Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.323
Filter
1.
J Biomed Sci ; 31(1): 46, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725007

ABSTRACT

BACKGROUND: Cathepsin S (CTSS) is a cysteine protease that played diverse roles in immunity, tumor metastasis, aging and other pathological alterations. At the cellular level, increased CTSS levels have been associated with the secretion of pro-inflammatory cytokines and disrupted the homeostasis of Ca2+ flux. Once CTSS was suppressed, elevated levels of anti-inflammatory cytokines and changes of Ca2+ influx were observed. These findings have inspired us to explore the potential role of CTSS on cognitive functions. METHODS: We conducted classic Y-maze and Barnes Maze tests to assess the spatial and working memory of Ctss-/- mice, Ctss+/+ mice and Ctss+/+ mice injected with the CTSS inhibitor (RJW-58). Ex vivo analyses including long-term potentiation (LTP), Golgi staining, immunofluorescence staining of sectioned whole brain tissues obtained from experimental animals were conducted. Furthermore, molecular studies were carried out using cultured HT-22 cell line and primary cortical neurons that treated with RJW-58 to comprehensively assess the gene and protein expressions. RESULTS: Our findings reported that targeting cathepsin S (CTSS) yields improvements in cognitive function, enhancing both working and spatial memory in behavior models. Ex vivo studies showed elevated levels of long-term potentiation levels and increased synaptic complexity. Microarray analysis demonstrated that brain-derived neurotrophic factor (BDNF) was upregulated when CTSS was knocked down by using siRNA. Moreover, the pharmacological blockade of the CTSS enzymatic activity promoted BDNF expression in a dose- and time-dependent manner. Notably, the inhibition of CTSS was associated with increased neurogenesis in the murine dentate gyrus. These results suggested a promising role of CTSS modulation in cognitive enhancement and neurogenesis. CONCLUSION: Our findings suggest a critical role of CTSS in the regulation of cognitive function by modulating the Ca2+ influx, leading to enhanced activation of the BDNF/TrkB axis. Our study may provide a novel strategy for improving cognitive function by targeting CTSS.


Subject(s)
Brain-Derived Neurotrophic Factor , Cathepsins , Cognition , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Cathepsins/metabolism , Cathepsins/genetics , Cognition/physiology , Receptor, trkB/metabolism , Receptor, trkB/genetics , Male , Mice, Knockout
2.
J Photochem Photobiol B ; 255: 112919, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677261

ABSTRACT

Endolysosomes perform a wide range of cellular functions, including nutrient sensing, macromolecule digestion and recycling, as well as plasma membrane repair. Because of their high activity in cancerous cells, endolysosomes are attractive targets for the development of novel cancer treatments. Light-activated compounds termed photosensitizers (PS) can catalyze the oxidation of specific biomolecules and intracellular organelles. To selectively damage endosomes and lysosomes, HT-29 colorectal cancer cells were incubated with nanomolar concentrations of meso-tetraphenylporphine disulfonate (TPPS2a), an amphiphilic PS taken up via endocytosis and activated by green light (522 nm, 2.1 J.cm-1). Several cellular responses were characterized by a combination of immunofluorescence and immunoblotting assays. We showed that TPPS2a photosensitization blocked autophagic flux without extensive endolysosomal membrane rupture. Nevertheless, there was a severe functional failure of endolysosomes due to a decrease in CTSD (cathepsin D, 55%) and CTSB (cathepsin B, 52%) maturation. PSAP (prosaposin) processing (into saposins) was also considerably impaired, a fact that could be detrimental to glycosphingolipid homeostasis. Therefore, photosensitization of HT-29 cells previously incubated with a low concentration of TPPS2a promotes endolysosomal dysfunction, an effect that can be used to improve cancer therapies.


