Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.016
Filter
1.
Food Res Int ; 186: 114161, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729685

ABSTRACT

In this article, the synthesis of antioxidant peptides in the enzymatic hydrolysis of caprine casein was analyzed at three different time points (60 min, 90 min, and 120 min) using immobilized pepsin on activated and modified carbon (AC, ACF, ACG 50, ACG 100). The immobilization assays revealed a reduction in the biocatalysts' activity compared to the free enzyme. Among the modified ones, ACG 50 exhibited greater activity and better efficiency for reuse cycles, with superior values after 60 min and 90 min. Peptide synthesis was observed under all studied conditions. Analyses (DPPH, ß-carotene/linoleic acid, FRAP) confirmed the antioxidant potential of the peptides generated by the immobilized enzyme. However, the immobilized enzyme in ACG 50 and ACG 100, combined with longer hydrolysis times, allowed the formation of peptides with an antioxidant capacity greater than or equivalent to those generated by the free enzyme, despite reduced enzymatic activity.


Subject(s)
Antioxidants , Caseins , Enzymes, Immobilized , Glutaral , Goats , Iridoids , Pepsin A , Peptides , Antioxidants/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Caseins/chemistry , Animals , Pepsin A/metabolism , Pepsin A/chemistry , Glutaral/chemistry , Peptides/chemistry , Iridoids/chemistry , Hydrolysis , Charcoal/chemistry
2.
Food Res Int ; 187: 114432, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763680

ABSTRACT

Probiotics are subjected to various edible coatings, especially proteins and polysaccharides, which serve as the predominant wall materials, with ultrasound, a sustainable green technology. Herein, sodium caseinate, inulin, and soy protein isolate composites were produced using multi-frequency ultrasound and utilized to encapsulateLactiplantibacillus plantarumto enhance its storage, thermal, and gastrointestinal viability. The physicochemical analyses revealed that the composites with 5 % soy protein isolate treated with ultrasound at 50 kHz exhibited enough repulsion forces to maintain stability, pH resistance, and the ability to encapsulate larger particles and possessed the highest encapsulation efficiency (95.95 %). The structural analyses showed changes in the composite structure at CC, CH, CO, and amino acid residual levels. Rheology, texture, and water-holding capacity demonstrated the production of soft hydrogels with mild chewing and gummy properties, carried the microcapsules without coagulation or sedimentation. Moreover, the viability attributes ofL. plantarumevinced superior encapsulation, protecting them for at least eight weeks and against heat (63 °C), reactive oxidative species (H2O2), and GI conditions.


Subject(s)
Carboxymethylcellulose Sodium , Caseins , Hydrogels , Inulin , Probiotics , Soybean Proteins , Soybean Proteins/chemistry , Hydrogels/chemistry , Caseins/chemistry , Carboxymethylcellulose Sodium/chemistry , Inulin/chemistry , Inulin/pharmacology , Lactobacillus plantarum/metabolism , Rheology , Hydrogen-Ion Concentration , Microbial Viability , Capsules
3.
J Agric Food Chem ; 72(20): 11515-11530, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38726599

ABSTRACT

Chronic stress is a major inducer of anxiety and insomnia. Milk casein has been studied for its stress-relieving effects. We previously prepared a casein hydrolysate (CP) rich in the sleep-enhancing peptide YPVEPF, and this study aims to systemically investigate the different protective effects of CP and casein on dysfunction and anxiety/insomnia behavior and its underlying mechanisms in chronically stressed mice. Behavioral results showed that CP ameliorated stress-induced insomnia and anxiety more effectively than milk casein, and this difference in amelioration was highly correlated with an increase in GABA, 5-HT, GABAA, 5-HT1A receptors, and BDNF and a decrease in IL-6 and NMDA receptors in stressed mice. Furthermore, CP restored these dysfunctions in the brain and colon by activating the HPA response, modulating the ERK/CREB-BDNF-TrκB signaling pathway, and alleviating inflammation. The abundant YPVEPF (1.20 ± 0.04%) and Tyr-based/Trp-containing peptides of CP may be the key reasons for its different effects compared to casein. Thus, this work revealed the main active structures of CP and provided a novel dietary intervention strategy for the prevention and treatment of chronic-stress-induced dysfunction and anxiety/insomnia behaviors.


