Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.394
Filter
1.
Front Immunol ; 15: 1380660, 2024.
Article in English | MEDLINE | ID: mdl-38720894

ABSTRACT

Introduction: Babesia bovis, a tick-borne apicomplexan parasite causing bovine babesiosis, remains a significant threat worldwide, and improved and practical vaccines are needed. Previous studies defined the members of the rhoptry associated protein-1 (RAP-1), and the neutralization-sensitive rhoptry associated protein-1 related antigen (RRA) superfamily in B. bovis, as strong candidates for the development of subunit vaccines. Both RAP-1 and RRA share conservation of a group of 4 cysteines and amino acids motifs at the amino terminal end (NT) of these proteins. Methods and results: Sequence comparisons among the RRA sequences of several B. bovis strains and other Babesia spp parasites indicate a high level of conservation of a 15-amino acid (15-mer) motif located at the NT of the protein. BlastP searches indicate that the 15-mer motif is also present in adenylate cyclase, dynein, and other ATP binding proteins. AlphaFold2 structure predictions suggest partial exposure of the 15-mer on the surface of RRA of three distinct Babesia species. Antibodies in protected cattle recognize a synthetic peptide representing the 15-mer motif sequence in iELISA, and rabbit antibodies against the 15-mer react with the surface of free merozoites in immunofluorescence. Discussion and conclusion: The presence of the 15-mer-like regions in dynein and ATP-binding proteins provides a rationale for investigating possible functional roles for RRA. The demonstrated presence of a surface exposed B-cell epitope in the 15-mer motif of the B. bovis RRA, which is recognized by sera from protected bovines, supports its inclusion in future subunit epitope-based vaccines against B. bovis.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Babesia bovis , Babesiosis , Epitopes, B-Lymphocyte , Protozoan Proteins , Animals , Cattle , Babesia bovis/immunology , Epitopes, B-Lymphocyte/immunology , Babesiosis/immunology , Babesiosis/parasitology , Babesiosis/prevention & control , Antibodies, Protozoan/immunology , Protozoan Proteins/immunology , Antigens, Protozoan/immunology , Amino Acid Motifs , Conserved Sequence , Cattle Diseases/immunology , Cattle Diseases/parasitology , Cattle Diseases/prevention & control , Amino Acid Sequence , Protozoan Vaccines/immunology
2.
PLoS One ; 19(4): e0302172, 2024.
Article in English | MEDLINE | ID: mdl-38662753

ABSTRACT

Clinical illness (CI) scoring using visual observation is the most widely applied method of detecting respiratory disease in cattle but has limited effectiveness in practice. In contrast, body-mounted sensor technology effectively facilitates disease detection. To evaluate whether a combination of movement behavior and CI scoring is effective for disease detection, cattle were vaccinated to induce a temporary inflammatory immune response. Cattle were evaluated before and after vaccination to identify the CI variables that are most indicative of sick cattle. Respiratory rate (H2 = 43.08, P < 0.0001), nasal discharge (H2 = 8.35, P = 0.015), and ocular discharge (H2 = 16.38, P = 0.0003) increased after vaccination, and rumen fill decreased (H2 = 20.10, P < 0.0001). Locomotor activity was measured via leg-mounted sensors for the four days preceding and seven days following vaccination. A statistical model that included temperature, steps, lying time, respiratory rate, rumen fill, head position, and excess saliva was developed to distinguish between scores from before and after vaccination with a sensitivity of 0.898 and specificity of 0.915. Several clinical illness signs were difficult to measure in practice. Binoculars were required for scoring respiratory rate and eye-related metrics, and cattle had to be fitted with colored collars for individual identification. Scoring each animal took up to three minutes in a small research pen; therefore, technologies that can automate both behavior monitoring and identification of clinical illness signs are key to improving capacity for BRD detection and treatment.