Subject(s)
Autophagy , Lysosomes , Photosensitizing Agents , Humans , HT29 Cells , Lysosomes/metabolism , Lysosomes/drug effects , Autophagy/drug effects , Autophagy/radiation effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Endosomes/metabolism , Endosomes/drug effects , Cathepsins/metabolism , Cathepsins/antagonists & inhibitors , Light , Porphyrins/pharmacology , Porphyrins/chemistry , Cathepsin D/metabolism , Cathepsin B/metabolism
3.
Food Chem ; 449: 139166, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38604025

ABSTRACT

Apostichopus japonicus (A. japonicus) has rich nutritional value and is an important economic crop. Due to its rich endogenous enzyme system, fresh A. japonicus is prone to autolysis during market circulation and storage, resulting in economic losses. In order to alleviate this phenomenon, we investigated the effect of polyphenol oxidase (PPO) mediated (-)-epigallocatechin gallate (EGCG) on the activity and structure of endogenous cathepsin series protein (CEP) from A. japonicus. Research on cathepsin activity showed that PPO mediated EGCG could significantly reduce enzyme activity, resulting in a decrease in enzymatic reaction rate. SDS-PAGE and scanning electron microscopy results showed that PPO mediates EGCG could induce CEP aggregation to form protein aggregates. Various spectral results indicated that EGCG caused changes in the structure of CEP. Meanwhile, the conjugates formed by PPO mediated EGCG had lower thermal stability. In conclusion, PPO mediated EGCG was an effective method to inhibit the endogenous enzyme activity.


Subject(s)
Catechin , Catechin/analogs & derivatives , Catechol Oxidase , Cathepsins , Stichopus , Catechin/chemistry , Catechin/pharmacology , Catechol Oxidase/metabolism , Catechol Oxidase/chemistry , Animals , Stichopus/enzymology , Stichopus/chemistry , Cathepsins/metabolism , Cathepsins/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Stability , Kinetics
4.
Biomolecules ; 14(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38672508

ABSTRACT

Reported herein is the development of assays for the spectrophotometric quantification of biocatalytic silicon-oxygen bond hydrolysis. Central to these assays are a series of chromogenic substrates that release highly absorbing phenoxy anions upon cleavage of the sessile bond. These substrates were tested with silicatein, an enzyme from a marine sponge that is known to catalyse the hydrolysis and condensation of silyl ethers. It was found that, of the substrates tested, tert-butyldimethyl(2-methyl-4-nitrophenoxy)silane provided the best assay performance, as evidenced by the highest ratio of enzyme catalysed reaction rate compared with the background (uncatalysed) reaction. These substrates were also found to be suitable for detailed enzyme kinetics measurements, as demonstrated by their use to determine the Michaelis-Menten kinetic parameters for silicatein.


Subject(s)
Biocatalysis , Ethers , Silanes , Spectrophotometry , Hydrolysis , Spectrophotometry/methods , Silanes/chemistry , Kinetics , Ethers/chemistry , Ethers/metabolism , Animals , Cathepsins/metabolism , Cathepsins/chemistry
5.
Inorg Chem ; 63(17): 7973-7983, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38616353

ABSTRACT

Dysregulated cathepsin activity is linked to various human diseases including metabolic disorders, autoimmune conditions, and cancer. Given the overexpression of cathepsin in the tumor microenvironment, cathepsin inhibitors are promising pharmacological agents and drug delivery vehicles for cancer treatment. In this study, we describe the synthesis and photochemical and biological assessment of a dual-action agent based on ruthenium that is conjugated with a cathepsin inhibitor, designed for both photodynamic therapy (PDT) and photochemotherapy (PCT). The ruthenium-cathepsin inhibitor conjugate was synthesized through an oxime click reaction, combining a pan-cathepsin inhibitor based on E64d with the Ru(II) PCT/PDT fragment [Ru(dqpy)(dppn)], where dqpy = 2,6-di(quinoline-2-yl)pyridine and dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine. Photochemical investigations validated the conjugate's ability to release a triazole-containing cathepsin inhibitor for PCT and to generate singlet oxygen for PDT upon exposure to green light. Inhibition studies demonstrated the conjugate's potent and irreversible inactivation of purified and intracellular cysteine cathepsins. Two Ru(II) PCT/PDT agents based on the [Ru(dqpy)(dppn)] moiety were evaluated for photoinduced cytotoxicity in 4T1 murine triple-negative breast cancer cells, L929 fibroblasts, and M0, M1, and M2 macrophages. The cathepsin inhibitor conjugate displayed notable selectivity for inducing cell death under irradiation compared to dark conditions, mitigating toxicity in the dark observed with the triazole control complex [Ru(dqpy)(dppn)(MeTz)]2+ (MeTz = 1-methyl-1H-1,2,4-triazole). Notably, our lead complex is among a limited number of dual PCT/PDT agents activated with green light.