Subject(s)
Anxiety , Brain , Caseins , Sleep Initiation and Maintenance Disorders , Animals , Caseins/chemistry , Caseins/administration & dosage , Mice , Anxiety/prevention & control , Male , Brain/metabolism , Brain/drug effects , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep Initiation and Maintenance Disorders/metabolism , Sleep Initiation and Maintenance Disorders/physiopathology , Sleep Initiation and Maintenance Disorders/prevention & control , Humans , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Stress, Psychological , Protective Agents/administration & dosage , Protective Agents/pharmacology , Protective Agents/chemistry
4.
Molecules ; 29(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38731652

ABSTRACT

Bovine milk is an essential supplement due to its rich energy- and nutrient-rich qualities. Caseins constitute the vast majority of the proteins in milk. Among these, ß-casein comprises around 37% of all caseins, and it is an important type of casein with several different variants. The A1 and A2 variants of ß-casein are the most researched genotypes due to the changes in their composition. It is accepted that the A2 variant is ancestral, while a point mutation in the 67th amino acid created the A1 variant. The digestion derived of both A1 and A2 milk is BCM-7. Digestion of A2 milk in the human intestine also forms BCM-9 peptide molecule. The opioid-like characteristics of BCM-7 are highlighted for their potential triggering effect on several diseases. Most research has been focused on gastrointestinal-related diseases; however other metabolic and nervous system-based diseases are also potentially triggered. By manipulating the mechanisms of these diseases, BCM-7 can induce certain situations, such as conformational changes, reduction in protein activity, and the creation of undesired activity in the biological system. Furthermore, the genotype of casein can also play a role in bone health, such as altering fracture rates, and calcium contents can change the characteristics of dietary products. The context between opioid molecules and BCM-7 points to a potential triggering mechanism for the central nervous system and other metabolic diseases discussed.


Subject(s)
Caseins , Endorphins , Humans , Animals , Caseins/chemistry , Caseins/metabolism , Caseins/genetics , Endorphins/chemistry , Endorphins/metabolism , Milk/chemistry , Milk/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/genetics , Opioid Peptides/chemistry , Opioid Peptides/metabolism , Cattle
5.
Int J Biol Macromol ; 267(Pt 2): 131613, 2024 May.
Article in English | MEDLINE | ID: mdl-38642686

ABSTRACT

As glycosylations are difficult to analyze, their roles and effects are poorly understood. Glycosylations in human milk (HM) differ across lactation. Glycosylations can be involved in antimicrobial activities and may serve as food for beneficial microorganisms. This study aimed to identify and analyze O-linked glycans in HM by high-throughput mass spectrometry. 184 longitudinal HM samples from 66 donors from day 3 and months 1, 2, and 3 postpartum were subjected to a post-translational modification specific enrichment-based strategy using TiO2 and ZrO2 beads for O-linked glycopeptide enrichment. ß-CN was found to be a major O-linked glycoprotein, additionally, αS1-CN, κ-CN, lactotransferrin, and albumin also contained O-linked glycans. As glycosyltransferases and glycosidases are involved in assembling the glycans including O-linked glycosylations, these were further investigated. Some glycosyltransferases and glycosidases were found to be significantly decreasing through lactation, including two O-linked glycan initiator enzymes (GLNT1 and GLNT2). Despite their decrease, the overall level of O-linked glycans remained stable in HM over lactation. Three different motifs for O-linked glycosylation were enriched in HM proteins: Gly-Xxx-Xxx-Gly-Ser/Thr, Arg-Ser/Thr and Lys-Ser/Thr. Further O-linked glycan motifs on ß-CN were observed to differ between intact proteins and endogenous peptides in HM.