Subject(s)
Behavior, Animal , Cattle Diseases , Inflammation , Animals , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/immunology , Biomarkers/analysis , Respiratory Rate , Vaccination/veterinary
3.
Acta Trop ; 254: 107194, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521123

ABSTRACT

Among the available diagnostic techniques, antibody detection in bulk tank milk (BTM) represents a useful tool to estimate and monitor Neospora caninum herd prevalence. To evaluate the prevalence of N. caninum and the effect of parasite infection on herd performances, BTM samples collected from 586 dairy herds located in one of the largest dairy production areas in Italy (Lombardy) were analyzed by an indirect ELISA to detect anti-N. caninum specific antibodies. Generalized linear models (GLMs) were developed. A purely spatial analysis scanning for clusters with high or low rates for N. caninum using the Bernoulli model was performed. A maximum entropy approach was used to estimate the probability of distribution of the parasite based on occurrence records together with environmental variables. Overall, 180 herds resulted positive for N. caninum antibodies on bulk tank milk (P = 30.7 %). A higher risk of seropositivity was evidenced in the provinces of Milano, Cremona, Brescia, and Bergamo (P = 32-40 %); a lower risk was evidenced in Lodi, Pavia, and Mantova (P = 13-24 %). A higher risk of seropositivity was revealed for small-medium farms (101-300 animals) (O.R.=2.8) and for older animals with more than 4 years (O.R.=4.4). Regarding the effect of N. caninum infection on herd performances, the number of inseminations for conception was higher (> 3 inseminations), and the period from calving to conception was longer (> 150 days) for positive farms (O.R.=2.0 and O.R.=2.3, respectively); besides, lower head daily milk production (<20 kg and 21-25 kg) and mature equivalent milk yield (<11,000), and somatic cell counts higher than 300,000 cells/ml were observed for N. caninum positive herds (O.R.=0.4, O.R.=0.4 and O.R.=1.9 respectively). The geographical distribution of N. caninum positive farms with the highest level of probability covers the central sector of the Po Plain where a significant cluster for high risk of parasite infection was shown by spatial scan statistic and Maximum entropy ecological niche modelling. A further significant cluster of low risk occurred in the southern. The climatic and environmental variables with the highest training gain when used in isolation resulted altitude, land use/land cover, and other variables related to temperature and precipitation. Neosporosis is widely distributed in Italian dairy herds and an impact of the parasite on herd performances could be hypothesized. Even if the role of N. caninum in alterations of reproductive and productive parameters should be further explored, veterinarians and farmers should be aware of neosporosis, and control plans should be adopted.


Subject(s)
Antibodies, Protozoan , Cattle Diseases , Coccidiosis , Milk , Neospora , Spatial Analysis , Animals , Neospora/immunology , Italy/epidemiology , Milk/immunology , Milk/parasitology , Milk/chemistry , Cattle , Coccidiosis/veterinary , Coccidiosis/epidemiology , Coccidiosis/immunology , Antibodies, Protozoan/blood , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Cattle Diseases/immunology , Female , Seroepidemiologic Studies , Enzyme-Linked Immunosorbent Assay , Prevalence , Dairying , Reproduction
4.
Am J Vet Res ; 85(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38457927

ABSTRACT

OBJECTIVE: Compare immune responses induced by 2 commercial intranasal (IN) modified-live viral (MLV) vaccines given individually or coadministered and evaluate prevention of infection and lung pathology following bovine herpesvirus-1 (BHV-1) challenge. ANIMALS: 36 male Holstein calves (ages, 5 to 12 days). METHODS: In a randomized complete block design, each calf received an IN injection of either vaccine diluent (Placebo), an MLV vaccine containing bovine herpesvirus-1 (BHV-1; N3), bovine coronavirus vaccine (BC), or both N3 and BC (BC + N3) with a booster 4 weeks later. Nasal secretions and blood were collected weekly. Three weeks after the booster, the calves were challenged with BHV-1, sampled for virus shedding, and euthanized 10 days later to quantify lung pathology. The study period was September 7, 2020, to April 6, 2021. RESULTS: Calves were seropositive for BHV-1 and BC before vaccination. No significant difference in BC-specific serum immunoglobin G and nasal immunoglobin A antibody responses in the BC versus BC + N3 group or BHV-1-specific serum immunoglobin G and nasal immunoglobin A antibody responses in the N3 versus BC + N3 group. Cytokine responses to BHV-1 and BC did not differ among groups. BHV-1 shedding after challenge was significantly reduced in N3 groups versus Placebo and BC. There was a significant reduction in lung pathology in the N3 + BC group versus Placebo. CLINICAL RELEVANCE: This study provides evidence an MLV vaccine containing BHV-1 and an MLV BC vaccine can be coadministered to neonatal calves without significantly altering immune responses to the 2 viruses or compromising the prevention of BHV-1 respiratory disease. Calves receiving the BC + N3 vaccine had a significant reduction in lung pathology after BHV-1 aerosol challenge.