Subject(s)
Cathepsins , Light , Photochemotherapy , Photosensitizing Agents , Ruthenium , Humans , Ruthenium/chemistry , Ruthenium/pharmacology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Cathepsins/antagonists & inhibitors , Cathepsins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Structure , Cell Line, Tumor , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Animals , Mice , Cell Survival/drug effects , Green Light
6.
Meat Sci ; 213: 109513, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38608338

ABSTRACT

The aim of this study was to determine the impact of accelerated aging (AA) on shelf stability, product loss, sensory and biochemical characteristics of 2 lower quality beef cuts. Triceps brachii (TB) and semimembranosus (SM) were collected and fabricated from 10 USDA Choice beef carcasses and assigned to 1 of 6 treatments: 3 d cooler aged (control), 21 d cooler aged, AA 49 °C for 2 h, AA 49 °C for 3 h, AA 54 °C for 2 h, and AA 54 °C for 3 h. The results showed that AA can decrease APC counts on steak surface and in purge and redness, but increase lightness and product loss of the steaks (P < 0.01). Lower shear force was also found for AA steaks compared to those from the control (P < 0.01), with the AA 54 °C treatments being comparable to 21 d cooler aging. However, the trained sensory panel determined AA steaks were less juicy and flavorful than those from the control and 21 d cooler aged samples (P < 0.05). There was no off-flavor detected in AA steaks though lipid oxidation was higher in AA samples than those in the control steaks (P < 0.01). The AA treatments stimulated cathepsin activity (P < 0.05), which may have enhanced the solubilization of stromal proteins and led to a different troponin-T degradation pattern compared to those from the 21 d aged samples (P < 0.01). Although AA is an economical and time-efficient method to increase tenderness of lower-quality beef cuts, further research is needed to determine strategies to mitigate the decrease in juiciness from AA treatments.


Subject(s)
Color , Food Storage , Muscle, Skeletal , Red Meat , Taste , Animals , Red Meat/analysis , Cattle , Muscle, Skeletal/chemistry , Food Storage/methods , Humans , Shear Strength , Food Handling/methods , Cathepsins/metabolism , Male
7.
Mol Biol Rep ; 51(1): 579, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668953

ABSTRACT

Lysosomal cathepsins as a regulatory medium have been assessed as potential therapeutic targets for the treatment of various cardiac diseases such as abdominal aortic aneurysm, hypertension, cardiomyopathy, coronary heart disease, atherosclerosis, etc. They are ubiquitous lysosomal proteases with papain-like folded protein structures that are involved in a variety of physiological processes, such as the digestion of proteins, activation of pro-inflammatory molecules, degradation of extracellular matrix components, and maturation of peptide hormones. Cathepsins are classified into three major groups: cysteine cathepsins, aspartic cathepsins, and serine-threonine cathepsins. Each of these groups is further divided into subgroups based on their substrate specificity, structural characteristics, and biochemical properties. Several studies suggest that cathepsins control the degradation of ECM components such as collagen and elastin fibres. These enzymes are highly expressed in macrophages and inflammatory cells, and their upregulation has been demonstrated to be critical in the progression of atherosclerotic lesions. Additionally, increased cathepsin activity has been linked to increased vascular inflammation and oxidative stress, both of which are associated with CVDs. Specifically, the inhibition of cathepsins may reduce the release of pro-apoptotic mediators such as caspase-3 and PARP-1, which are thought to contribute to plaque instability. The potential of cathepsins as biomarkers and therapeutic targets has also been supported by the identification of potential cathepsin inhibitors, which could be used to modulate the activities of cathepsins in a range of diseases. This review shall familiarise the readers with the role of cysteinyl cathepsins and their inhibitors in the pathogenesis of cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Cathepsins , Humans , Cathepsins/metabolism , Cardiovascular Diseases/metabolism , Animals , Oxidative Stress , Atherosclerosis/metabolism , Biomarkers/metabolism , Lysosomes/metabolism , Extracellular Matrix/metabolism
8.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396918