Subject(s)
Caseins , Lactation , Milk, Human , Whey Proteins , Humans , Milk, Human/chemistry , Glycosylation , Female , Caseins/metabolism , Caseins/chemistry , Lactation/metabolism , Whey Proteins/chemistry , Whey Proteins/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Glycopeptides/metabolism , Glycopeptides/chemistry , Protein Processing, Post-Translational
6.
J Agric Food Chem ; 72(17): 10031-10045, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629959

ABSTRACT

Casein (CN) is the primary allergenic protein in cow's milk, contributing to the worldwide escalating prevalence of food allergies. However, there remains limited knowledge regarding the effect of structural modifications on CN allergenicity. Herein, we prepared three modified CNs (mCN), including sodium dodecyl sulfate and dithiothreitol-induced linear CN (LCN), transglutaminase-cross-linked CN (TCN), and glucose-glycated CN (GCN). The electrophoresis results indicated widespread protein aggregation among mCN, causing variations in their molecular weights. The unique internal and external structural characteristics of mCN were substantiated by disparities in surface microstructure, alterations in the secondary structure, variations in free amino acid contents, and modifications in functional molecular groups. Despite the lower digestibility of TCN and GCN compared to LCN, they significantly suppressed IL-8 production in Caco-2 cells without significantly promoting their proliferation. Moreover, GCN showed the weakest capacity to induce LAD2 cell degranulation. Despite the therapeutic effect of TCN, GCN-treated mice displayed the most prominent attenuation of allergic reactions and a remarkably restored Th1/Th2 imbalance, while LCN administration resulted in severe allergic phenotypes and endotypes in both cellular and murine models. This study highlighted the detrimental effect of linear modifications and underscored the significance of glycation in relation to CN allergenicity.


Subject(s)
Allergens , Caseins , Mice, Inbred BALB C , Th1 Cells , Th2 Cells , Animals , Humans , Mice , Th2 Cells/immunology , Caseins/immunology , Caseins/chemistry , Th1 Cells/immunology , Allergens/immunology , Allergens/chemistry , Caco-2 Cells , Female , Glycosylation , Cattle , Homeostasis , Food Hypersensitivity/immunology
7.
Int J Biol Macromol ; 267(Pt 2): 131501, 2024 May.
Article in English | MEDLINE | ID: mdl-38614170

ABSTRACT

Developing novel antimicrobial wound dressings that have the potential to address the challenges associated with chronic wounds is highly imperative in providing effective infection control and wound healing support. Biocompatible electrospun nanofibers with their high porosity and surface area enabling efficient drug loading and delivery have been investigated in this regard as viable candidates for chronic wound care. Here, we design Casein/Polyvinyl alcohol (CAN/PVA) nanofibers reinforced with silver nanoparticles (Ag NPs) by the electrospinning technique to develop diabetic wound healing scaffolds. The prepared samples were characterized using spectroscopic and electron microscopic techniques. The biocompatibility of the polymer samples were assessed using 3 T3 fibroblast cell lines and the maximum cell viability was found to 95 % at a concentration of 50 µg/mL for the prepared nanofibers. Scratch assay tests were also performed to analyze the wound healing activity of the nanofibers wherein they demonstrated increased migration and proliferation of fibroblast 3 T3 cells. Moreover, these nanofibers also exhibit antibacterial efficiency against Gram-negative bacteria, Escherichia coli (E.coli). Therefore, the antimicrobial nature of the electrospun nanofibers coupled with their moisture absorption properties and wound healing ability render them as effective materials for wound dressing applications.