Subject(s)
Administration, Intranasal , Animals, Newborn , Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Herpesviridae Infections , Herpesvirus 1, Bovine , Vaccines, Attenuated , Viral Vaccines , Animals , Cattle , Herpesvirus 1, Bovine/immunology , Administration, Intranasal/veterinary , Male , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Coronavirus, Bovine/immunology , Cattle Diseases/prevention & control , Cattle Diseases/virology , Cattle Diseases/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/virology , Herpesviridae Infections/veterinary , Herpesviridae Infections/prevention & control , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Infectious Bovine Rhinotracheitis/prevention & control , Infectious Bovine Rhinotracheitis/immunology , Virus Shedding , Antibodies, Viral/blood , Random Allocation
5.
Am J Vet Res ; 85(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38422620

ABSTRACT

OBJECTIVE: To determine the efficacy of primary or booster intranasal vaccination of beef steers on clinical protection and pathogen detection following simultaneous challenge with bovine respiratory syncytial virus and bovine herpes virus 1. METHODS: 30 beef steers were randomly allocated to 3 different treatment groups starting at 2 months of age. Group A (n = 10) was administered a single dose of a parenteral modified-live vaccine and was moved to a separate pasture. Groups B (n = 10) and C (10) remained unvaccinated. At 6 months of age, all steers were weaned and transported. Subsequently, groups A and B received a single dose of an intranasal modified-live vaccine vaccine while group C remained unvaccinated. Group C was housed separately until challenge. Two days following vaccination, all steers were challenged with bovine respiratory syncytial virus and bovine herpes virus 1 and housed in a single pen. Clinical and antibody response outcomes and the presence of nasal pathogens were evaluated. RESULTS: The odds of clinical disease were lower in group A compared with group C on day 7 postchallenge; however, antibody responses and pathogen detection were not significantly different between groups before and following viral challenge. All calves remained negative for Histophilus somni and Mycoplasma bovis; however, significantly greater loads of Mannheimia haemolytica and Pasteurella multocida were detected on day 7 postchallenge compared with day -2 prechallenge. CLINICAL RELEVANCE: Intranasal booster vaccination of beef steers at 6 months of age reduced clinical disease early after viral challenge. Weaning, transport, and viral infection promoted increased detection rates of M haemolytica and P multocida regardless of vaccination status.


Subject(s)
Administration, Intranasal , Coinfection , Herpesvirus 1, Bovine , Immunization, Secondary , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Bovine , Animals , Cattle , Herpesvirus 1, Bovine/immunology , Male , Administration, Intranasal/veterinary , Respiratory Syncytial Virus, Bovine/immunology , Immunization, Secondary/veterinary , Coinfection/veterinary , Coinfection/prevention & control , Coinfection/microbiology , Respiratory Syncytial Virus Infections/veterinary , Respiratory Syncytial Virus Infections/prevention & control , Infectious Bovine Rhinotracheitis/prevention & control , Infectious Bovine Rhinotracheitis/immunology , Cattle Diseases/prevention & control , Cattle Diseases/microbiology , Cattle Diseases/virology , Cattle Diseases/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Bacterial Shedding , Antibodies, Viral/blood , Herpesviridae Infections/veterinary , Herpesviridae Infections/prevention & control , Random Allocation , Vaccination/veterinary
6.
Vet Res ; 54(1): 32, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016420

