Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Cell Death Dis ; 9(12): 1182, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30518854

ABSTRACT

Klebsiella pneumoniae is a Gram-negative bacterium responsible for severe cases of nosocomial pneumonia. During the infectious process, both neutrophils and monocytes migrate to the site of infection, where they carry out their effector functions and can be affected by different patterns of cell death. Our data show that clinical strains of K. pneumoniae have dissimilar mechanisms for surviving within macrophages; these mechanisms include modulation of microbicidal mediators and cell death. The A28006 strain induced high IL-1ß production and pyroptotic cell death in macrophages; by contrast, the A54970 strain induced high IL-10 production and low IL-1ß production by macrophages. Pyroptotic cell death induced by the A28006 strain leads to a significant increase in bacterial sensitivity to hydrogen peroxide, and efferocytosis of the pyroptotic cells results in efficient bacterial clearance both in vitro and in vivo. In addition, the A54970 strain was able to inhibit inflammasome activation and pyroptotic cell death by inducing IL-10 production. Here, for the first time, we present a K. pneumoniae strain able to inhibit inflammasome activation, leading to bacterial survival and dissemination in the host. The understanding of possible escape mechanisms is essential in the search for alternative treatments against multidrug-resistant bacteria.


Subject(s)
Bacteremia/microbiology , Host-Pathogen Interactions/immunology , Inflammasomes/immunology , Klebsiella Infections/microbiology , Klebsiella pneumoniae/pathogenicity , Pyroptosis/immunology , Animals , Bacteremia/genetics , Bacteremia/immunology , Bacteremia/pathology , Caspase 1/deficiency , Caspase 1/genetics , Caspase 1/immunology , Caspases/deficiency , Caspases/genetics , Caspases/immunology , Caspases, Initiator , Female , Gene Expression , Host-Pathogen Interactions/genetics , Humans , Inflammasomes/genetics , Interleukin-10/deficiency , Interleukin-10/genetics , Interleukin-10/immunology , Klebsiella Infections/genetics , Klebsiella Infections/immunology , Klebsiella Infections/pathology , Klebsiella pneumoniae/immunology , Klebsiella pneumoniae/isolation & purification , Macrophages/immunology , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Monocytes/microbiology , Neutrophils/immunology , Neutrophils/microbiology , Phagocytosis/genetics , Pyroptosis/genetics
2.
PLoS Pathog ; 14(12): e1007519, 2018 12.
Article in English | MEDLINE | ID: mdl-30589883

ABSTRACT

Innate immune response against Brucella abortus involves activation of Toll-like receptors (TLRs) and NOD-like receptors (NLRs). Among the NLRs involved in the recognition of B. abortus are NLRP3 and AIM2. Here, we demonstrate that B. abortus triggers non-canonical inflammasome activation dependent on caspase-11 and gasdermin-D (GSDMD). Additionally, we identify that Brucella-LPS is the ligand for caspase-11 activation. Interestingly, we determine that B. abortus is able to trigger pyroptosis leading to pore formation and cell death, and this process is dependent on caspase-11 and GSDMD but independently of caspase-1 protease activity and NLRP3. Mice lacking either caspase-11 or GSDMD were significantly more susceptible to infection with B. abortus than caspase-1 knockout or wild-type animals. Additionally, guanylate-binding proteins (GBPs) present in mouse chromosome 3 participate in the recognition of LPS by caspase-11 contributing to non-canonical inflammasome activation as observed by the response of Gbpchr3-/- BMDMs to bacterial stimulation. We further determined by siRNA knockdown that among the GBPs contained in mouse chromosome 3, GBP5 is the most important for Brucella LPS to be recognized by caspase-11 triggering IL-1ß secretion and LDH release. Additionally, we observed a reduction in neutrophil, dendritic cell and macrophage influx in spleens of Casp11-/- and Gsdmd-/- compared to wild-type mice, indicating that caspase-11 and GSDMD are implicated in the recruitment and activation of immune cells during Brucella infection. Finally, depletion of neutrophils renders wild-type mice more susceptible to Brucella infection. Taken together, these data suggest that caspase-11/GSDMD-dependent pyroptosis triggered by B. abortus is important to infection restriction in vivo and contributes to immune cell recruitment and activation.