Subject(s)
Anti-Bacterial Agents , Caseins , Metal Nanoparticles , Nanofibers , Polyvinyl Alcohol , Silver , Tissue Engineering , Tissue Scaffolds , Nanofibers/chemistry , Polyvinyl Alcohol/chemistry , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Caseins/chemistry , Caseins/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Escherichia coli/drug effects , Wound Healing/drug effects , Cell Line , Cell Survival/drug effects , Fibroblasts/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Proliferation/drug effects
8.
Int J Biol Macromol ; 267(Pt 2): 131585, 2024 May.
Article in English | MEDLINE | ID: mdl-38621557

ABSTRACT

Casein forms diverse structures with functionalities tunable by complexation with surfactants, and shellac is an emerging surfactant. In the present work, molecular and mesoscopic structures of shellac and micellar casein and the underlying interactions after treatment with a pH-cycle were investigated. Dispersions with 0.5 % w/v shellac and various shellac:casein mass ratios were prepared at pH 12.0 to dissolve shellac and dissociate casein micelles, followed by neutralization to pH 7.0 to form complexes. Both covalent and non-covalent (hydrogen bonding, electrostatic, and hydrophobic) interactions contributed to the complex formation. The formed complexes had an average diameter of ~80 nm. The complexation of shellac and casein prevented the precipitation of protonated shellac during neutralization, and dispersions with casein:shellac mass ratios of 2:1 and above were absent of precipitates at pH 7.0. The formed nanocomplexes may have applications for preparing novel colloidal systems and loading lipophilic bioactive compounds.


Subject(s)
Caseins , Micelles , Caseins/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Surface-Active Agents/chemistry , Static Electricity , Hydrogen Bonding , Nanoparticles/chemistry
9.
Food Chem ; 448: 139043, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38552463

ABSTRACT

This study aimed to evaluate the potential of the bilayer emulsions stabilized with casein/butyrylated dextrin nanoparticles and chitosan as fat substitutes in preparing low-calorie sponge cakes. Among the different cake groups, the substitution of bilayer emulsions at 60% exhibited comparable baking properties, appearance, texture characteristics and stable secondary structure to fat. The specific volume and height were increased by 36.94% and 22%, respectively, while the cake showed higher lightness (L*) in the cores and softer hardness in the crumb. In addition, the moisture content of cakes was increased while the water activity remained unchanged. These results showed that casein/butyrylated dextrin bilayer emulsion was a potential fat substitute for cake products at the ratio of 60% with the desirable characteristics.


Subject(s)
Caseins , Chitosan , Dextrins , Emulsions , Fat Substitutes , Nanoparticles , Chitosan/chemistry , Nanoparticles/chemistry , Caseins/chemistry , Dextrins/chemistry , Emulsions/chemistry , Fat Substitutes/chemistry , Cooking
10.
Food Chem ; 448: 139054, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38552465

ABSTRACT

Quercetin (QUE) sufferred from poor processing adaptability and absorbability, hindering its application as a dietary supplement in the food industry. In this study, fatty acids (FAs)-sodium caseinate (NaCas) ligand complexes carriers were fabricated to improve the aqueous dispersibility, storage/thermal stability, and bioaccessibility of QUE using an ultrasound method. The results indicated that all six selected common dietary FAs formed stable hydrophilic complexes with NaCas and the FAs-NaCas complexes achieved an encapsulation efficiency greater than 90 % for QUE. Furthermore, the introduction of FAs enhanced the binding affinity between NaCas and QUE, but did not change the binding mode (static bursting) and types of intermolecular forces (mainly hydrogen bonding). In addition, a distinct improvement was discovered in the storage stability (>2.37-fold), thermal processing stability (>32.54 %), and bioaccessibility (>2.37-fold) of QUE. Therefore, the FAs-NaCas ligand complexes could effectively protect QUE to minimize degradation as fat-soluble polyphenol delivery vehicles.


Subject(s)
Caseins , Fatty Acids , Quercetin , Quercetin/chemistry , Quercetin/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Caseins/chemistry , Caseins/metabolism , Drug Stability , Biological Availability , Humans , Hydrophobic and Hydrophilic Interactions , Water/chemistry , Dietary Fats/metabolism
11.
Food Funct ; 15(7): 3824-3837, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38511617

ABSTRACT

In this study, the effects of Lactiplantibacillus plantarum M11 (Lb. plantarum M11) in conjunction with sodium caseinate on the characteristics and angiotensin converting enzyme (ACE) inhibitory activity of yogurt were investigated. ACE inhibitory peptides (ACEIPs) in yogurt were identified by nano-LC-MS/MS and potential ACEIPs were predicted by in silico and molecular docking methods. The results showed that the ACE-inhibitory activity of yogurt was significantly enhanced (p < 0.05), while maintaining the quality characteristics of the yogurt. Thirteen ACEIPs in the improved yogurt (883 + M11-CS group) were identified, which were more abundant than the other yogurt groups (control 883 group, 883 + M11 group and 883-CS group). Two novel peptides with potential ACE inhibitory activity, YPFPGPIH and NILRFF, were screened. The two peptides showed PeptideRanker scores above 0.8, small molecular weight and strong hydrophobicity, and were non-toxic after prediction. Molecular docking results showed that binding energies with ACE were -9.4 kcal mol-1 and -10.7 kcal mol-1, respectively, and could bind to the active site of ACE. These results indicated that yogurt with Lb. plantarum M11 and sodium caseinate has the potential to be utilized as a functional food with antihypertensive properties. The combination of ACEIP-producing strains and casein fortification could be an effective method to promote the release of ACEIPs from yogurt.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Lactobacillus plantarum , Angiotensin-Converting Enzyme Inhibitors/chemistry , Caseins/chemistry , Molecular Docking Simulation , Tandem Mass Spectrometry , Peptidyl-Dipeptidase A/chemistry , Yogurt , Peptides/chemistry
12.
Food Chem ; 447: 138940, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38484545

ABSTRACT

The study aimed to investigate the allergenicity change in casein treated with dielectric barrier discharge (DBD) plasma during in vitro simulated digestion, focusing on the immunoglobulin E (IgE) linear epitopes and utilizing a sensitized-cell model. Results indicated that prior treatment with DBD plasma treatment (4 min) before simulated digestion led to a 10.5% reduction in the IgE-binding capacity of casein digestion products. Moreover, the release of biologically active substances induced from KU812 cells, including ß-HEX release rate, human histamine, IL-4, IL-6, and TNF-α, decreased by 2.1, 28.1, 20.6, 11.6, and 17.3%, respectively. Through a combined analysis of LC-MS/MS and immunoinformatics tools, it was revealed that DBD plasma treatment promoted the degradation of the IgE linear epitopes of casein during digestion, particularly those located in the α-helix region of αs1-CN and αs2-CN. These findings suggest that DBD plasma treatment prior to digestion may alleviate casein allergic reactions.


Subject(s)
Immunoglobulin E , Milk Hypersensitivity , Humans , Epitopes , Immunoglobulin E/metabolism , Allergens/chemistry , Caseins/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Digestion
13.
Food Chem ; 447: 139007, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38518618

ABSTRACT

This research aimed to investigate the characteristics of casein phosphopeptides in Chinese human milk, and their potential relationship to infant growth. Using the liquid chromatography-Orbitrap-mass spectrometry technique, a total of 15 casein phosphopeptides were identified from 200 human milk samples. Also, our results indicate that casein phosphopeptides were phosphorylated with only one phosphate. The relative concentrations of casein phosphopeptides at 6 months postpartum were increased compared with milk at 2 months (FDR < 0.05). Significantly positive correlations were observed between casein phosphopeptides and infant growth, as shown by four casein phosphopeptides were positively correlated with the infants' weight-for-age Z-scores (rs range from 0.20 to 0.29), and three casein phosphopeptides were positively correlated with the infants' length-for-age Z-scores (rs range from 0.19 to 0.27). This study is the first to reveal the phosphorylated level and composition of casein phosphopeptides in Chinese human milk, and their potential relationship with infant growth.