ABSTRACT

Host response to invasive microbes in the bovine udder has an important role on the animal health and is essential to the dairy industry to ensure production of high-quality milk and reduce the mastitis incidence. To better understand the biology behind these host-microbiome interactions, we investigated the somatic cell proteomes at quarter level for four cows (collected before and after milking) using a shotgun proteomics approach. Simultaneously, we identified the quarter microbiota by amplicon sequencing to detect presence of mastitis pathogens or other commensal taxa. In total, 32 quarter milk samples were analyzed divided in two groups depending on the somatic cell count (SCC). The high SCC group (>100,000 cell/mL) included 10 samples and significant different proteome profiles were detected. Differential abundance analysis uncovers a specific expression pattern in high SCC samples revealing pathways involved in immune responses such as inflammation, activation of the complement system, migration of immune cells, and tight junctions. Interestingly, different proteome profiles were also identified in quarter samples containing one of the two mastitis pathogens, Staphylococcus aureus and Streptococcus uberis, indicating a different response of the host depending on the pathogen. Weighted correlation network analysis identified three modules of co-expressed proteins which were correlated with the SCC in the quarters. These modules contained proteins assigned to different aspects of the immune response, but also amino sugar and nucleotide sugar metabolism, and biosynthesis of amino acids. The results of this study provide deeper insights on how the proteome expression changes at quarter level in naturally infected cows and pinpoint potential interactions and important biological functions during host-microbe interaction.


Subject(s)
Host Microbial Interactions , Mammary Glands, Animal , Milk , Proteome , Animals , Cattle , Female , Cattle Diseases/immunology , Cattle Diseases/microbiology , Cell Count/veterinary , Mammary Glands, Animal/immunology , Mammary Glands, Animal/microbiology , Mastitis, Bovine/immunology , Mastitis, Bovine/microbiology , Milk/cytology , Proteome/immunology , Staphylococcal Infections/immunology , Staphylococcal Infections/veterinary , Host Microbial Interactions/immunology
7.
J Virol ; 97(2): e0142322, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36692289

ABSTRACT

Concurrent infections with multiple pathogens are often described in cattle with respiratory illness. However, how the host-pathogen interactions influence the clinical outcome has been only partially explored in this species. Influenza D virus (IDV) was discovered in 2011. Since then, IDV has been detected worldwide in different hosts. A significant association between IDV and bacterial pathogens in sick cattle was shown in epidemiological studies, especially with Mycoplasma bovis. In an experimental challenge, IDV aggravated M. bovis-induced pneumonia. However, the mechanisms through which IDV drives an increased susceptibility to bacterial superinfections remain unknown. Here, we used the organotypic lung model precision-cut lung slices to study the interplay between IDV and M. bovis coinfection. Our results show that a primary IDV infection promotes M. bovis superinfection by increasing the bacterial replication and the ultrastructural damages in lung pneumocytes. In our model, IDV impaired the innate immune response triggered by M. bovis by decreasing the expression of several proinflammatory cytokines and chemokines that are important for immune cell recruitment and the bacterial clearance. Stimulations with agonists of cytosolic helicases and Toll-like receptors (TLRs) revealed that a primary activation of RIG-I/MDA5 desensitizes the TLR2 activation, similar to what was observed with IDV infection. The cross talk between these two pattern recognition receptors leads to a nonadditive response, which alters the TLR2-mediated cascade that controls the bacterial infection. These results highlight innate immune mechanisms that were not described for cattle so far and improve our understanding of the bovine host-microbe interactions and IDV pathogenesis. IMPORTANCE Since the spread of the respiratory influenza D virus (IDV) infection to the cattle population, the question about the impact of this virus on bovine respiratory disease (BRD) remains still unanswered. Animals affected by BRD are often coinfected with multiple pathogens, especially viruses and bacteria. In particular, viruses are suspected to enhance secondary bacterial superinfections. Here, we use an ex vivo model of lung tissue to study the effects of IDV infection on bacterial superinfections. Our results show that IDV increases the susceptibility to the respiratory pathogen Mycoplasma bovis. In particular, IDV seems to activate immune pathways that inhibit the innate immune response against the bacteria. This may allow M. bovis to increase its proliferation and to delay its clearance from lung tissue. These results suggest that IDV could have a negative impact on the respiratory pathology of cattle.