ABSTRACT

The structure and biochemical properties of protease inhibitors from the thyropin family are poorly understood in parasites and pathogens. Here, we introduce a novel family member, Ir-thyropin (IrThy), which is secreted in the saliva of Ixodes ricinus ticks, vectors of Lyme borreliosis and tick-borne encephalitis. The IrThy molecule consists of two consecutive thyroglobulin type-1 (Tg1) domains with an unusual disulfide pattern. Recombinant IrThy was found to inhibit human host-derived cathepsin proteases with a high specificity for cathepsins V, K, and L among a wide range of screened cathepsins exhibiting diverse endo- and exopeptidase activities. Both Tg1 domains displayed inhibitory activities, but with distinct specificity profiles. We determined the spatial structure of one of the Tg1 domains by solution NMR spectroscopy and described its reactive center to elucidate the unique inhibitory specificity. Furthermore, we found that the inhibitory potency of IrThy was modulated in a complex manner by various glycosaminoglycans from host tissues. IrThy was additionally regulated by pH and proteolytic degradation. This study provides a comprehensive structure-function characterization of IrThy-the first investigated thyropin of parasite origin-and suggests its potential role in host-parasite interactions at the tick bite site.


Subject(s)
Ixodes , Saliva , Animals , Humans , Saliva/metabolism , Cysteine , Glycosaminoglycans , Cathepsins/metabolism , Ixodes/metabolism , Magnetic Resonance Spectroscopy
9.
JCI Insight ; 9(3)2024 02 08.
Article in English | MEDLINE | ID: mdl-38329128

ABSTRACT

The glucocerebrosidase (GCase) encoded by the GBA1 gene hydrolyzes glucosylceramide (GluCer) to ceramide and glucose in lysosomes. Homozygous or compound heterozygous GBA1 mutations cause the lysosomal storage disease Gaucher disease (GD) due to severe loss of GCase activity. Loss-of-function variants in the GBA1 gene are also the most common genetic risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Restoring lysosomal GCase activity represents an important therapeutic approach for GBA1-associated diseases. We hypothesized that increasing the stability of lysosomal GCase protein could correct deficient GCase activity in these conditions. However, it remains unknown how GCase stability is regulated in the lysosome. We found that cathepsin L, a lysosomal cysteine protease, cleaves GCase and regulates its stability. In support of these data, GCase protein was elevated in the brain of cathepsin L-KO mice. Chemical inhibition of cathepsin L increased both GCase levels and activity in fibroblasts from patients with GD. Importantly, inhibition of cathepsin L in dopaminergic neurons from a patient GBA1-PD led to increased GCase levels and activity as well as reduced phosphorylated α-synuclein. These results suggest that targeting cathepsin L-mediated GCase degradation represents a potential therapeutic strategy for GCase deficiency in PD and related disorders that exhibit decreased GCase activity.


Subject(s)
Cysteine Proteases , Parkinson Disease , Humans , Animals , Mice , Glucosylceramidase/genetics , Cathepsin L/genetics , Cathepsin L/metabolism , Cathepsins/metabolism , Cathepsins/therapeutic use , Cysteine Proteases/metabolism , Cysteine Proteases/therapeutic use , Parkinson Disease/metabolism , Lysosomes/metabolism
10.
Aquat Toxicol ; 266: 106783, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38064891

ABSTRACT

Cathepsins are major lysosomal enzymes involved in essential physiological processes, including protein degradation, tissue differentiation, and innate or adaptive responses. Several kinds of cathepsins have been reported in teleost fishes, but no characterization have been performed for the inflammatory response of cathepsin family in olive flounder until now. In our current study, a total of 17 cathepsins in olive flounder were systematically identified and characterized. Phylogenetic analysis clearly indicated that the cathepsin genes was highly conserved. Analysis of structure and motifs exhibited high sequence similarity of cathepsin genes in olive flounder. Expression profiles of cathepsin genes in different tissues and developmental stages showed that cathepsins were temporally and spatially specific. RNA-seq analysis of bacteria and temperature stresses revealed that members of cathepsin were involved in inflammatory responses. Collectively, our findings would provide a further reference for understanding the molecular mechanisms of cathepsins in olive flounder.


Subject(s)
Flounder , Water Pollutants, Chemical , Animals , Cathepsins/genetics , Cathepsins/metabolism , Flounder/genetics , Flounder/metabolism , Phylogeny , Cloning, Molecular , Water Pollutants, Chemical/toxicity , Stress, Physiological/genetics
11.
Arch Biochem Biophys ; 751: 109849, 2024 01.
Article in English | MEDLINE | ID: mdl-38061628

ABSTRACT

Cathepsin S (CTSS) is involved in pathogenesis of many human diseases. Inhibitors blocking its protease activity hold therapeutic potential. In comparison to small-molecule inhibitors, monoclonal antibodies capable of inhibiting CTSS enzymatic activity may possess advantageous pharmacological properties. Here we designed and produced inhibitory antibodies targeting human CTSS by genetically fusing the propeptide of procathepsin S (proCTSS) with antibodies in clinic. The resulting antibody fusions in full-length or fragment antigen-binding format could be stably expressed and potently inhibit CTSS proteolytic activity in high specificity. These fusion antibodies not only demonstrate a new approach for facile synthesis of antibody inhibitors against CTSS, but also represent novel anti-CTSS therapeutic candidates.