Subject(s)
Milk, Human , Phosphopeptides , Infant , Female , Humans , Animals , Milk, Human/chemistry , Phosphopeptides/chemistry , Caseins/chemistry , Cross-Sectional Studies , Milk/chemistry , China
14.
Int J Biol Macromol ; 266(Pt 1): 130940, 2024 May.
Article in English | MEDLINE | ID: mdl-38521331

ABSTRACT

In recent years, functional foods with lipophilic nutraceutical ingredients are gaining more and more attention because of its potential healthy and commercial value, and developing of various bioderived food-grade particles for use in fabrication of Pickering emulsion has attracted great attentions. Herein, the bio-originated sodium caseinate-lysozyme (Cas-Lyz) complex particles were firstly designed to be used as a novel interfacial emulsifier for Pickering emulsions. Pickering emulsions of various food oils were all successfully stabilized by the Cas-Lyz particles without addition of any synthetic surfactants, while the fluorescence microscopy and SEM characterizations clearly evidenced Cas-Lyz particles were attached on the surface of emulsion droplets. Additionally, the Cas-Lyz particles stabilized emulsion can also be used to encapsulate the ß-carotene-loaded soybean oil, suggestion a potential method to carry lipophilic bioactive ingredients in an aqueous formulation for food, cosmetic and medical industry. At last, we present a Pickering emulsion strategy that utilizes biocompatible, edible and body temperature-responsive lard oil as the core material in microcapsules, which can achieve hermetic sealing and physiological temperature-triggered release of model nutraceutical ingredient (ß-carotene).


Subject(s)
Capsules , Emulsions , Temperature , beta Carotene , beta Carotene/chemistry , Emulsions/chemistry , Drug Liberation , Caseins/chemistry
15.
Int J Biol Macromol ; 266(Pt 1): 131160, 2024 May.
Article in English | MEDLINE | ID: mdl-38547946

ABSTRACT

In present study, bilayer emulsions with different interfacial structures stabilized by casein/butyrylated dextrin nanoparticles (CDNP), chitosan (CS) and chitosan nanoparticles (CSNP) were prepared to overcome the limitations of conventional emulsions. The effects of chitosan morphology and incorporation sequences on the bilayer emulsions were examined. Bilayer emulsions prepared with CDNP as the inner layer and CS/CSNP as the outer layer were observed to have smaller droplet sizes (1.39 ± 86.74 um and 1.45 ± 7.87 um). Bilayer emulsions prepared with CDNP as the inner layer and CS as the outer layer exhibited the lowest creaming index (2.38 %) after 14 days of storage, indicating excellent stability. Furthermore, bilayer emulsion prepared with CDNP as the inner layer and CS as the outer layer also exhibited a uniform water distribution, excellent protein oxidative stability, and uniformly distributed droplets by the measurement of Low-field NMR, intrinsic tryptophan fluorescence and laser confocal laser scanning microscopy. These results indicated that the study provided a theoretical basis for the development and design of bilayer emulsions with different interfacial structures. This study also provides a new material for the preparation of delivery systems that protect biologically active compounds. Bilayer emulsions are promising for applications in traditional and manufactured food products.


Subject(s)
Caseins , Chitosan , Dextrins , Emulsions , Nanoparticles , Chitosan/chemistry , Caseins/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Dextrins/chemistry , Particle Size
16.
Compr Rev Food Sci Food Saf ; 23(2): e13306, 2024 03.
Article in English | MEDLINE | ID: mdl-38369928

ABSTRACT

Biobased natural polymers, including polymers of natural origin such as casein, are growing rapidly in the light of the environmental pollution caused by many mass-produced commercial synthetic polymers. Although casein has interesting intrinsic properties, especially for the food industry, numerous chemical reactions have been carried out to broaden the range of its properties, most of them preserving casein's nontoxicity and biodegradability. New conjugates and graft copolymers have been developed especially by Maillard reaction of the amine functions of the casein backbone with the aldehyde functions of sugars, polysaccharides, or other molecules. Carried out with dialdehydes, these reactions lead to the cross-linking of casein giving three-dimensional polymers. Acylation and polymerization of various monomers initiated by amine functions are also described. Other reactions, far less numerous, involve alcohol and carboxylic acid functions in casein. This review provides an overview of casein-based conjugates and graft copolymers, their properties, and potential applications.


Subject(s)
Caseins , Polymers , Caseins/chemistry , Polymers/chemistry , Polysaccharides/chemistry , Amines
17.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339021

ABSTRACT

Breast-milk αS1-casein is a Toll-like receptor 4 (TLR4) agonist, whereas phosphorylated αS1-casein does not bind TLR4. The objective of this study was to analyse the structural requirements for these effects. In silico analysis of αS1-casein indicated high α-helical content with coiled-coil characteristics. This was confirmed by CD-spectroscopy, showing the α-helical conformation to be stable between pH 2 and 7.4. After in vitro phosphorylation, the α-helical content was significantly reduced, similar to what it was after incubation at 80 °C. This conformation showed no in vitro induction of IL-8 secretion via TLR4. A synthetic peptide corresponding to V77-E92 of αS1-casein induced an IL-8 secretion of 0.95 ng/mL via TLR4. Our results indicate that αS1-casein appears in two distinct conformations, an α-helical TLR4-agonistic and a less α-helical TLR4 non-agonistic conformation induced by phosphorylation. This is to indicate that the immunomodulatory role of αS1-casein, as described before, could be regulated by conformational changes induced by phosphorylation.


Subject(s)
Caseins , Milk, Human , Humans , Caseins/chemistry , Caseins/classification , Interleukin-8 , Protein Domains , Toll-Like Receptor 4/analysis , Phylogeny , Protein Structure, Secondary , HEK293 Cells
18.
Food Funct ; 15(6): 3098-3107, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38416477

ABSTRACT

Background: In vitro studies suggest that casein coagulation of milk is influenced by its mineral composition, and may therefore affect the dynamics of protein digestion, gastric emptying and appearance of amino acids (AA) in the blood, but this remains to be confirmed in vivo. Objective: This study aimed to compare gastrointestinal digestion between two milks with the same total calcium content but different casein mineralization (CM). Design: Fifteen males (age 30.9 ± 13.8 years, BMI 22.5 ± 2.2 kg m-2) participated in this randomized cross-over study with two treatments. Participants underwent gastric magnetic resonance imaging (MRI) scans at the baseline and every 10 min up to 90 min after consumption of 600 ml milk with low or high CM. Blood samples were taken at the baseline and up to 5 hours postprandially. Primary outcomes were postprandial plasma AA concentrations and gastric emptying rate. Secondary outcomes were postprandial glucose and insulin levels, gastric coagulation as estimated by image texture metrics, and appetite ratings. Results: Gastric content volume over time was similar for both treatments. However, gastric content image analysis suggested that the liquid fraction emptied quicker in the high CM milk, while the coagulum emptied slower. Relative to high CM, low CM showed earlier appearance of AAs that are more dominant in casein, such as proline (MD 4.18 µmol L-1, 95% CI [2.38-5.98], p < 0.001), while there was no difference in appearance of AAs that are more dominant in whey protein, such as leucine. The image texture metrics homogeneity and busyness differed significantly between treatments (MD 0.007, 95% CI [0.001, 0.012], p = 0.022; MD 0.005, 95% CI [0.001, 0.010], p = 0.012) likely because of a reduced coagulation in the low CM milk. Conclusions: Mineral composition of milk can influence postprandial serum AA kinetics, likely due to differences in coagulation dynamics. The clinical trial registry number is NL8959 (https://clinicaltrials.gov).


Subject(s)
Amino Acids , Milk , Male , Humans , Adolescent , Young Adult , Adult , Animals , Amino Acids/analysis , Milk/chemistry , Caseins/chemistry , Cross-Over Studies , Blood Glucose/metabolism , Minerals/analysis
19.
Food Res Int ; 179: 113949, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342518

ABSTRACT

This study investigated the individual and combined effects of ĸ-Casein (ĸ-CN; AA, AB, BB), ß-Casein (ß-CN; A1A1, A1A2, A2A2) and high and low ratios of glycosylated ĸ-CN to total ĸ-CN, referred to as the glycosylation degree (GD), on bovine cream whipping properties. The genetic variants of individual cows were identified using reversed-phase high-performance liquid chromatography (RP-HPLC) and verified through liquid chromatography-mass spectrometry (LC-MS). A previously discovered relationship between days-in-milk and GD was validated and used to obtain high and low GD milk. Whipped creams were created through the mechanical agitation of fat standardised cream from milk of different ĸ-CN, ß-CN, and GD combinations, and whipping properties (the ability to whip, overrun, whipping time and firmness) were evaluated. No significant correlation was measured in whipping properties for cream samples from milks with different ĸ-CN and ß-CN genetic variants. However, 80 % of samples exhibiting good whipping properties (i.e., the production of a stiffened peak) were from milk with low GD suggesting a correlation between whipping properties and levels of glycosylation. Moreover, cream separated from skim milk of larger casein micelle size showed superior whipping properties with shorter whipping times (<5 min), and higher firmness and overrun. Milk fat globule (MFG) size, on the other hand, did not affect whipping properties. Results indicate that the GD of κ-CN and casein micelle size may play a role in MFG adsorption at the protein and air interface of air bubbles formed during whipping; hence, they govern the dynamics of fat network formation and influencing whipping properties.


Subject(s)
Caseins , Micelles , Animals , Female , Cattle , Caseins/chemistry , Glycosylation , Milk/chemistry
20.
Food Res Int ; 180: 114074, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395577

ABSTRACT

Low-temperature (9-12 °C) pulsed electric field (PEF) was investigated in milk before cream separation at different intensities (9-27 kV/cm, 66 µs, 16-28 kJ/L) regarding its potential to render processing more sustainable, retain a high physico-chemical quality, enhance functional properties, and gently modify the structure of the milk fat globule membrane (MFGM). Cream volume per L milk were most efficiently increased by 31 % at the lowest PEF intensity in comparison to untreated milk and cream (P < 0.05). Untreated and PEF-treated milk and obtained cream were assessed with compositional (fat, protein, casein, lactose, and total solids content) and particle size distribution analyses, showing no significant differences (P ≥ 0.05) and, thus, indicating retention of 'native-like' product quality. Overrun and stability of cream, whipped for 20 and 60 s at 15000 rpm using a high-shear mixer, were improved most notably by the lowest and the highest PEF intensities, achieving up to 69 % enlarged overrun and up to 22 % higher stability, respectively (P < 0.05), than in untreated whipped cream. Protein component analyses for milk and cream were carried out by sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Noticeable differences between untreated and PEF-treated milk were not observed, but the SDS-PAGE results for cream showed noticeably different bands for some of the protein components, indicating structural changes in MFGM-, whey-, and phospho-proteins due to PEF and/or separator processing effects. More intense bands of xanthine oxidase, xanthine dehydrogenase, butyrophilin, bovine serum albumine, adipophilin (ADPH), and glycoproteins PAS6/7 were observed specifically at 21 kV/cm. Gentle electroporation of both MFGM layers by PEF was determined based on the changes in MFGM monolayer components, such as ADPH and PAS 6/7, exhibiting intensified bands. PEF intensity-dependent impact on the structure of MFGM and casein, leading to a reconfiguration of the cream matrix due to different structuring interactions among proteins, among milk fat globules, and between fat and protein components, was suggested. Overall, low-temperature PEF applied at different intensities showed great potential for gentle, efficient, and functional properties-tailored dairy processing and may also enable effective extraction of highly bioactive ingredients from dairy sources.


Subject(s)
Caseins , Milk , Animals , Caseins/chemistry , Milk/chemistry , Whey Proteins/analysis , Membranes , Whey
SELECTION OF CITATIONS
SEARCH DETAIL
...