Subject(s)
Cattle Diseases , Host Microbial Interactions , Mycoplasma Infections , Orthomyxoviridae Infections , Signal Transduction , Thogotovirus , Animals , Cattle , Cattle Diseases/immunology , Cattle Diseases/virology , Lung/immunology , Lung/microbiology , Lung/virology , Mycoplasma bovis/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Signal Transduction/immunology , Superinfection/immunology , Superinfection/veterinary , Toll-Like Receptor 2 , Host Microbial Interactions/immunology , Mycoplasma Infections/immunology , Mycoplasma Infections/virology
8.
Vet Parasitol ; 309: 109765, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35870220

ABSTRACT

Among the strategies for integrating crops, livestock, and forestry, silvopastoral systems must be highlighted due to their inherent microclimatic conditions, mainly in tropical countries such as Brazil, where cattle are frequently subjected to unfavorable thermal conditions. However, according to some studies, shading can potentially worsen herds´ parasitism due to better microclimatic condition for the parasites. This study aimed to assess fecal egg count in Nellore heifers reared in two silvopastoral arrangements (pasture with single or triple tree rows), in a crop-livestock system, and open pasture. In the silvopastoral treatment composed of triple rows, lesser parasite burden means were found, with a peak infection in February/March and another in October. Regarding the effect of seasons over the year, there was an environmental influence on the egg counts, with higher averages during the late rainy season and the beginning of the dry season. An immunological investigation of animals from each group showed that cattle kept on the silvopastoral arrangements with either single or triple rows have significantly higher lymphocyte proliferation when stimulated with specific antigens than those kept on open pastures. Based on our results, it can be concluded that both silvopastoral systems were not considered as a risk factor for nematode egg counts in Nellore heifers. Indeed, the shadiest system promoted milder parasitism and higher immunological lymphocyte responses in animals.


Subject(s)
Animal Husbandry , Cattle Diseases , Gastrointestinal Diseases , Nematode Infections , Animals , Brazil/epidemiology , Cattle , Cattle Diseases/immunology , Cattle Diseases/parasitology , Feces/parasitology , Female , Gastrointestinal Diseases/immunology , Gastrointestinal Diseases/veterinary , Livestock , Nematoda , Nematode Infections/immunology , Nematode Infections/veterinary , Parasite Egg Count/veterinary , Seasons , Tropical Climate
9.
Viruses ; 14(1)2022 01 06.
Article in English | MEDLINE | ID: mdl-35062300

ABSTRACT

The recent emergence and circulation of the A/ASIA/G-VII (A/G-VII) lineage of foot-and-mouth disease virus (FMDV) in the Middle East has resulted in the development of homologous vaccines to ensure susceptible animals are sufficiently protected against clinical disease. However, a second serotype A lineage called A/ASIA/Iran-05 (A/IRN/05) continues to circulate in the region and it is therefore imperative to ensure vaccine strains used will protect against both lineages. In addition, for FMDV vaccine banks that usually hold a limited number of strains, it is necessary to include strains with a broad antigenic coverage. To assess the cross protective ability of an A/G-VII emergency vaccine (formulated at 43 (95% CI 8-230) PD50/dose as determined during homologous challenge), we performed a heterologous potency test according to the European Pharmacopoeia design using a field isolate from the A/IRN/05 lineage as the challenge virus. The estimated heterologous potency in this study was 2.0 (95% CI 0.4-6.0) PD50/dose, which is below the minimum potency recommended by the World Organisation for Animal Health (OIE). Furthermore, the cross-reactive antibody titres against the heterologous challenge virus were poor (≤log10 0.9), even in those cattle that had received the full dose of vaccine. The geometric mean r1-value was 0.2 (95% CI 0.03-0.8), similar to the potency ratio of 0.04 (95% CI 0.004-0.3). Vaccination decreased viraemia and virus excretion compared to the unvaccinated controls. Our results indicate that this A/G-VII vaccine does not provide sufficient protection against viruses belonging to the A/IRN/05 lineage and therefore the A/G-VII vaccine strain cannot replace the A/IRN/05 vaccine strain but could be considered an additional strain for use in vaccines and antigen banks.