Subject(s)
Apoptosis Regulatory Proteins/immunology , Brucellosis/immunology , Caspases/immunology , GTP-Binding Proteins/immunology , Immunity, Innate/immunology , Animals , Brucella abortus , Caspases, Initiator , Intracellular Signaling Peptides and Proteins , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphate-Binding Proteins
3.
Sci Rep ; 8(1): 13582, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30206376

ABSTRACT

Commercially available saponins are extracted from Quillaja saponaria barks, being Quil A® the most widely used. Nanoparticulate immunostimulating complexes (ISCOMs or ISCOMATRIX) formulated with these, are able to stimulate strong humoral and cellular immune responses. Recently, we formulated novel ISCOMs replacing QuilA® by QB-90 (IQB-90), a Quillaja brasiliensis leaf-extracted saponin fraction, and reported that IQB-90 improved antigen uptake, and induced systemic and mucosal antibody production, and T-cell responses. However, its mechanism of action remains unclear. In this study we provide a deeper insight into the immune stimulatory properties of QB-90 and ISCOMATRIX-like based on this fraction (IMXQB-90). We show herein that, when used as a viral vaccine adjuvant, QB-90 promotes an "immunocompetent environment". In addition, QB-90 and IMXQB-90 induce immune-cells recruitment at draining-lymph nodes and spleen. Subsequently, we prove that QB-90 or IMXQB-90 stimulated dendritic cells secret IL-1ß by mechanisms involving Caspase-1/11 and MyD88 pathways, implying canonical inflammasome activation. Finally, both formulations induce a change in the expression of cytokines and chemokines coding genes, many of which are up-regulated. Findings reported here provide important insights into the molecular and cellular mechanisms underlying the adjuvant activity of Q. brasiliensis leaf-saponins and its respective nanoparticles.


Subject(s)
Adjuvants, Immunologic , Nanoparticles/chemistry , Quillaja/chemistry , Saponins , Viral Vaccines , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Animals , Caspase 1/immunology , Caspases/immunology , Caspases, Initiator , Dendritic Cells/immunology , Dogs , Female , Interleukin-1beta/immunology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Myeloid Differentiation Factor 88/immunology , Saponins/chemistry , Saponins/pharmacology , Viral Vaccines/chemistry , Viral Vaccines/immunology , Viral Vaccines/pharmacology
4.
Front Immunol ; 9: 913, 2018.
Article in English | MEDLINE | ID: mdl-29774028

ABSTRACT

Infection with protozoan parasite Trypanosoma cruzi results in activation of nucleotide-binding domain and leucine-rich repeat containing receptors (NLRs). NLR activation leads to inflammasome formation, the activation of caspase-1, and the subsequent cleavage of IL-1ß and IL-18. Considering that inflammasome activation and IL-1ß induction by macrophages are key players for an appropriate T cell response, we investigated the relevance of NLR pyrin domain-containing 3 (NLRP3) and caspase-1/11 to elucidate their roles in the induction of different T cell phenotypes and the relationship with parasite load and hepatic inflammation during T. cruzi-Tulahuen strain acute infection. We demonstrated that infected nlrp3-/- and C57BL/6 wild type (WT) mice exhibited similar parasitemia and survival, although the parasite load was higher in the livers of nlrp3-/- mice than in those of WT mice. Increased levels of transaminases and pro-inflammatory cytokines were found in the plasma of WT and nlrp3-/- mice indicating that NLRP3 is dispensable to control the parasitemia but it is required for a better clearance of parasites in the liver. Importantly, we have found that NLRP3 and caspase-1/11-deficient mice differentially modulate T helper (Th1, Th2, and Th17) and cytotoxic T lymphocyte phenotypes. Strikingly, caspase-1/11-/- mice showed the most dramatic reduction in the number of IFN-γ- and IL-17-producing CD4+ and CD8+ T cells associated with higher parasitemia and lower survival. Additionally, caspase-1/11-/- mice demonstrated significantly reduced liver inflammation with the lowest alanine aminotransferase (ALT) levels but the highest hepatic parasitic load. These results unequivocally demonstrate that caspase-1/11 pathway plays an important role in the induction of liver adaptive immunity against this parasite infection as well as in hepatic inflammation.


Subject(s)
Caspase 1/immunology , Caspases/immunology , Chagas Disease/immunology , Inflammasomes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Acute Disease , Animals , Caspase 1/genetics , Caspases/genetics , Caspases, Initiator , Cytokines/immunology , Interleukin-1beta/immunology , Liver/parasitology , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Parasite Load , Reactive Oxygen Species/metabolism , Signal Transduction , T-Lymphocytes/immunology , Transaminases/blood , Trypanosoma cruzi
5.
Apoptosis ; 21(7): 763-77, 2016 07.
Article in English | MEDLINE | ID: mdl-27142195