Subject(s)
Antibodies, Monoclonal, Humanized , Cathepsins , Humans , Antibodies, Monoclonal, Humanized/pharmacology , Cathepsins/metabolism , Proteolysis
12.
Aging (Albany NY) ; 15(23): 13961-13979, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38078882

ABSTRACT

Cathepsin V (CTSV) is a cysteine cathepsin protease that plays a crucial role in extracellular matrix degradation. CTSV is correlated with poor prognosis in various cancers, but the underlying mechanism remains elusive. Here, we observed that CSTV is upregulated in lung cancer and is a poor prognosis factor for lung cancer. CTSV acts as a driver in the metastasis of lung cancer both in vitro and in vivo. CTSV promotes lung cancer metastasis by downregulating adhesion molecules, including fibronectin, E-cadherin, and N-cadherin. Our data revealed that CTSV functions by mediating the fragmentation of fibronectin, E-cadherin, and N-cadherin in cleavage, remodeling the extracellular matrix (ECM). The rationally designed antibody targeting CTSV blocks its cleaving ability towards fibronectin, E-cadherin, and N-cadherin, suppressing migration and invasion. Furthermore, we found that CTSV expression is negatively correlated with immune cell infiltration and immune scores and inhibits T cell activity. Targeting CTSV with specific antibodies effectively suppressed lung cancer metastasis in a mouse model. Our study demonstrates the critical role of CTSV in the immunity and metastasis of lung cancer, suggesting that the CTSV-targeting approach is a promising strategy for lung cancer.


Subject(s)
Lung Neoplasms , Animals , Mice , Fibronectins , Cathepsins/metabolism , Cell Adhesion Molecules , Cadherins/metabolism , Cell Movement , Cell Line, Tumor
13.
Front Immunol ; 14: 1282856, 2023.
Article in English | MEDLINE | ID: mdl-38124741

ABSTRACT

Inflammasomes are large protein complexes that, once activated, initiate inflammatory responses by activating the caspase-1 protease. They play pivotal roles in host defense against pathogens. The well-established role of NAIP/NLRC4 inflammasome in bacterial infections involves NAIP proteins functioning as sensors for their ligands. However, recent reports have indicated the involvement of NLRC4 in non-bacterial infections and sterile inflammation, even though the role of NAIP proteins and the exact molecular mechanisms underlying inflammasome activation in these contexts remain to be elucidated. In this study, we investigated the activation of the NAIP/NLRC4 inflammasome in response to Trypanosoma cruzi, the protozoan parasite responsible for causing Chagas disease. This parasite has been previously demonstrated to activate NLRP3 inflammasomes. Here we found that NAIP and NLRC4 proteins are also required for IL-1ß and Nitric Oxide (NO) release in response to T. cruzi infection, with their absence rendering macrophages permissive to parasite replication. Moreover, Nlrc4 -/- and Nlrp3 -/- macrophages presented similar impaired responses to T. cruzi, underscoring the non-redundant roles played by these inflammasomes during infection. Notably, it was the live trypomastigotes rather than soluble antigens or extracellular vesicles (EVs) secreted by them, that activated inflammasomes in a cathepsins-dependent manner. The inhibition of cathepsins effectively abrogated caspase-1 cleavage, IL-1ß and NO release, mirroring the phenotype observed in Nlrc4 -/-/Nlrp3 -/- double knockout macrophages. Collectively, our findings shed light on the pivotal role of the NAIP/NLRC4 inflammasome in macrophage responses to T. cruzi infection, providing new insights into its broader functions that extend beyond bacterial infections.


