiple cartilaginous nodules that may be either attached or unattached. The presence of this anatomical feature is frequently observed in articulations such as the knee, hip, elbow, and ankle. CASE REPORT: In this study, we present a case of synovial chondromatosis in the knee joint of a healthy male in his early 60s. Notably, the patient exhibited the simultaneous presence of 87 large loose bodies. The occurrence of a substantial quantity of unattached entities of notable dimensions within the joint is highly uncommon. CONCLUSIONS: The patient had several synovial chondromas, a rare disease. Synovial chondromatosis is a benign disorder; however, growing synovium can cause pyogenic cartilage nodules. Most loose bodies in joints can abrade and degenerate articular cartilage, causing long-term discomfort. Thus, an early-stage procedure to remove loose bodies and carefully excise synovial tissue is necessary to treat this condition.


Subject(s)
Cartilage, Articular , Chondromatosis, Synovial , Humans , Male , Chondromatosis, Synovial/diagnostic imaging , Chondromatosis, Synovial/surgery , Chondromatosis, Synovial/pathology , Synovial Membrane/pathology , Knee Joint/diagnostic imaging , Knee Joint/surgery , Knee Joint/pathology , Cartilage, Articular/pathology , Ankle Joint
11.
Foot Ankle Clin ; 29(2): 213-224, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679434

ABSTRACT

Osteochondral lesions of the talus (OLTs) are the lesions that affect the articular cartilage and the subchondral bone of the talus. Symptoms develop between 6 and 12 months after the index trauma and are associated with degradation of quality of life. Two-thirds of the lesions (73%) are located on the medial part of the talus, 28% of the lesions are posteromedial, and 31% of the lesions are centromedial. Currently, OLT of up to 100 mm2 can behave in a more indolent condition, and above that area, the defect tends to transmit more shearing forces to adjacent cartilage and is more symptomatic.


Subject(s)
Cartilage, Articular , Quality of Life , Talus , Humans , Talus/injuries , Talus/pathology , Cartilage, Articular/pathology , Cartilage, Articular/injuries , Osteochondritis/surgery
12.
Toxicon ; 243: 107735, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38670500

ABSTRACT

T-2 toxin is one of the most toxic mycotoxins. People are primarily exposed to T-2 toxin through the consumption of spoiled food, typically over extended periods and at low doses. T-2 toxin can cause damage to articular cartilage. However, the exact mechanism is not fully understood. In this experiment, 36 male rats were divided into a control group, a solvent control group, and a T-2 toxin group. The rats in the T-2 toxin group were orally administered the toxin at a dosage of 100 ng/g BW/Day. The damage to articular cartilage and key proteins associated with the autophagy process and the HIF-1α/AMPK signaling axis was assessed at 4, 8, 12, and 16 weeks. Our findings indicate that T-2 toxin-induced damage to articular cartilage in rats coincided with impaired autophagy linked to the HIF-1α/AMPK signaling pathway. This study offers novel insights into the precise mechanism underlying T-2 toxin-induced damage to articular cartilage.


Subject(s)
AMP-Activated Protein Kinases , Autophagy , Cartilage, Articular , Hypoxia-Inducible Factor 1, alpha Subunit , Rats, Sprague-Dawley , Signal Transduction , T-2 Toxin , Animals , T-2 Toxin/toxicity , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Male , Autophagy/drug effects , Signal Transduction/drug effects , Rats , AMP-Activated Protein Kinases/metabolism
13.
ACS Biomater Sci Eng ; 10(5): 3242-3254, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38632852