ABSTRACT

Caspases are cysteine proteases, which play important roles in different processes including, apoptosis and inflammation. Caspase-12, expressed in mouse and human, is classified as an inflammatory caspase. However, in humans caspase-12 gene has acquired different mutations that result in the expression of different variants. Caspase-12 is generally recognized as a negative regulator of the inflammatory response induced by infections, because it inhibits the activation of caspase-1 in inflammasome complexes, the production of the pro-inflammatory cytokines IL-1ß and IL-18 and the overall response to sepsis. In contrast, caspase-4, the human paralog of caspase-12, exerts a positive modulatory action of the inflammatory response to infectious agents. The role of caspase-12 and caspase-4 in inflammation associated with cerebral ischemia, a condition that results from a transient or permanent reduction of cerebral blood flow, is still unknown. Among the mechanisms involved in ischemic brain injury, apoptosis and inflammation have important roles. Under these conditions, disturbances in the homeostasis of the endoplasmic reticulum (ER) take place, leading to ER stress, caspase activation and apoptosis. Caspase-12 up-regulation and processing has been observed after the ischemic episode but its role in apoptosis is controversial. Cleavage of caspase-4 also occurs during ER stress but its role in ischemic brain injury is unknown. Throughout this review evidence supporting a role of caspase-12 and caspase-4 on the modulation of the inflammatory response to infection and their potential contribution to ER stress-induced apoptosis, is discussed. Understanding the actions of rodent caspase-12 and human caspase-4 will help us to elucidate their role in different pathological conditions, which to date is not well understood.


Subject(s)
Apoptosis , Brain Ischemia/enzymology , Caspases/immunology , Inflammation/enzymology , Neurons/cytology , Animals , Brain Ischemia/genetics , Brain Ischemia/immunology , Brain Ischemia/physiopathology , Caspase 12/genetics , Caspase 12/immunology , Caspases/genetics , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/physiopathology
6.
Nat Commun ; 6: 10205, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26687278

ABSTRACT

Coxiella burnetii is a highly infectious bacterium that promotes its own replication in macrophages by inhibiting several host cell responses. Here, we show that C. burnetii inhibits caspase-1 activation in primary mouse macrophages. By using co-infection experiments, we determine that the infection of macrophages with C. burnetii inhibits the caspase-11-mediated non-canonical activation of the NLRP3 inflammasome induced by subsequent infection with Escherichia coli or Legionella pneumophila. Genetic screening using flagellin mutants of L. pneumophila as a surrogate host, reveals a novel C. burnetii gene (IcaA) involved in the inhibition of caspase activation. Expression of IcaA in L. pneumophila inhibited the caspase-11 activation in macrophages. Moreover, icaA(-) mutants of C. burnetii failed to suppress the caspase-11-mediated inflammasome activation induced by L. pneumophila. Our data reveal IcaA as a novel C. burnetii effector protein that is secreted by the Dot/Icm type IV secretion system and interferes with the caspase-11-induced, non-canonical activation of the inflammasome.


Subject(s)
Bacterial Proteins/immunology , Coxiella burnetii/immunology , Inflammasomes/immunology , Q Fever/immunology , Type IV Secretion Systems/immunology , Animals , Bacterial Proteins/genetics , Caspases/genetics , Caspases/immunology , Caspases, Initiator , Coxiella burnetii/genetics , Female , Gene Expression Regulation, Bacterial , Humans , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Q Fever/genetics , Q Fever/microbiology , Type IV Secretion Systems/genetics
7.
J Immunol ; 195(5): 2303-11, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26232428

ABSTRACT

Gram-negative bacteria from the Legionella genus are intracellular pathogens that cause a severe form of pneumonia called Legionnaires' disease. The bacteria replicate intracellularly in macrophages, and the restriction of bacterial replication by these cells is critical for host resistance. The activation of the NAIP5/NLRC4 inflammasome, which is readily triggered in response to bacterial flagellin, is essential for the restriction of bacterial replication in murine macrophages. Once activated, this inflammasome induces pore formation and pyroptosis and facilitates the restriction of bacterial replication in macrophages. Because investigations related to the NLRC4-mediated restriction of Legionella replication were performed using mice double deficient for caspase-1 and caspase-11, we assessed the participation of caspase-1 and caspase-11 in the functions of the NLRC4 inflammasome and the restriction of Legionella replication in macrophages and in vivo. By using several species of Legionella and mice singly deficient for caspase-1 or caspase-11, we demonstrated that caspase-1 but not caspase-11 was required for pore formation, pyroptosis, and restriction of Legionella replication in macrophages and in vivo. By generating F1 mice in a mixed 129 × C57BL/6 background deficient (129 × Casp-11(-/-) ) or sufficient (129 × C57BL/6) for caspase-11 expression, we found that caspase-11 was dispensable for the restriction of Legionella pneumophila replication in macrophages and in vivo. Thus, although caspase-11 participates in flagellin-independent noncanonical activation of the NLRP3 inflammasome, it is dispensable for the activities of the NLRC4 inflammasome. In contrast, functional caspase-1 is necessary and sufficient to trigger flagellin/NLRC4-mediated restriction of Legionella spp. infection in macrophages and in vivo.