Subject(s)
Bacterial Infections , Chagas Disease , Trypanosoma cruzi , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Trypanosoma cruzi/metabolism , Caspase 1/metabolism , Cathepsins/metabolism , Macrophages , Calcium-Binding Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Neuronal Apoptosis-Inhibitory Protein/metabolism
14.
J Neuroinflammation ; 20(1): 258, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37946211

ABSTRACT

BACKGROUND: Although peripheral nerves have an intrinsic self-repair capacity following damage, functional recovery is limited in patients. It is a well-established fact that macrophages accumulate at the site of injury. Numerous studies indicate that the phenotypic shift from M1 macrophage to M2 macrophage plays a crucial role in the process of axon regeneration. This polarity change is observed exclusively in peripheral macrophages but not in microglia and CNS macrophages. However, the molecular basis of axonal regeneration by M2 macrophage is not yet fully understood. Herein, we aimed to identify the M2 macrophage-derived axon regeneration factor. METHODS: We established a peripheral nerve injury model by transection of the inferior alveolar nerve (IANX) in Sprague-Dawley rats. Transcriptome analysis was performed on the injured nerve. Recovery from sensory deficits in the mandibular region and histological reconnection of IAN after IANX were assessed in rats with macrophage depletion by clodronate. We investigated the effects of adoptive transfer of M2 macrophages or M2-derived cathepsin S (CTSS) on the sensory deficit. CTSS initiating signaling was explored by western blot analysis in IANX rats and immunohistochemistry in co-culture of primary fibroblasts and Schwann cells (SCs). RESULTS: Transcriptome analysis revealed that CTSS, a macrophage-selective lysosomal protease, was upregulated in the IAN after its injury. Spontaneous but partial recovery from a sensory deficit in the mandibular region after IANX was abrogated by macrophage ablation at the injured site. In addition, a robust induction of c-Jun, a marker of the repair-supportive phenotype of SCs, after IANX was abolished by macrophage ablation. As in transcriptome analysis, CTSS was upregulated at the injured IAN than in the intact IAN. Endogenous recovery from hypoesthesia was facilitated by supplementation of CTSS but delayed by pharmacological inhibition or genetic silencing of CTSS at the injured site. Adoptive transfer of M2-polarized macrophages at this site facilitated sensory recovery dependent on CTSS in macrophages. Post-IANX, CTSS caused the cleavage of Ephrin-B2 in fibroblasts, which, in turn, bound EphB2 in SCs. CTSS-induced Ephrin-B2 cleavage was also observed in human sensory nerves. Inhibition of CTSS-induced Ephrin-B2 signaling suppressed c-Jun induction in SCs and sensory recovery. CONCLUSIONS: These results suggest that M2 macrophage-derived CTSS contributes to axon regeneration by activating SCs via Ephrin-B2 shedding from fibroblasts.


Subject(s)
Axons , Peripheral Nerve Injuries , Animals , Humans , Rats , Axons/pathology , Cathepsins/metabolism , Cathepsins/pharmacology , Ephrin-B2/metabolism , Ephrin-B2/pharmacology , Fibroblasts/metabolism , Macrophages/metabolism , Nerve Regeneration , Peripheral Nerve Injuries/metabolism , Peripheral Nerves/pathology , Rats, Sprague-Dawley , Schwann Cells/metabolism
15.
Virology ; 588: 109889, 2023 11.
Article in English | MEDLINE | ID: mdl-37778059

ABSTRACT

The lack of suitable in vitro culture model has hampered research on wild-type (WT) human coronaviruses. While 3D tissue or organ cultures have been instrumental for this purpose, such models are challenging, time-consuming, expensive and require extensive cell culture adaptation and directed evolution. Consequently, high-throughput applications are beyond reach in most cases. Here we developed a robust A549 cell line permissive to a human coronavirus 229E (HCoV-229E) clinical isolate by transducing CD13 and transmembrane serine protease 2 (TMPRSS2), henceforth referred to as A549++ cells. This modification allowed for productive infection, and a more detailed analysis showed that the virus might use the TMPRSS2-dependent pathway but can still bypass this pathway using cathepsin-mediated endocytosis. Overall, our data showed that A549++ cells are permissive to HCoV-229E clinical isolate, and applicable for further studies on HCoV-229E infectiology. Moreover, this line constitutes a uniform platform for studies on multiple members of the Coronaviridae family.


Subject(s)
Coronavirus 229E, Human , Coronavirus Infections , Humans , Coronavirus 229E, Human/genetics , A549 Cells , Cathepsins/metabolism , Endocytosis , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
16.
Eur J Med Chem ; 262: 115909, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37907024

ABSTRACT

Inadequate cytoreductive surgery (CRS) has been identified as a prognostic factor for poor patient outcomes in cases of peritoneal metastasis. While imaging probes are used to identify peritoneal metastasis to facilitate CRS, many of these probes exhibit high background signals, resulting in a significant delay in achieving a satisfactory tumor-to-normal ratio (TNR) due to prolonged clearance time. In this study, we designed a novel fluorescent probe named Tras-AA-Cy NH2, which enables the relatively rapid imaging of subcutaneous tumors and peritoneal tumors while maintaining a high TNR. Mechanistically, Tras-AA-Cy NH2 exhibits selective targeting towards the Human epidermal growth factor receptor 2 on the surface of cancer cells. Following internalization, it undergoes enzymatic cleavage catalyzed by the overexpressed cathepsin, leading to the subsequent release of near-infrared fluorophores. Consequently, Tras-AA-Cy NH2 achieved a TNR of 7.8 at 6 h and 21.4 at 24 h in subcutaneous tumor mice. Even after 522 h of in vivo circulation, the TNR remained above 5, indicating an ultralong imaging time window. It is noteworthy that Tras-AA-Cy NH2 has demonstrated successful utilization for peritoneal tumor-specific imaging and further affirmed its tumor tissue-specific recognition capability using human resected tissues. In summary, these findings underscore the rational design of Tras-AA-Cy NH2 for visualizing peritoneal tumors.


Subject(s)
Peritoneal Neoplasms , Humans , Animals , Mice , Peritoneal Neoplasms/diagnostic imaging , Peritoneal Neoplasms/secondary , Cathepsins/metabolism , Fluorescence , Fluorescent Dyes/metabolism , Optical Imaging/methods
17.
Curr Pharm Des ; 29(30): 2396-2407, 2023.
Article in English | MEDLINE | ID: mdl-37859327

ABSTRACT

BACKGROUND/OBJECTIVE: Tumor-associated macrophages (TAMs) produce an excessive amount of cysteine proteases, and we aimed to study the effects of anticancer rhenium(I)-diselenoether (Re-diSe) on the production of cathepsins B and S by macrophages. We investigated the effect of Re-diSe on lipopolysaccharides (LPS) induced M1 macrophages, or by interleukin 6 (IL-6) induced M2 macrophages. METHODS: Non-stimulated or prestimulated murine Raw 264 or human THP-1 macrophages were exposed to increasing concentrations of the drug (5, 10, 20, 50 and 100 µM) and viability was assayed by the MTT assay. The amount of cysteine proteases was evaluated by ELISA tests, the number of M1 and M2 macrophages by the expression of CD80 or CD206 biomarkers. The binding of Re-diSe with GSH as a model thiol-containing protein was studied by mass spectrometry. RESULTS: A dose-dependent decrease in cathepsins B and S was observed in M1 macrophages. There was no effect in non-stimulated cells. The drug induced a dramatic dose-dependent increase in M1 expression in both cells, significantly decreased the M2 expression in Raw 264 and had no effect in non-stimulated macrophages. The binding of the Re atom with the thiols was clearly demonstrated. CONCLUSION: The increase in the number of M1 and a decrease in M2 macrophages treated by Re-diSe could be related to the decrease in cysteine proteases upon binding of their thiol residues with the Re atom.


Subject(s)
Cysteine Proteases , Rhenium , Humans , Animals , Mice , Rhenium/pharmacology , Macrophages , Cysteine Proteases/metabolism , Cysteine Proteases/pharmacology , Sulfhydryl Compounds/metabolism , Sulfhydryl Compounds/pharmacology , Cathepsins/metabolism , Cathepsins/pharmacology , Lipopolysaccharides/pharmacology
18.
Cell Mol Life Sci ; 80(11): 339, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37898573

ABSTRACT

Tick saliva injected into the vertebrate host contains bioactive anti-proteolytic proteins from the cystatin family; however, the molecular basis of their unusual biochemical and physiological properties, distinct from those of host homologs, is unknown. Here, we present Ricistatin, a novel secreted cystatin identified in the salivary gland transcriptome of Ixodes ricinus ticks. Recombinant Ricistatin inhibited host-derived cysteine cathepsins and preferentially targeted endopeptidases, while having only limited impact on proteolysis driven by exopeptidases. Determination of the crystal structure of Ricistatin in complex with a cysteine cathepsin together with characterization of structural determinants in the Ricistatin binding site explained its restricted specificity. Furthermore, Ricistatin was potently immunosuppressive and anti-inflammatory, reducing levels of pro-inflammatory cytokines IL-6, IL-1ß, and TNF-α and nitric oxide in macrophages; IL-2 and IL-9 levels in Th9 cells; and OVA antigen-induced CD4+ T cell proliferation and neutrophil migration. This work highlights the immunotherapeutic potential of Ricistatin and, for the first time, provides structural insights into the unique narrow selectivity of tick salivary cystatins determining their bioactivity.


