Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 19(2)2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29425128

ABSTRACT

Qat (Catha edulis, Celastraceae) is a woody evergreen species with great economic and cultural importance. It is cultivated for its stimulant alkaloids cathine and cathinone in East Africa and southwest Arabia. However, genome information, especially DNA sequence resources, for C. edulis are limited, hindering studies regarding interspecific and intraspecific relationships. Herein, the complete chloroplast (cp) genome of Catha edulis is reported. This genome is 157,960 bp in length with 37% GC content and is structurally arranged into two 26,577 bp inverted repeats and two single-copy areas. The size of the small single-copy and the large single-copy regions were 18,491 bp and 86,315 bp, respectively. The C. edulis cp genome consists of 129 coding genes including 37 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 84 protein coding genes. For those genes, 112 are single copy genes and 17 genes are duplicated in two inverted regions with seven tRNAs, four rRNAs, and six protein coding genes. The phylogenetic relationships resolved from the cp genome of qat and 32 other species confirms the monophyly of Celastraceae. The cp genomes of C. edulis, Euonymus japonicus and seven Celastraceae species lack the rps16 intron, which indicates an intron loss took place among an ancestor of this family. The cp genome of C. edulis provides a highly valuable genetic resource for further phylogenomic research, barcoding and cp transformation in Celastraceae.


Subject(s)
Catha/genetics , Genome, Chloroplast , Catha/classification , Open Reading Frames , Phylogeny , RNA, Ribosomal/genetics , RNA, Transfer/genetics , Repetitive Sequences, Nucleic Acid
2.
Am J Bot ; 104(4): 538-549, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28411209

ABSTRACT

PREMISE OF THE STUDY: Qat (Catha edulis, Celastraceae) is a woody plant species cultivated for its stimulant alkaloids. Qat is important to the economy and culture in large regions of Ethiopia, Kenya, and Yemen. Despite the importance of this species, the wild origins and dispersal of cultivars have only been described in often contradictory historical documents. We examined the wild origins, human-mediated dispersal, and genetic divergence of cultivated qat compared to wild qat. METHODS: We sampled 17 SSR markers and 1561 wild and cultivated individuals across the historical areas of qat cultivation. KEY RESULTS: On the basis of genetic structure inferred using Bayesian and nonparametric methods, two centers of origin in Kenya and one in Ethiopia were found for cultivated qat. The centers of origin in Ethiopia and northeast of Mt. Kenya are the primary sources of cultivated qat genotypes. Qat cultivated in Yemen is derived from Ethiopian genotypes rather than Yemeni wild populations. Cultivated qat with a wild Kenyan origin has not spread to Ethiopia or Yemen, whereas a small minority of qat cultivated in Kenya originated in Ethiopia. Hybrid genotypes with both Ethiopian and Kenyan parentage are present in northern Kenya. CONCLUSIONS: Ethiopian cultivars have diverged from their wild relatives, whereas Kenyan qat has diverged less. This pattern of divergence could be caused by the extinction of the wild-source qat populations in Ethiopia due to deforestation, undersampling, and/or artificial selection for agronomically important traits.


Subject(s)
Catha/genetics , Bayes Theorem , Crop Production , DNA, Plant/genetics , DNA, Plant/isolation & purification , Ethiopia , Genetic Markers/genetics , Genotype , Kenya , Microsatellite Repeats/genetics , Phylogeography , Polymerase Chain Reaction , Yemen
3.
PLoS One ; 10(3): e0119701, 2015.
Article in English | MEDLINE | ID: mdl-25806807

ABSTRACT

Amphetamine analogues are produced by plants in the genus Ephedra and by khat (Catha edulis), and include the widely used decongestants and appetite suppressants (1S,2S)-pseudoephedrine and (1R,2S)-ephedrine. The production of these metabolites, which derive from L-phenylalanine, involves a multi-step pathway partially mapped out at the biochemical level using knowledge of benzoic acid metabolism established in other plants, and direct evidence using khat and Ephedra species as model systems. Despite the commercial importance of amphetamine-type alkaloids, only a single step in their biosynthesis has been elucidated at the molecular level. We have employed Illumina next-generation sequencing technology, paired with Trinity and Velvet-Oases assembly platforms, to establish data-mining frameworks for Ephedra sinica and khat plants. Sequence libraries representing a combined 200,000 unigenes were subjected to an annotation pipeline involving direct searches against public databases. Annotations included the assignment of Gene Ontology (GO) terms used to allocate unigenes to functional categories. As part of our functional genomics program aimed at novel gene discovery, the databases were mined for enzyme candidates putatively involved in alkaloid biosynthesis. Queries used for mining included enzymes with established roles in benzoic acid metabolism, as well as enzymes catalyzing reactions similar to those predicted for amphetamine alkaloid metabolism. Gene candidates were evaluated based on phylogenetic relationships, FPKM-based expression data, and mechanistic considerations. Establishment of expansive sequence resources is a critical step toward pathway characterization, a goal with both academic and industrial implications.


Subject(s)
Alkaloids/biosynthesis , Catha/genetics , Ephedra sinica/genetics , Genes, Plant , Transcriptome , Catha/metabolism , Data Mining , Databases, Genetic , Ephedra sinica/metabolism , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Phylogeny
4.
Mol Phylogenet Evol ; 48(2): 745-57, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18550389

ABSTRACT

The phylogeny of Celastraceae tribe Celastreae, which includes about 350 species of trees and shrubs in 15 genera, was inferred in a simultaneous analysis of morphological characters together with nuclear (ITS and 26S rDNA) and plastid (matK, trnL-F) genes. A strong correlation was found between the geography of the species sampled and their inferred relationships. Species of Maytenus and Gymnosporia from different regions were resolved as polyphyletic groups. Maytenus was resolved in three lineages (New World, African, and Austral-Pacific), while Gymnosporia was resolved in two lineages (New World and Old World). Putterlickia was resolved as nested within the Old World Gymnosporia. Catha edulis (qat, khat) was resolved as sister to the clade of Allocassine, Cassine, Lauridia, and Maurocenia. Gymnosporia cassinoides, which is reportedly chewed as a stimulant in the Canary Islands, was resolved as a derived member of Gymnosporia and is more closely related to Lydenburgia and Putterlickia than it is to Catha. Therefore, all eight of these genera are candidates for containing cathinone- and/or cathine-related alkaloids.


Subject(s)
Catha/genetics , Genes, Plant/genetics , Phylogeny , Catha/anatomy & histology , Catha/classification , Cell Nucleus/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/genetics , Molecular Sequence Data , Plastids/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...