Subject(s)
Apoptosis Regulatory Proteins/immunology , Calcium-Binding Proteins/immunology , Caspase 1/immunology , Caspases/immunology , Legionella/immunology , Legionnaires' Disease/immunology , Macrophages/immunology , Pyroptosis/immunology , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Blotting, Western , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Caspases/genetics , Caspases/metabolism , Caspases, Initiator , Cell Line , Cells, Cultured , Enzyme Activation/immunology , Flagella/immunology , Host-Pathogen Interactions/immunology , Interleukin-1beta/biosynthesis , Interleukin-1beta/immunology , Legionella/classification , Legionella/physiology , Legionella pneumophila/immunology , Legionella pneumophila/physiology , Legionnaires' Disease/genetics , Legionnaires' Disease/microbiology , Macrophages/metabolism , Macrophages/microbiology , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Pyroptosis/genetics , Species Specificity
8.
Braz J Infect Dis ; 16(1): 19-26, 2012.
Article in English | MEDLINE | ID: mdl-22358351

ABSTRACT

OBJECTIVE: Epstein-Barr virus (EBV) is a ubiquitous human γ-herpes virus, which can adapt and evade host immune defense. Dendritic cells (DCs) play a pivotal role in the initiation and maintenance of immune responses. This study investigated the effects of EBV on cord blood monocytes derived DCs (CBDC). METHODS: Monocytes were isolated from cord blood and cultured in medium containing recombinant IL-4 and GM-CSF to induce DCs development. B95-8 supernatant was added in monocytes culture medium for EBV infection at day 0. Phenotypic characterization of DCs, apoptotic cells, and mitochondrial membrane potential (MMP) were detected by flow cytometry. The morphology was observed by Hoechst 33258 staining and TUNEL staining, the expression of X-linked inhibitor of apoptosis protein (XIAP) was detected by Western blotting assay and caspase 3, 8 and 9 activity was measured. RESULTS: Phenotypic characterization of DCs was changed in EBV-treated group. Chromatin condensation and DNA fragmentation were observed in EBV induced CBDC apoptosis. In addition, caspase 3, caspase 8, and caspase 9 activation were enhanced in the EBV-treated group. This was accompanied by the loss of MMP. Furthermore, XIAP expression was down-regulated in the EBV-treated group and compared to mock-infected group. CONCLUSION: These results suggested that EBV could inhibit CBDC phenotypic differentiation, and induce CBDC apoptosis in caspase-dependent manner with involvement of the mitochondrial pathway. This might help EBV to evade host immune responses to establish persistent infection.


Subject(s)
Apoptosis/physiology , Cytopathogenic Effect, Viral/physiology , Dendritic Cells/pathology , Fetal Blood/cytology , Herpesvirus 4, Human/physiology , Monocytes/pathology , Blotting, Western , Caspases/immunology , Cell Differentiation , Dendritic Cells/virology , Flow Cytometry , Herpesvirus 4, Human/immunology , Humans , Interleukin-4/immunology , Monocytes/cytology , Monocytes/virology , Phenotype , X-Linked Inhibitor of Apoptosis Protein/immunology
9.
Braz. j. infect. dis ; Braz. j. infect. dis;16(1): 19-26, Jan.-Feb. 2012. ilus
Article in English | LILACS | ID: lil-614545