Subject(s)
Cystatins , Ixodes , Animals , Salivary Cystatins/chemistry , Peptide Hydrolases/metabolism , Cysteine/metabolism , Cystatins/pharmacology , Ixodes/chemistry , Vertebrates , Cathepsins/metabolism , Endopeptidases/metabolism
19.
Int J Mol Sci ; 24(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37569859

ABSTRACT

The expression of the myristoylated alanine-rich C-kinase substrate (MARCKS) family of proteins in the kidneys plays an important role in the regulation of the renal epithelial sodium channel (ENaC) and hence overall blood pressure regulation. The function of MARCKS is regulated by post-translational modifications including myristoylation, phosphorylation, and proteolysis. Proteases known to cleave both ENaC and MARCKS have been shown to contribute to the development of high blood pressure, or hypertension. Here, we investigated protein expression and proteolysis of MARCKS, protein expression of multiple protein kinase C (PKC) isoforms, and protein expression and activity of several different proteases in the kidneys of diabetic db/db mice compared to wild-type littermate mice. In addition, MARCKS protein expression was assessed in cultured mouse cortical collecting duct (mpkCCD) cells treated with normal glucose and high glucose concentrations. Western blot and densitometric analysis showed less abundance of the unprocessed form of MARCKS and increased expression of a proteolytically cleaved form of MARCKS in the kidneys of diabetic db/db mice compared to wild-type mice. The protein expression levels of PKC delta and PKC epsilon were increased, while cathepsin B, cathepsin S, and cathepsin D were augmented in diabetic db/db kidneys compared to those of wild-type mice. An increase in the cleaved form of MARCKS was observed in mpkCCD cells cultured in high glucose compared to normal glucose concentrations. Taken together, these results suggest that high glucose may contribute to an increase in the proteolysis of renal MARCKS, while the upregulation of the cathepsin proteolytic pathway positively correlates with increased proteolysis of MARCKS in diabetic kidneys, where PKC expression is augmented.


Subject(s)
Diabetes Mellitus , Membrane Proteins , Mice , Animals , Myristoylated Alanine-Rich C Kinase Substrate/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Proteolysis , Protein Isoforms/metabolism , Kidney/metabolism , Phosphorylation , Mice, Inbred Strains , Cathepsins/metabolism , Peptide Hydrolases/metabolism , Glucose/metabolism , Diabetes Mellitus/metabolism
20.
Front Immunol ; 14: 1154146, 2023.
Article in English | MEDLINE | ID: mdl-37398678

ABSTRACT

Glioblastoma is the most common primary malignant tumor of the central nervous system, which has the characteristics of strong invasion, frequent recurrence, and rapid progression. These characteristics are inseparable from the evasion of glioma cells from immune killing, which makes immune escape a great obstacle to the treatment of glioma, and studies have confirmed that glioma patients with immune escape tend to have poor prognosis. The lysosomal peptidase lysosome family plays an important role in the immune escape process of glioma, which mainly includes aspartic acid cathepsin, serine cathepsin, asparagine endopeptidases, and cysteine cathepsins. Among them, the cysteine cathepsin family plays a prominent role in the immune escape of glioma. Numerous studies have confirmed that glioma immune escape mediated by lysosomal peptidases has something to do with autophagy, cell signaling pathways, immune cells, cytokines, and other mechanisms, especially lysosome organization. The relationship between protease and autophagy is more complicated, and the current research is neither complete nor in-depth. Therefore, this article reviews how lysosomal peptidases mediate the immune escape of glioma through the above mechanisms and explores the possibility of lysosomal peptidases as a target of glioma immunotherapy.


Subject(s)
Glioma , Peptide Hydrolases , Humans , Cysteine , Cathepsins/metabolism , Glioma/therapy , Glioma/pathology , Lysosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...