Subject(s)
Cattle Diseases/prevention & control , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/prevention & control , Immunity, Heterologous , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cattle , Cattle Diseases/immunology , Cattle Diseases/virology , Cross Protection , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/isolation & purification , RNA, Viral/analysis , Serogroup , Vaccine Potency , Viremia/prevention & control , Viremia/veterinary , Virus Shedding
10.
Vet Immunol Immunopathol ; 244: 110380, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34998109

ABSTRACT

The present study aimed to evaluate the cell-mediated and the humoral immune response to Romanian sheep pox vaccine in pregnant cows (n = 12) vaccinated at different times of gestation period and the duration of maternal immunity in calves born to these cows. Evaluation of cellular immunity revealed an increase in lymphocytic proliferation that peaked at 10th day post vaccination (dpv) then gradually decreased. Capripoxvirus-specific antibodies were detected by SNT and ELISA in sera collected from vaccinated dams and also in calves born to these cows. In cows, the antibody titers persisted above the protective level till the seventh month post-vaccination. Passively transferred antibody titers in newly born calves started from the first week after parturition and persisted in a protective level until 2, 3 or 4 months of ages in calves born to cows vaccinated at ≤4th, 4.5:6th, or >6:8th months of pregnancy respectively. Results proved that the average neutralizing antibody titers did not differ between pregnant cows vaccinated at different times of gestation period however, the longevity of maternally derived antibodies depends on the pregnancy stage at which the dam receive vaccine.


Subject(s)
Cattle Diseases , Lumpy Skin Disease , Viral Vaccines , Animals , Cattle , Cattle Diseases/immunology , Cattle Diseases/prevention & control , Female , Immunity, Heterologous , Lumpy Skin Disease/immunology , Lumpy Skin Disease/prevention & control , Pregnancy , Vaccination/veterinary , Viral Vaccines/immunology
11.
J Immunol ; 208(3): 549-561, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35031580

ABSTRACT

CTLs are known to contribute to immunity toward Theileria parva, the causative agent of East Coast fever. The Tp967-75 CTL epitope from the Muguga strain of T. parva is polymorphic in other parasite strains. Identifying the amino acids important for MHC class I binding, as well as TCR recognition of epitopes, can allow the strategic selection of Ags to induce cellular immunity toward T. parva In this study, we characterized the amino acids important for MHC class I binding and TCR recognition in the Tp967-75 epitope using alanine scanning and a series of variant peptide sequences to probe these interactions. In a peptide-MHC class I binding assay, we found that the amino acids at positions 1, 2, and 3 were critical for binding to its restricting MHC class I molecule BoLA-1*023:01. With IFN-γ ELISPOT and peptide-MHC class I Tet staining assays on two parasite-specific bovine CTL lines, we showed that amino acids at positions 5-8 in the epitope were required for TCR recognition. Only two of eight naturally occurring polymorphic Tp9 epitopes were recognized by both CTLs. Finally, using a TCR avidity assay, we found that a higher TCR avidity was associated with a stronger functional response toward one of two variants recognized by the CTL. These data add to the growing knowledge on the cross-reactivity of epitope-specific CTLs and specificities that may be required in the selection of Ags in the design of a wide-spectrum vaccine for East Coast fever.


Subject(s)
Histocompatibility Antigens Class I/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Cytotoxic/immunology , Theileria parva/immunology , Theileriasis/immunology , Amino Acid Sequence , Animals , Antigens, Protozoan/immunology , Cattle , Cattle Diseases/immunology , Cattle Diseases/parasitology , Cell Line , Epitopes, T-Lymphocyte/immunology , Immunity, Cellular/immunology , Theileriasis/parasitology
12.
Rev. bras. ciênc. vet ; 29(1): 64-66, jan./mar. 2022. il.
Article in English | LILACS, VETINDEX | ID: biblio-1395514

ABSTRACT

Trypanosoma vivax is considered the most important pathogenic Trypanosoma for cattle and causes great damage to the dairy and beef cattle industries. This study aimed to evaluate the prevalence of anti-T. vivax antibodies in dairy cattle from the municipality of Tapira, located in the Alto Paranaíba region, Minas Gerais, Brazil. The 74 blood serum samples from dairy cattle were analyzed using an indirect immunofluorescence reaction. The seroprevalence was 82.4 % (61/74), and the highest incidence observed can be correlated with the transit of untested animals, the presence of vectors, and needle sharing by owners. The data allowed defining Tapira as an area of expansion of T. vivax epizootic infections in the state of Minas Gerais.


O Trypanosoma vivax é considerado o mais importante trypanosoma patogênico para bovinos e causa grandes prejuízos na pecuária de corte e leite. Este estudo teve como objetivo avaliar a prevalência anticorpos de anti-Trypanosoma vivax em bovinos leiteiros do município de Tapira, localizado na região do Alto Paranaíba, Minas Gerais, Brasil. As 74 amostras de soro sanguíneo de bovinos leiteiros foram analisadas por meio de reação de imunofluorescência indireta. A soroprevalência foi de 82,4% (61/74), que pode estar relacionada ao trânsito de animais não testados, presença de vetores e compartilhamento de agulhas pelos proprietários. Os dados permitiram definir Tapira como uma área de expansão das infecções epizoóticas por Trypanosoma vivax no estado de Minas Gerais.


Subject(s)
Animals , Cattle , Trypanosomiasis, Bovine/diagnosis , Cattle Diseases/immunology , Seroepidemiologic Studies , Trypanosoma vivax , Fluorescent Antibody Technique, Indirect/veterinary , Antibodies/analysis
13.
Infect Immun ; 90(1): e0049221, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34694919

ABSTRACT

Pathogenic Leptospira species cause leptospirosis, a neglected zoonotic disease recognized as a global public health problem. It is also the cause of the most common cattle infection that results in major economic losses due to reproductive problems. γδ T cells play a role in the protective immune response in livestock species against Leptospira, while human γδ T cells also respond to Leptospira. Thus, activation of γδ T cells has emerged as a potential component in the optimization of vaccine strategies. Bovine γδ T cells proliferate and produce gamma interferon (IFN-γ) in response to vaccination with inactivated leptospires, and this response is mediated by a specific subpopulation of the WC1-bearing γδ T cells. WC1 molecules are members of the group B scavenger receptor cysteine-rich (SRCR) superfamily and are composed of multiple SRCR domains, of which particular extracellular domains act as ligands for Leptospira. Since WC1 molecules function as both pattern recognition receptors and γδ TCR coreceptors, the WC1 system has been proposed as a novel target to engage γδ T cells. Here, we demonstrate the involvement of leptospiral protein antigens in the activation of WC1+ γδ T cells and identify two leptospiral outer membrane proteins able to interact directly with them. Interestingly, we show that the protein-specific γδ T cell response is composed of WC1.1+ and WC1.2+ subsets, although a greater number of WC1.1+ γδ T cells respond. Identification of protein antigens will enhance our understanding of the role γδ T cells play in the leptospiral immune response and in recombinant vaccine development.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Leptospira/immunology , Leptospirosis/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/immunology , Vaccine Development , Animals , Cattle , Cattle Diseases/immunology , Cattle Diseases/microbiology , Cattle Diseases/prevention & control , Immunization , Immunophenotyping , Leptospirosis/microbiology , Leptospirosis/prevention & control , Ligands , Protein Binding , Protein Interaction Domains and Motifs , Recombinant Proteins , T-Lymphocyte Subsets/metabolism , Vaccines, Synthetic/immunology
14.
Vet Immunol Immunopathol ; 244: 110364, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34952252