ABSTRACT

OBJECTIVE: Epstein-Barr virus (EBV) is a ubiquitous human γ-herpes virus, which can adapt and evade host immune defense. Dendritic cells (DCs) play a pivotal role in the initiation and maintenance of immune responses. This study investigated the effects of EBV on cord blood monocytes derived DCs (CBDC). METHODS: Monocytes were isolated from cord blood and cultured in medium containing recombinant IL-4 and GM-CSF to induce DCs development. B95-8 supernatant was added in monocytes culture medium for EBV infection at day 0. Phenotypic characterization of DCs, apoptotic cells, and mitochondrial membrane potential (MMP) were detected by flow cytometry. The morphology was observed by Hoechst 33258 staining and TUNEL staining, the expression of X-linked inhibitor of apoptosis protein (XIAP) was detected by Western blotting assay and caspase 3, 8 and 9 activity was measured. RESULTS: Phenotypic characterization of DCs was changed in EBV-treated group. Chromatin condensation and DNA fragmentation were observed in EBV induced CBDC apoptosis. In addition, caspase 3, caspase 8, and caspase 9 activation were enhanced in the EBV-treated group. This was accompanied by the loss of MMP. Furthermore, XIAP expression was down-regulated in the EBV-treated group and compared to mock-infected group. CONCLUSION: These results suggested that EBV could inhibit CBDC phenotypic differentiation, and induce CBDC apoptosis in caspase-dependent manner with involvement of the mitochondrial pathway. This might help EBV to evade host immune responses to establish persistent infection.


Subject(s)
Humans , Apoptosis/physiology , Cytopathogenic Effect, Viral/physiology , Dendritic Cells/pathology , Fetal Blood/cytology , /physiology , Monocytes/pathology , Blotting, Western , Cell Differentiation , Caspases/immunology , Dendritic Cells/virology , Flow Cytometry , /immunology , /immunology , Monocytes/cytology , Monocytes/virology , Phenotype , X-Linked Inhibitor of Apoptosis Protein/immunology
10.
Eur J Immunol ; 38(1): 139-46, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18085669

ABSTRACT

Infection with Trypanosoma cruzi causes expansion of subcutaneous (SLN) and atrophy of mesenteric (MLN) lymph nodes. Here we show that excision of MLN increased parasitemia in T. cruzi-infected mice. We then studied how apoptosis of MLN cells affects immune responses to infection. T cell apoptosis increased in the MLN compared to SLN in T. cruzi-infected mice. Absolute numbers of naïve T cells decreased, and activated T cells failed to accumulate in MLN during infection. In addition, activated T cells from MLN produced less IL-2, IFN-gamma, IL-4, and IL-10 than T cells from SLN. Treatment with IL-4 or with caspase-9 inhibitor increased the recovery of viable T cells in vitro. Treatment with caspase-9 inhibitor also increased the production of cytokines by MLN T cells from infected mice. Moreover, injection of a pan caspase inhibitor prevented MLN atrophy during T. cruzi infection. Caspase-9, but not caspase-8, inhibitor also reduced MLN atrophy and increased the recovery of naïve and activated T cells from MLN. These findings indicate that caspase-mediated apoptosis and defective cytokine production are implicated in MLN atrophy and affect immune responses to T. cruzi infection.


Subject(s)
Apoptosis/immunology , Chagas Disease/immunology , Lymph Nodes/immunology , Mesentery/immunology , Skin/immunology , T-Lymphocytes/immunology , Animals , Atrophy , Caspases/drug effects , Caspases/immunology , Caspases/metabolism , Cytokines/biosynthesis , Enzyme Inhibitors/pharmacology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Lymph Nodes/microbiology , Lymph Nodes/pathology , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred BALB C , T-Lymphocytes/microbiology , T-Lymphocytes/pathology , Trypanosoma cruzi
11.
Immunology ; 113(3): 355-62, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15500622

ABSTRACT

We have previously reported that human neutrophils pretreated with tumour necrosis factor-alpha (TNF-alpha) and then exposed to a variety of agents such as immune complexes, zymosan, phorbol 12-myristate 13-acetate (PMA), C5a, fMLP, or granulocyte-macrophage colony-stimulating factor (GM-CSF), undergo a dramatic stimulation of apoptosis, suggesting that TNF-alpha is able to prime an apoptotic death programme which can be rapidly triggered by different stimuli. We report here that this response involves the participation of Mac-1 (CD11b/CD18), is dependent on caspases 3, 8 and 9, and is associated with both a loss of mitochondrial transmembrane potential and a down-regulation in expression of the anti-apoptotic protein, Mcl-1. Interestingly, we also found that the anti-apoptotic cytokine interleukin-1 (IL-1) improves the ability of TNF-alpha to promote apoptosis, supporting the notion than TNF-alpha, acting together with IL-1, may favour the depletion of neutrophils from the inflammatory areas during the course of acute inflammation.


Subject(s)
Apoptosis/immunology , Neutrophils/immunology , Tumor Necrosis Factor-alpha/immunology , Caspases/immunology , Cells, Cultured , Down-Regulation/immunology , Humans , Interleukin-1/immunology , Macrophage-1 Antigen/immunology , Myeloid Cell Leukemia Sequence 1 Protein , Neoplasm Proteins/immunology , Proto-Oncogene Proteins c-bcl-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL