Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.112
Filter
1.
Acta Biomater ; 179: 121-129, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38494083

ABSTRACT

Reconstruction of the human auricle remains a formidable challenge for plastic surgeons. Autologous costal cartilage grafts and alloplastic implants are technically challenging, and aesthetic and/or tactile outcomes are frequently suboptimal. Using a small animal "bioreactor", we have bioengineered full-scale ears utilizing decellularized cartilage xenograft placed within a 3D-printed external auricular scaffold that mimics the size, shape, and biomechanical properties of the native human auricle. The full-scale polylactic acid ear scaffolds were 3D-printed based upon data acquired from 3D photogrammetry of an adult ear. Ovine costal cartilage was processed either through mincing (1 mm3) or zesting (< 0.5 mm3), and then fully decellularized and sterilized. At explantation, both the minced and zested neoears maintained the size and contour complexities of the scaffold topography with steady tissue ingrowth through 6 months in vivo. A mild inflammatory infiltrate at 3 months was replaced by homogenous fibrovascular tissue ingrowth enveloping individual cartilage pieces at 6 months. All ear constructs were pliable, and the elasticity was confirmed by biomechanical analysis. Longer-term studies of the neoears with faster degrading biomaterials will be warranted for future clinical application. STATEMENT OF SIGNIFICANCE: Accurate reconstruction of the human auricle has always been a formidable challenge to plastic surgeons. In this article, we have bioengineered full-scale ears utilizing decellularized cartilage xenograft placed within a 3D-printed external auricular scaffold that mimic the size, shape, and biomechanical properties of the native human auricle. Longer-term studies of the neoears with faster degrading biomaterials will be warranted for future clinical application.


Subject(s)
Ear Auricle , Heterografts , Printing, Three-Dimensional , Tissue Scaffolds , Tissue Scaffolds/chemistry , Animals , Sheep , Humans , Tissue Engineering/methods , Ear Cartilage/physiology , Bioengineering/methods , Cartilage/physiology
2.
Curr Osteoporos Rep ; 22(2): 290-298, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38358401

ABSTRACT

PURPOSE OF REVIEW: Interfacial tissue exists throughout the body at cartilage-to-bone (osteochondral interface) and tendon-to-bone (enthesis) interfaces. Healing of interfacial tissues is a current challenge in regenerative approaches because the interface plays a critical role in stabilizing and distributing the mechanical stress between soft tissues (e.g., cartilage and tendon) and bone. The purpose of this review is to identify new directions in the field of interfacial tissue development and physiology that can guide future regenerative strategies for improving post-injury healing. RECENT FINDINGS: Cues from interfacial tissue development may guide regeneration including biological cues such as cell phenotype and growth factor signaling; structural cues such as extracellular matrix (ECM) deposition, ECM, and cell alignment; and mechanical cues such as compression, tension, shear, and the stiffness of the cellular microenvironment. In this review, we explore new discoveries in the field of interfacial biology related to ECM remodeling, cellular metabolism, and fate. Based on emergent findings across multiple disciplines, we lay out a framework for future innovations in the design of engineered strategies for interface regeneration. Many of the key mechanisms essential for interfacial tissue development and adaptation have high potential for improving outcomes in the clinic.


Subject(s)
Bone Regeneration , Extracellular Matrix , Humans , Extracellular Matrix/physiology , Bone Regeneration/physiology , Bone and Bones/physiology , Tendons/physiology , Tissue Engineering/methods , Cartilage/physiology , Regeneration/physiology , Wound Healing/physiology
3.
Nat Commun ; 15(1): 1488, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374253

ABSTRACT

The assembly of oligopeptide and polypeptide molecules can reconstruct various ordered advanced structures through intermolecular interactions to achieve protein-like biofunction. Here, we develop a "molecular velcro"-inspired peptide and gelatin co-assembly strategy, in which amphiphilic supramolecular tripeptides are attached to the molecular chain of gelatin methacryloyl via intra-/intermolecular interactions. We perform molecular docking and dynamics simulations to demonstrate the feasibility of this strategy and reveal the advanced structural transition of the co-assembled hydrogel, which brings more ordered ß-sheet content and 10-fold or more compressive strength improvement. We conduct transcriptome analysis to reveal the role of co-assembled hydrogel in promoting cell proliferation and chondrogenic differentiation. Subcutaneous implantation evaluation confirms considerably reduced inflammatory responses and immunogenicity in comparison with type I collagen. We demonstrate that bone mesenchymal stem cells-laden co-assembled hydrogel can be stably fixed in rabbit knee joint defects by photocuring, which significantly facilitates hyaline cartilage regeneration after three months. This co-assembly strategy provides an approach for developing cartilage regenerative biomaterials.


Subject(s)
Cartilage, Articular , Cartilage , Animals , Rabbits , Molecular Docking Simulation , Cartilage/physiology , Hydrogels/chemistry , Biocompatible Materials/chemistry , Cell Differentiation , Peptides , Protein Conformation , Tissue Engineering , Chondrogenesis
4.
Mater Horiz ; 11(6): 1465-1483, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38221872

ABSTRACT

Osteoarthritis (OA) is a common joint disease known for cartilage degeneration, leading to a substantial burden on individuals and society due to its high disability rate. However, current clinical treatments for cartilage defects remain unsatisfactory due to the unclear mechanisms underlying cartilage regeneration. Tissue engineering hydrogels have emerged as an attractive approach in cartilage repair. Recent research studies have indicated that stem cells can sense the mechanical strength of hydrogels, thereby regulating their differentiation fate. In this study, we present the groundbreaking construction of dual-network DNA-silk fibroin (SF) hydrogels with controllable surface rigidity. The supramolecular networks, formed through DNA base-pairing, induce the development of ß-sheet structures by constraining and aggregating SF molecules. Subsequently, SF was cross-linked via horseradish peroxidase (HRP)-mediated enzyme reactions to form the second network. Experimental results demonstrated a positive correlation between the surface rigidity of dual-network DNA-SF hydrogels and the DNA content. Interestingly, it was observed that dual-network DNA-SF hydrogels with moderate surface rigidity exhibited the highest effectiveness in facilitating the migration of bone marrow mesenchymal stem cells (BMSCs) and their chondrogenic differentiation. Transcriptome sequencing further confirmed that dual-network DNA-SF hydrogels primarily enhanced chondrogenic differentiation of BMSCs by upregulating the Wnt and TGF-ß signaling pathways while accelerating collagen II synthesis. Furthermore, in vivo studies revealed that dual-network DNA-SF hydrogels with moderate surface rigidity significantly accelerated cartilage regeneration. In summary, the dual-network DNA-SF hydrogels represent a promising and novel therapeutic strategy for cartilage regeneration.


Subject(s)
Cartilage Diseases , Fibroins , Humans , Fibroins/chemistry , Hydrogels , Cartilage/physiology , Tissue Engineering/methods , Cell Differentiation/genetics
5.
Nat Commun ; 14(1): 7771, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012159

ABSTRACT

Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration.


Subject(s)
Hydrogels , Osteoarthritis , Humans , Hydrogels/chemistry , Drug Liberation , Cartilage/physiology
6.
Biomed Mater ; 18(6)2023 10 24.
Article in English | MEDLINE | ID: mdl-37827163

ABSTRACT

With the advancement of tissue engineering technologies, implantable materials have been developed for use in facial plastic surgery, including auriculoplasty and rhinoplasty. Tissue-engineered cartilage comprising only cells and cell-produced extracellular matrix is considered valuable as there is no need to consider problems associated with scaffold absorption or immune responses commonly related to conventional artificial materials. However, it is exceedingly difficult to produce large-sized complex shapes of cartilage without the use of scaffolds. In this study, we describe the production of shape-designable cartilage using a novel cell self-aggregation technique (CAT) and chondroprogenitor cells derived from human induced pluripotent stem cells as the source. The method described does not require special equipment such as bio-3D printers, and the produced tissue can be induced into well-matured cartilage with abundant cartilage matrixin vitro. Using CAT, we were able to generate cartilage in the form of rings or tubes with adjustable inner diameter and curvature, over a range of several centimeters, without the use of scaffolds. Thein vitrofabrication of shape-designable cartilage using CAT is a promising development in facial plastic surgery.


Subject(s)
Induced Pluripotent Stem Cells , Tissue Scaffolds , Humans , Cartilage/physiology , Tissue Engineering/methods , Extracellular Matrix , Chondrogenesis
7.
Biofabrication ; 15(3)2023 06 06.
Article in English | MEDLINE | ID: mdl-37201517

ABSTRACT

Endochondral ossification (EO) is an essential biological process than underpins how human bones develop, grow, and heal in the event of a fracture. So much is unknown about this process, thus clinical manifestations of dysregulated EO cannot be adequately treated. This can be partially attributed to the absence of predictivein vitromodels of musculoskeletal tissue development and healing, which are integral to the development and preclinical evaluation of novel therapeutics. Microphysiological systems, or organ-on-chip devices, are advancedin vitromodels designed for improved biological relevance compared to traditionalin vitroculture models. Here we develop a microphysiological model of vascular invasion into developing/regenerating bone, thereby mimicking the process of EO. This is achieved by integrating endothelial cells and organoids mimicking different stages of endochondral bone development within a microfluidic chip. This microphysiological model is able to recreate key events in EO, such as the changing angiogenic profile of a maturing cartilage analogue, and vascular induced expression of the pluripotent transcription factors SOX2 and OCT4 in the cartilage analogue. This system represents an advancedin vitroplatform to further EO research, and may also serve as a modular unit to monitor drug responses on such processes as part of a multi-organ system.


Subject(s)
Endothelial Cells , Osteogenesis , Humans , Cartilage/physiology , Bone and Bones , Organoids , Lab-On-A-Chip Devices
8.
Biomaterials ; 296: 122078, 2023 05.
Article in English | MEDLINE | ID: mdl-36921442

ABSTRACT

Gradient scaffolds are isotropic/anisotropic three-dimensional structures with gradual transitions in geometry, density, porosity, stiffness, etc., that mimic the biological extracellular matrix. The gradient structures in biological tissues play a major role in various functional and metabolic activities in the body. The designing of gradients in the scaffold can overcome the current challenges in the clinic compared to conventional scaffolds by exhibiting excellent penetration capacity for nutrients & cells, increased cellular adhesion, cell viability & differentiation, improved mechanical stability, and biocompatibility. In this review, the recent advancements in designing gradient scaffolds with desired biomimetic properties, and their implication in tissue regeneration applications have been briefly explained. Furthermore, the gradients in native tissues such as bone, cartilage, neuron, cardiovascular, skin and their specific utility in tissue regeneration have been discussed in detail. The insights from such advances using gradient-based scaffolds can widen the horizon for using gradient biomaterials in tissue regeneration applications.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Biocompatible Materials/chemistry , Cartilage/physiology , Porosity , Bone Regeneration
9.
Macromol Biosci ; 23(7): e2200539, 2023 07.
Article in English | MEDLINE | ID: mdl-36802277

ABSTRACT

Numerous factors, such as degeneration and accidents, frequently cause cartilage deterioration. Owing to the absence of blood vessels and nerves in cartilage tissue, the ability of cartilage tissue to heal itself after an injury is relatively low. Hydrogels are beneficial for cartilage tissue engineering owing to their cartilage-like structure and advantageous properties. Due to the disruption of its mechanical structure, the bearing capacity and shock absorption of cartilage are diminished. The tissue should possess excellent mechanical properties to ensure the efficacy of cartilage tissue repair. This paper discusses the application of hydrogels in the fields of cartilage repair, the mechanical properties of hydrogels used for cartilage repair, and the materials used for hydrogels in cartilage tissue engineering. In addition, the challenges faced by hydrogels and future research directions are discussed.


Subject(s)
Cartilage, Articular , Hydrogels , Hydrogels/therapeutic use , Hydrogels/chemistry , Cartilage/physiology , Tissue Engineering
10.
ACS Biomater Sci Eng ; 9(2): 831-843, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36629329

ABSTRACT

Cartilage tissue is characterized by zonal organization with gradual transitions of biochemical and mechanical cues from superficial to deep zones. We previously reported that 3D gradient hydrogels made of polyethylene glycol and chondroitin sulfate can induce zonal-specific responses of chondrocytes, resulting in zonal cartilage formation that mimics native tissues. While the role of cell-matrix interactions has been studied extensively, how cell-cell interactions across different zones influence cartilage zonal development remains unknown. The goal of this study is to harness gradient hydrogels as a tool to elucidate the role of cell-cell interactions in driving cartilage zonal development. When encapsulated in intact gradient hydrogels, chondrocytes exhibited strong zonal-specific responses that mimic native cartilage zonal organization. However, the separate culture of each zone of gradient hydrogels resulted in a significant decrease in cell proliferation and cartilage matrix deposition across all zones, while the trend of zonal dependence remains. Unexpectedly, mixing the coculture of all five zones of hydrogels in the same culture well largely abolished the zonal differences, with all zones behaving similarly to the softest zone. These results suggest that paracrine signal exchange among cells in different zones is essential in driving cartilage zonal development, and a spatial organization of zones is required for proper tissue zonal development. Intact, separate, or coculture groups resulted in distinct gene expression patterns in mechanosensing and cartilage-specific markers, suggesting that cell-cell interactions can also modulate mechanosensing. We further showed that 7 days of priming in intact gradient culture was sufficient to instruct the cells to complete the zonal development, and the separate or mixed coculture after 7 days of intact culture had minimal effects on cartilage formation. This study highlights the important role of cell-cell interactions in driving cartilage zonal development and validates gradient hydrogels as a useful tool to elucidate the role of cell-matrix and cell-cell interactions in driving zonal development during tissue morphogenesis and regeneration.


Subject(s)
Cartilage , Hydrogels , Hydrogels/chemistry , Cartilage/physiology , Chondrocytes/metabolism , Polyethylene Glycols/metabolism , Polyethylene Glycols/pharmacology , Cell Communication
11.
Cells ; 11(19)2022 09 21.
Article in English | MEDLINE | ID: mdl-36230915

ABSTRACT

Joint disorders have become a global health issue with the growth of the aging population. Screening small active molecules targeting chondrogenic differentiation of bone marrow-derived stem cells (BMSCs) is of urgency. In this study, microfracture was employed to create a regenerative niche in rabbits (n = 9). Cartilage samples were collected four weeks post-surgery. Microfracture-caused morphological (n = 3) and metabolic (n = 6) changes were detected. Non-targeted metabolomic analysis revealed that there were 96 differentially expressed metabolites (DEMs) enriched in 70 pathways involved in anti-inflammation, lipid metabolism, signaling transduction, etc. Among the metabolites, docosapentaenoic acid 22n-3 (DPA) and ursodeoxycholic acid (UDCA) functionally facilitated cartilage defect healing, i.e., increasing the vitality and adaptation of the BMSCs, chondrogenic differentiation, and chondrocyte functionality. Our findings firstly reveal the differences in metabolomic activities between the normal and regenerated cartilages and provide a list of endogenous biomolecules potentially involved in the biochemical-niche fate control for chondrogenic differentiation of BMSCs. Ultimately, the biomolecules may serve as anti-aging supplements for chondrocyte renewal or as drug candidates for cartilage regenerative medicine.


Subject(s)
Fractures, Stress , Mesenchymal Stem Cells , Animals , Bone Marrow , Cartilage/physiology , Fractures, Stress/metabolism , Mesenchymal Stem Cells/metabolism , Rabbits , Ursodeoxycholic Acid
12.
Biomed Mater ; 17(6)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36270422

ABSTRACT

Three-dimensional cell constructs comprising only tissue-specific cells and extracellular matrix secreted by them would be ideal transplants, but their fabrication in a cell aggregation manner without cell scaffolds relies on random cell self-aggregation, making the control of their size and shape difficult. In this study, we propose a method to fabricate band-shaped tissues by inducing the self-aggregation of cell sheets using the developed cell self-aggregation technique (CAT). Acting as cell aggregation stoppers, silicone semicircular pillars were attached to two positions equidistant from both short ends of the rounded rectangular culture groove and coated with a specifically charged biomimetic polymer as a CAT-inducing surface. Mesenchymal stem cells, chondrocytes, and skeletal myoblast cells seeded on the surface of the culture grooves formed band-shaped aggregates between the two aggregation stoppers following spontaneous detachment with aggregation of the cell sheet from the outer edge of the grooves during day one of culture. The aggregated chondrocyte band matured into a cartilage-like plate with an abundant cartilage matrix while retaining its band shape after two weeks of chondrogenic cultivation. Additionally, the aggregates of mesenchymal stem cells and myoblast cell bands could patch the induced collagen membrane derived from rat subcutaneous tissue like a bandage immediately after their formation and successfully mature into fat and muscle tissues, respectively. These results indicate that, depending on the cell type, scaffold-free band-shaped cell aggregates produced by CAT have the potential to achieve tissue regeneration that follows the shape of the defect viain vitromaturation culture orin vivoorganization.


Subject(s)
Chondrogenesis , Mesenchymal Stem Cells , Rats , Animals , Cartilage/physiology , Chondrocytes , Mesoderm
13.
Int J Biol Macromol ; 221: 1313-1324, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36108749

ABSTRACT

Cartilage is an important tissue that is widely found in joints, ears, nose and other organs. The limited capacity to regenerate makes cartilage reconstruction an urgent clinical demand. Due to the avascular nature of cartilage, we hypothesized that inhibition of vascularization contributes to cartilage formation. Here, we used VEGFa siRNA to inhibit the infiltration of the local vascular system. Optimized lipid nanoparticles were prepared by microfluidics for the delivery of siRNA. Then, we constructed a tissue engineering scaffold. Both seed cells and VEGFa siRNA-LNPs were loaded in a GELMA hydrogel. Subcutaneous implantation experiments in nude mice indicate that this is a promising strategy for cartilage reconstruction. The regenerated cartilage was superior, with significant upregulation of SOX9, COL-II and ACAN. This is attributed to an environment deficient in oxygen and nutrients, which facilitates cartilage formation by upregulating HIF-1α and FOXO transcription factors. In conclusion, a GelMA/Cells+VEGFa siRNA-LNPs scaffold was constructed to achieve superior cartilage regeneration.


Subject(s)
Cartilage , Chondrogenesis , Mice , Animals , RNA, Small Interfering/genetics , Mice, Nude , Chondrogenesis/genetics , Cartilage/physiology
14.
Int J Biol Macromol ; 216: 336-346, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35798077

ABSTRACT

In this work a hydrogel, based on a blend of two gellan gums with different acyl content embedding lignin (up to 0.4%w/v) and crosslinked with magnesium ions, was developed for cartilage regeneration. The physico-chemical characterizations established that no chemical interaction between lignin and polysaccharides was detected. Lignin achieved up to 80 % of ascorbic acid's radical scavenging activity in vitro on DPPH and ABTS radicals. Viability of hMSC onto hydrogel containing lignin resulted comparable to the lignin-free one (>70 % viable cells, p > 0.05). The presence of lignin improved the hMSC 3D-constructs chondrogenesis, bringing to a significant (p < 0.05) up-regulation of the collagen type II, aggrecan and SOX 9 chondrogenic genes, and conferred bacteriostatic properties to the hydrogel, reducing the proliferation of S. aureus and S. epidermidis. Finally, cellularized 3D-constructs were manufactured via 3D-bioprinting confirming the processability of the formulation as a bioink and its unique biological features for creating a physiological milieu for cell growth.


Subject(s)
Hydrogels , Staphylococcus aureus , Cartilage/physiology , Hydrogels/chemistry , Hydrogels/pharmacology , Lignin/pharmacology , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Tissue Engineering/methods
15.
Acta Biomater ; 147: 129-146, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35643197

ABSTRACT

In this work we present a standardised quantitative ultrasound imaging (SQUI) approach for the non-destructive three-dimensional imaging and quantification of cartilage formation in hydrogel based bioscaffolds. The standardised concept involves the processing of ultrasound backscatter data with respect to an acellular phantom in combination with the compensation of sound speed mismatch diffraction effects between the bioscaffold and the phantom. As a proof-of-concept, the SQUI approach was tested on a variety of bioscaffolds with varying degree of neocartilage formation. These were composed of Gelatine Methacryloyl (GelMA) hydrogels laden with human adipose-derived stem cells (hADSCs). These were cultured under chondrogenic stimulation following a previously established protocol, where the degree of the neocartilage formation was modulated using different GelMA network densities (6, 8, 10 % w/v) and culture time (0, 14, 28 days). Using the SQUI approach we were able to detect marked acoustic and morphological changes occurring in the bioscaffolds a result of their different chondrogenic outcome. We defined an acoustic neocartilage indicator, the sonomarker, for the selective imaging and quantification of neocartilage formation. The sonomarker, of backscatter intensity logIBC -2.4, was found to correlate with data obtained via standard destructive bioassays. The ultrasonic evaluation of human specimens confirmed the sonomarker as a relevant intensity, although it was found to shift to higher intensity values in proportion to the cartilage condition as inferred from sound speed measurements. This study demonstrates the potential of the SQUI approach for the realization of non-destructive analysis of cartilage regeneration over-time. STATEMENT OF SIGNIFICANCE: As tissue engineering strategies for neocartilage regeneration evolve towards clinical implementation, alternative characterisation approaches that allow the non-destructive monitoring of extracellular matrix formation in implantable hydrogel based bioscaffolds are needed. In this work we present an innovative standardized quantitative ultrasound imaging (SQUI) approach that allows the non-destructive, volumetric, and quantitative evaluation of neocartilage formation in hydrogel based bioscaffolds. The standardised concept aims to provide a robust approach that accounts for the dynamic changes occurring during the conversion from a cellular bioscaffold towards the formation of a neocartilage construct. We believe that the SQUI approach will be of great benefit for the evaluation of constructs developing neocartilage, not only for in-vitro applications but also potentially applicable to in-vivo applications.


Subject(s)
Chondrogenesis , Hydrogels , Cartilage/diagnostic imaging , Cartilage/physiology , Humans , Hydrogels/pharmacology , Tissue Engineering/methods , Ultrasonography
16.
Small ; 18(23): e2201874, 2022 06.
Article in English | MEDLINE | ID: mdl-35557029

ABSTRACT

Bone marrow stem cells (BMSCs) engineered cartilage (BEC) is prone to endochondral ossification in a submuscular environment due to the process of vascular infiltration, which limits its application in repairing tracheal cartilage defects. Bevacizumab, an antitumor drug with pronounced antiangiogenic activity, is successfully laden into a poly(L-lactide-co-caprolactone) system to prepare bevacizumab-laden nanofiber (BevNF) characterized by 5% and 10% bevacizumab concentrations. The in vitro results reveal that a sustained release of bevacizumab can be realized from BevNF, exhibiting inhibitive cytotoxicity toward human umbilical vein endothelial cells whereas non-cytotoxicity toward BMSCs-induced chondrocytes. A model is also established by encapsulating BEC within BevNF, aiming to realize an antiangiogenic niche under conditions of sustained and localized release of bevacizumab to inhibit the process of vascular invasion, resulting in the eventual stabilization of the cartilaginous phenotype and promotion of the process of cartilage maturation in the submuscular environment. These results also confirm that the chondrogenesis stability of BEC increases with an increase in the bevacizumab concentration, and 10% BevNF is sufficient to protect BEC from vascularization. This demonstrates that the use of BevNF can potentially help develop an effective strategy for regulating the submuscular stability of BEC to repair the defects formed in tracheal cartilage.


Subject(s)
Nanofibers , Bevacizumab/pharmacology , Cartilage/physiology , Chondrocytes , Chondrogenesis , Endothelial Cells , Stem Cells , Tissue Engineering/methods
17.
J Biomed Mater Res A ; 110(6): 1210-1223, 2022 06.
Article in English | MEDLINE | ID: mdl-35088923

ABSTRACT

Gelatin is widely proposed as scaffold for cartilage tissue regeneration due to its high similarities to the extracellular matrix. However, poor mechanical properties and high sensitivity to enzymatic degradation encouraged the scientific community to develop strategies to obtain better performing hydrogels. Gelatin networks, specifically gelatin-methacryloyl (GM), have been coupled to hyaluronan or chondroitin sulfate (CS). In this study, we evaluated the biophysical properties of an innovative photocross-linked hydrogel based on GM with the addition of CS or a new unsulfated biotechnological chondroitin (BC). Biophysical, mechanical, and biochemical characterization have been assessed to compare GM hydrogels to the chondroitin containing networks. Moreover, mesenchymal stem cells (MSCs) were seeded on these biomaterials in order to evaluate the differentiation toward the chondrocyte phenotype in 21 days. Rheological characterization showed that both CS and BC increased the stiffness (G' was about 2-fold), providing a stronger rigid matrix, with respect to GM alone. The biological tests confirmed the onset of MSCs differentiation process starting from 14 days of in vitro culture. In particular, the combination GM + BC resulted to be more effective than GM + CS in the up-regulation of key genes such as collagen type 2A1 (COLII), SOX-9, and aggrecan). In addition, the scanning microscope analyses revealed the cellular adhesion on materials and production of extracellular vesicles. Immunofluorescence staining confirmed an increase of COLII in presence of both chondroitins. Finally, the outcomes suggest that BC entangled within cross-linked GM matrix may represent a promising new biomaterial with potential applications in cartilage regeneration.


Subject(s)
Chondroitin Sulfates , Gelatin , Biocompatible Materials/metabolism , Biocompatible Materials/pharmacology , Cartilage/physiology , Chondroitin Sulfates/pharmacology , Gelatin/metabolism , Gelatin/pharmacology , Hydrogels/metabolism , Hydrogels/pharmacology , Methacrylates , Tissue Engineering
18.
J Biomed Mater Res A ; 110(5): 1021-1035, 2022 05.
Article in English | MEDLINE | ID: mdl-34967101

ABSTRACT

Decellularized extracellular matrices (DECM) are among the most common types of materials used in tissue engineering due to their cell instructive properties, biodegradability, and accessibility. Particularly in cartilage, a natural collagen type II matrix can be a promising means to provide the necessary cues and support for chondrogenic stem and progenitor cells (CSPCs). However, efficient remodeling of the transplanted DECM is largely dependent on the host immune response, with macrophages playing the central role in orchestrating both inflammatory and regenerative processes. Here we assessed the reaction of human primary macrophages to the cartilage DECM. Our findings show that the xenogeneic collagen matrix can elicit a mixed response in human macrophages, whereby the inflammatory response (M1) and the activation of remodeling (M2) type of macrophages are both present. Additionally, we demonstrate the inhibitory effect of macrophage response on the migratory capacity of human CSPCs. We further show that the inflammatory reaction of macrophages to the cartilage DECM, as well as the resulting inhibitory effects on CSPC migration, can be attenuated by interleukin-4 (IL-4). Finally, we demonstrate that IL-4 can effectively bind the matrix, thereby modulating macrophage response by reducing the inflammatory reaction and inducing the M2 phenotype.


Subject(s)
Extracellular Matrix , Interleukin-4 , Cartilage/physiology , Collagen/metabolism , Extracellular Matrix/metabolism , Humans , Inflammation/metabolism , Interleukin-4/metabolism , Regeneration , Tissue Engineering/methods
19.
Carbohydr Polym ; 276: 118790, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34823800

ABSTRACT

The limited three-dimensional (3D) nano-scale pore structure and lack of biological function hamper the application of bacterial cellulose (BC) in cartilage tissue engineering. To address this challenge, 3D hierarchical porous BC/decellularized cartilage extracellular matrix (DCECM) scaffolds with structurally and biochemically biomimetic cartilage regeneration microenvironment were fabricated by freeze-drying technique after EDC/NHS chemical crosslinking. The BC/DCECM scaffolds exhibited excellent mechanical properties, water superabsorbency and shape-memory properties. Compared with the BC control, the BC/DCECM scaffolds exhibited enhanced cell adhesion and proliferation. Cartilage regeneration in vitro and in vivo indicated that the BC/DCECM scaffolds achieved satisfactory neocartilage tissue regeneration with superior original shape fidelity, exterior natural cartilage-like appearance and histologically cartilage-specific lacuna formation and ECM deposition. Furthermore, the BC/DCECM scaffolds achieved superior repair outcomes, as hyaline cartilage-like tissue formed within the defect sites. The present study constitutes a strong step toward the further application of BC in cartilage tissue engineering.


Subject(s)
Cartilage/physiology , Cellulose/chemistry , Nanofibers/chemistry , Polysaccharides, Bacterial/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Biomimetics/methods , Cell Adhesion , Cell Proliferation , Chondrocytes/metabolism , Extracellular Matrix/metabolism , Porosity , Rabbits , Regeneration
20.
Biomed Res Int ; 2021: 9011548, 2021.
Article in English | MEDLINE | ID: mdl-34938811

ABSTRACT

The inability of cartilage to self-repair necessitates an effective therapeutic approach to restore damaged tissues. Extracellular vesicles (EVs) are attractive options because of their roles in cellular communication and tissue repair where they regulate the cellular processes of proliferation, differentiation, and recruitment. However, it is a challenge to determine the relevant cell sources for isolation of EVs with high chondrogenic potential. The current study aims to evaluate the chondrogenic potential of EVs derived from chondrocytes (Cho-EV) and mesenchymal stem cells (MSC-EV). The EVs were separately isolated from conditioned media of both rabbit bone marrow MSCs and chondrocyte cultures. The isolated vesicles were assessed in terms of size, morphology, and surface marker expression. The chondrogenic potential of MSCs in the presence of different concentrations of EVs (50, 100, and 150 µg/ml) was evaluated during 21 days, and chondrogenic surface marker expressions were checked by qRT-PCR and histologic assays. The extracted vesicles had a spherical morphology and a size of 44.25 ± 8.89 nm for Cho-EVs and 112.1 ± 10.10 nm for MSC-EVs. Both groups expressed the EV-specific surface markers CD9 and CD81. Higher expression of chondrogenic specified markers, especially collagen type II (COL II), and secretion of glycosaminoglycans (GAGs) and proteoglycans were observed in MSCs treated with 50 and 100 µg/ml MSC-EVs compared to the Cho-EVs. The results from the use of EVs, particularly MSC-EVs, with high chondrogenic ability will provide a basis for developing therapeutic agents for cartilage repair.


Subject(s)
Chondrocytes/physiology , Chondrogenesis/physiology , Extracellular Vesicles/physiology , Mesenchymal Stem Cells/physiology , Animals , Biomarkers/metabolism , Cartilage/metabolism , Cartilage/physiology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cells, Cultured , Chondrocytes/metabolism , Collagen Type II/metabolism , Extracellular Vesicles/metabolism , Glycosaminoglycans/metabolism , Male , Mesenchymal Stem Cells/metabolism , Proteoglycans/metabolism , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...