ABSTRACT

Osteoarthritis is characterized by enzymatic breakdown of the articular cartilage via the disruption of chondrocyte homeostasis, ultimately resulting in the destruction of the articular surface. Decades of research have highlighted the importance of inflammation in osteoarthritis progression, with inflammatory cytokines shifting resident chondrocytes into a pro-catabolic state. Inflammation can result in poor outcomes for cells implanted for cartilage regeneration. Therefore, a method to promote the growth of new cartilage and protect the implanted cells from the pro-inflammatory cytokines found in the joint space is required. In this study, we fabricate two gel types: polymer network hydrogels composed of chondroitin sulfate and hyaluronic acid, glycosaminoglycans (GAGs) known for their anti-inflammatory and prochondrogenic activity, and interpenetrating networks of GAGs and collagen I. Compared to a collagen-only hydrogel, which does not provide an anti-inflammatory stimulus, chondrocytes in GAG hydrogels result in reduced production of pro-inflammatory cytokines and enzymes as well as preservation of collagen II and aggrecan expression. Overall, GAG-based hydrogels have the potential to promote cartilage regeneration under pro-inflammatory conditions. Further, the data have implications for the use of GAGs to generally support tissue engineering in pro-inflammatory environments.


Subject(s)
Chondrocytes , Chondroitin Sulfates , Hyaluronic Acid , Hydrogels , Inflammation , Hydrogels/chemistry , Hydrogels/pharmacology , Chondrocytes/drug effects , Chondrocytes/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Chondroitin Sulfates/pharmacology , Chondroitin Sulfates/chemistry , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/pathology , Animals , Cartilage, Articular/metabolism , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cytokines/metabolism , Aggrecans/metabolism , Tissue Engineering/methods , Osteoarthritis/pathology , Osteoarthritis/drug therapy , Osteoarthritis/metabolism
14.
Magn Reson Imaging ; 110: 210-217, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38679298

ABSTRACT

PURPOSE: We aimed to investigate the relationship between quantitative evaluation by compositional MRI, including T1ρ, and histological and macroscopic assessments, to verify the validity of compositional MRI, and examine the relationship between compositional MRI evaluation reconstructed in three dimensions (3D) and histological and visual assessments. METHOD: Twenty-seven patients with knee osteoarthritis underwent T1ρ and T2 magnetic resonance imaging (MRI). Histological and gross tissue evaluations were performed on the excised bone sections of total knee arthroplasty. Semi-quantitative histological evaluation of tissue changes were assessed by measuring the optical density of digitally captured safranin O-stained and Collagen type II antibody-stained paraffin sections. Macroscopic cartilage severity was determined on a 5-grade scale (G0-G5). T1ρ and T2 values (3D and 2D), and their correlation with each of these parameters were investigated. RESULTS: 3D T1 ρ is negatively correlated with histological evaluations and positively correlated with visual assessments. Only 3D T1ρ values correlated with histological quantitative evaluation (Safranin-O staining; r = -0.53, P = 0.014, Collagen type II antibody staining; r = -0.60, P = 0.019). 2D T1ρ and 3D, 2D T2 values did not correlate with histological evaluation results. Macroscopic cartilage severity grade correlated with all T1ρ and T2 values (3D T1ρ; r = 0.61, P < 0.001, 2D T1ρ; r = 0.52, P < 0.001, 3D T2; r = 0.33, P = 0.045, 2D T2; r = 0.41, P = 0.01). CONCLUSIONS: 3D T1ρ mapping reflects the changes in the molecular structure of the cartilage matrix that occur in arthropathic changes and may be an effective tool for detecting cartilage degeneration.


Subject(s)
Cartilage, Articular , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Osteoarthritis, Knee , Humans , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Magnetic Resonance Imaging/methods , Male , Female , Imaging, Three-Dimensional/methods , Middle Aged , Aged , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/pathology , Reproducibility of Results , Knee Joint/diagnostic imaging , Knee Joint/pathology , Image Interpretation, Computer-Assisted/methods
15.
Foot Ankle Clin ; 29(2): 185-192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679432

ABSTRACT

The current concepts thoroughly highlight the ankle cartilage cascade focusing on the different stages and the different etiologic factors that can introduce a patient into the cascade. Moreover, the authors will provide the reader with a comprehensive overview of the types of lesions that may present as symptomatic, asymptomatic, and dangerous for progression into osteoarthritis, and the authors supply the reader with considerations and directions for future clinical implications and scientific endeavors.


Subject(s)
Ankle Injuries , Cartilage, Articular , Humans , Ankle Injuries/epidemiology , Ankle Injuries/pathology , Ankle Joint/pathology , Cartilage Diseases , Cartilage, Articular/pathology , Incidence , Osteoarthritis/etiology , Terminology as Topic
16.
Int Immunopharmacol ; 133: 112005, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38626543

ABSTRACT

BACKGROUND: Because the pathophysiology of osteoarthritis (OA) has not been fully elucidated, targeted treatments are lacking. In this study, we assessed the role and underlying mechanism apolipoprotein D (APOD) on the development of OA. METHODS: To establish an in vitro OA model, we extracted primary chondrocytes from the cartilage of C57BL/6 mice and stimulated the chondrocytes with IL-1ß. After APOD intervention or incubation with an overexpressing plasmid, we detected inflammatory-related markers using RT-qPCR, Western blotting, and ELISA. To detect apoptosis and autophagy-related markers, we used flow cytometry, immunofluorescence, and transmission electron microscopy (TEM). Finally, we measured the level of oxidative stress. We also used RNA-seq to identify the APOD-regulated downstream signaling pathways. We used an in vivo mice OA model of the anterior cruciate ligament transection (ACLT) and administered intra-articular adenovirus overexpressing APOD. To examine cartilage damage severity, we used immunohistochemical analysis (IHC), micro-CT, scanning electron microscopy (SEM), and Safranin O-fast green staining. RESULTS: Our results showed that APOD inhibited chondrocyte inflammation, degeneration, and apoptosis induced by IL-1ß. Additionally, APOD reversed autophagy inhibition and oxidative stress and also blocked activation of the PI3K/AKT/mTOR signaling pathway induced by IL-1ß. Finally, overexpression of the APOD gene through adenovirus was sufficient to mitigate OA progression. CONCLUSIONS: Our findings revealed that APOD had a chondroprotective role in OA progression by the PI3K/AKT/mTOR signaling pathway.


Subject(s)
Apolipoproteins D , Chondrocytes , Mice, Inbred C57BL , Osteoarthritis, Knee , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Chondrocytes/metabolism , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/metabolism , Mice , Phosphatidylinositol 3-Kinases/metabolism , Apolipoproteins D/genetics , Apolipoproteins D/metabolism , Male , Cells, Cultured , Apoptosis , Autophagy , Disease Models, Animal , Interleukin-1beta/metabolism , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Oxidative Stress
17.
Int Immunopharmacol ; 133: 112010, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38636375

ABSTRACT

BACKGROUND: Chondrocyte ferroptosis plays a critical role in the pathogenesis of osteoarthritis (OA), regulated by the SLC7A11/GPX4 signaling pathway. Icariin (ICA), a flavonoid glycoside, exhibits strong anti-inflammatory and antioxidant activities. This study investigated whether ICA could modulate the SLC7A11/GPX4 signaling to inhibit chondrocyte ferroptosis and alleviate OA. PURPOSE: The objective was to explore the impact of ICA on chondrocyte ferroptosis in OA and its modulation of the SLC7A11/GPX4 signaling pathway. METHODS: The anti-ferroptosis effects of ICA were evaluated in an interleukin-1ß (IL-1ß)-treated SW1353 cell model, using Ferrostatin-1 (Fer-1) and Erastin (Era) as ferroptosis inhibitor and inducer, respectively, along with GPX4 knockdown via lentivirus-based shRNA. Additionally, the therapeutic efficacy of ICA on OA-related articular cartilage damage was assessed in rats through histopathology and immunohistochemistry (IHC). RESULTS: IL-1ß treatment upregulated the expression of OA-associated matrix metalloproteinases (MMP3 and MMP1), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-5), and increased intracellular ROS, lipid ROS, and MDA levels while downregulating collagen II and SOX9 expression in SW1353 cells. ICA treatment countered the IL-1ß-induced upregulation of MMPs and ADAMTS-5, restored collagen II and SOX9 expression, and reduced intracellular ROS, lipid ROS, and MDA levels. Furthermore, IL-1ß upregulated P53 but downregulated SLC7A11 and GPX4 expression in SW1353 cells, effects that were mitigated by ICA or Fer-1 treatment. Significantly, ICA also alleviated Era-induced ferroptosis, whereas it had no effect on GPX4-silenced SW1353 cells. In vivo, ICA treatment reduced articular cartilage damage in OA rats by partially restoring collagen II and GPX4 expression, inhibiting cartilage extracellular matrix (ECM) degradation and chondrocyte ferroptosis. CONCLUSION: ICA treatment mitigated chondrocyte ferroptosis and articular cartilage damage by enhancing the SLC7A11/GPX4 signaling, suggesting its potential as a therapeutic agent for OA interventions.


Subject(s)
Amino Acid Transport System y+ , Chondrocytes , Ferroptosis , Flavonoids , Osteoarthritis , Phospholipid Hydroperoxide Glutathione Peroxidase , Rats, Sprague-Dawley , Signal Transduction , Ferroptosis/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Animals , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Signal Transduction/drug effects , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Rats , Male , Interleukin-1beta/metabolism , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cell Line
18.
J Cell Mol Med ; 28(8): e18327, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38661437

ABSTRACT

Cartilage defects in the knee are often associated with the progression of degenerative osteoarthritis (OA), and cartilage repair is a useful strategy for managing this disease. However, cartilage repair is challenging because of the unique environment within the tissue. Recently, stem cell-based therapies have shed new light on this issue. In this study, we prepared exosomes (EXOs) from cartilage stem/progenitor cells (CSPCs) and found that treatment with EXOs increased the viability, migration, and proliferation of cultured primary chondrocytes. In a subacute OA rat model, the application of EXOs facilitated cartilage regeneration as evidenced by histological staining. Exosomal protein analysis together with bioinformatics suggested that cyclin-dependent kinase 9 (CDK9) is a key factor for chondrocyte growth and migration. Functional studies confirmed this prediction, that is, inhibiting CDK9 reduced the beneficial effects induced by EXOs in primary chondrocytes; while overexpression of CDK9 recapitulated the EXOs-induced phenotypes. RNA-Seq data showed that a set of genes involved in cell growth and migration were up-regulated by EXOs in chondrocytes. These changes could be partially reproduced by CDK9 overexpression. Overall, our data suggest that EXOs derived from primary CSPCs hold great therapeutic potential for treating cartilage defect-associated disorders such as degenerative OA, and that CDK9 is a key factor in this process.


Subject(s)
Cartilage, Articular , Cell Proliferation , Chondrocytes , Disease Models, Animal , Exosomes , Animals , Exosomes/metabolism , Rats , Chondrocytes/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Stem Cells/metabolism , Stem Cells/cytology , Cell Movement , Rats, Sprague-Dawley , Cyclin-Dependent Kinase 9/metabolism , Cyclin-Dependent Kinase 9/genetics , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/therapy , Male , Cells, Cultured , Regeneration , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/therapy
19.
Exp Gerontol ; 190: 112413, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38570055

ABSTRACT

BACKGROUND: Osteoporotic osteoarthritis (OP-OA) is a severe pathological form of OA, urgently requiring precise management strategies and more efficient interventions. Emodin (Emo), an effective ingredient found in the traditional Chinese medicine rhubarb, has been dEmonstrated to promote osteogenesis and inhibit extracellular matrix degradation. In this study, we aimed to investigate the interventional effects of Emo on the subchondral bone and cartilage of the knee joints in OP-OA model rats. METHODS: Thirty-two SD rats were randomly and equally divided into sham, OP-OA, Emo low-dose, and Emo high-dose groups. Micro-CT scanning was conducted to examine the bone microstructure of the rat knee joints. H&E and Safranin O and Fast Green staining (SO&FG) were performed for the pathomorphological evaluation of the rat cartilage tissues. ELISA was used to estimate the rat serum expression levels of inflammatory factors, including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Additionally, the CCK-8 assay was utilized for determining the viability of Emo-treated BMSCs. Western blot and real-time PCR analyses were also employed to measure the bone formation indexes and cartilage synthesis and decomposition indexes. Lastly, the osteogenic and chondrogenic differentiation efficiency of the BMSCs was investigated via Alizarin Red and Alcian Blue staining. RESULTS: Emo intervention alleviated the bone microstructural disruption of the subchondral bone and articular cartilage in the OP-OA rats and up-regulated the expression of bone and cartilage anabolic metabolism indicators, decreased the expression of cartilage catabolism indicators, and diminished the expression of inflammatory factors in the rat serum (P<0.05). Furthermore, Emo reversed the decline in the osteogenic and chondrogenic differentiation ability of the BMSCs (P<0.05). CONCLUSION: Emo intervention mitigates bone loss and cartilage damage in OP-OA rats and promotes the osteogenic and chondrogenic differentiation of BMSCs.


Subject(s)
Cartilage, Articular , Emodin , Osteoporosis , Rats, Sprague-Dawley , X-Ray Microtomography , Animals , Emodin/pharmacology , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Rats , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Female , Disease Models, Animal , Osteogenesis/drug effects , Mesenchymal Stem Cells/drug effects , Tumor Necrosis Factor-alpha/metabolism , Interleukin-1beta/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/pathology
20.
Mol Med ; 30(1): 55, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664616

ABSTRACT

BACKGROUND: Osteoarthritis (OA), the most common joint disease, is linked with chondrocyte apoptosis and extracellular matrix (ECM) degradation. Charged multivesicular body protein 5 (CHMP5), a member of the multivesicular body, has been reported to serve as an anti-apoptotic protein to participate in leukemia development. However, the effects of CHMP5 on apoptosis and ECM degradation in OA remain unclear. METHODS: In this study, quantitative proteomics was performed to analyze differential proteins between normal and OA patient articular cartilages. The OA mouse model was constructed by the destabilization of the medial meniscus (DMM). In vitro, interleukin-1 beta (IL-1ß) was used to induce OA in human chondrocytes. CHMP5 overexpression and silencing vectors were created using an adenovirus system. The effects of CHMP5 on IL-1ß-induced chondrocyte apoptosis were investigated by CCK-8, flow cytometry, and western blot. The effects on ECM degradation were examined by western blot and immunofluorescence. The potential mechanism was explored by western blot and Co-IP assays. RESULTS: Downregulated CHMP5 was identified by proteomics in OA patient cartilages, which was verified in human and mouse articular cartilages. CHMP5 overexpression repressed cell apoptosis and ECM degradation in OA chondrocytes. However, silencing CHMP5 exacerbated OA chondrocyte apoptosis and ECM degradation. Furthermore, we found that the protective effect of CHMP5 against OA was involved in nuclear factor kappa B (NF-κB) signaling pathway. CONCLUSIONS: This study demonstrated that CHMP5 repressed IL-1ß-induced chondrocyte apoptosis and ECM degradation and blocked NF-κB activation. It was shown that CHMP5 might be a novel potential therapeutic target for OA in the future.


Subject(s)
Apoptosis , Chondrocytes , Extracellular Matrix , Hyaluronoglucosaminidase , NF-kappa B , Osteoarthritis , Signal Transduction , Animals , Humans , Male , Mice , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , Chondrocytes/pathology , Disease Models, Animal , Extracellular Matrix/metabolism , Interleukin-1beta/metabolism , NF-kappa B/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...