ABSTRACT

Mycoplasma arthritis that caused by Mycoplasma bovis exhibit severe lameness. This disease is difficult to cure with antibiotics, but the detailed pathological mechanisms have not been fully clarified. In this study, we examined the effects of intra-articular inoculation with M. bovis on immunological responses in calf joints. We inoculated three calves each with M. bovis or phosphate buffer saline (control) into the right stifle joint and dissected them at 15 days postinoculation. Mycoplasma bovis-inoculated calves exhibited swelling of the stifle joint, increases in synovial fluid, fibrin deposition, and cartilage thinning. Intracellular M. bovis was detected in synovial tissues analyzed by immunohistochemistry and transmission electron microscopy. Messenger RNA expressions of interleukin (IL)-1ß, IL-6, IL-8, IL-12p40, and IL-17A in synovial fluid cells and synovial tissues from M. bovis-inoculated calves were significantly higher than those from control calves. Protein levels of these cytokines in synovial fluid from M. bovis-inoculated calves were markedly higher than those from control calves. Our study clarified that inoculation with M. bovis into the stifle joint induced the production of inflammatory cytokines by synovial fluid cells and synovial tissues, causing a severe inflammatory response in joints. Additionally, M. bovis could invade cells in synovial tissues, which may have aided it in evading antibiotics and host immune surveillance.


Subject(s)
Cattle Diseases , Cattle/immunology , Joints/immunology , Mycoplasma Infections , Mycoplasma bovis , Animals , Cattle Diseases/immunology , Cytokines/immunology , Injections, Intra-Articular , Joints/microbiology , Mycoplasma Infections/immunology , Mycoplasma Infections/veterinary
15.
Vet Microbiol ; 264: 109280, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34808430

ABSTRACT

Histophilus somni is a Gram-negative coccobacillus that causes diffuse vasculitis and intravascular thrombosis that can lead to multiple organ failure in cattle. Macrophages are important cellular mediators of fibrin deposition and removal at sites of inflammation. It has become evident that macrophages and other cells release microparticles (MPs) that have an array of biological activities, including pro-coagulant activity. We sought to determine whether monocyte-derived macrophages exposed to H. somni in vitro release MPs that activate the clotting cascade in a manner that could lead to thrombus formation. Bovine monocyte-derived macrophages were incubated with H. somni (at a 10:1 ratio) in RPMI with 10% heat inactivated fetal bovine serum for 6 h at 37 °C with 5 % CO2. Membrane-shed MPs were isolated from the conditioned media, washed twice with Ca2+ and Mg2+ free HBSS, and pro-coagulant activity assessed by a one-step plasma clotting assay. We observed greater pro-coagulant activity for MPs from H. somni stimulated macrophages than from unstimulated controls. Microparticle pro-coagulant activity was inhibited by addition of an anti-tissue factor antibody. We also observed co-localization of fluorescein-labeled H. somni cells and annexin V staining as evaluated by confocal microscopy. These results demonstrate that exposure to H. somni cells causes bovine monocyte-derived macrophages to release MPs that contain tissue factor, the first such report for bovine macrophages. We infer that if similar events occur in vivo they could amplify thrombus formation in bovine histophilosis.


Subject(s)
Fibrin , Macrophages , Pasteurellaceae , Thrombosis , Animals , Cattle , Cattle Diseases/immunology , Fibrin/metabolism , In Vitro Techniques , Macrophages/immunology , Pasteurellaceae/immunology , Thrombosis/veterinary
16.
Anaerobe ; 72: 102465, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34662696

ABSTRACT

Herd vaccination is an important preventive measure against enterotoxemia in ruminants. Vaccination in goats should be performed every four months, and recent studies have shown that immunity in cattle lasts for less than one year. One of the mechanisms for increasing the duration of the immune response is to use purified toxoids as immunogens. The aim of the present study was to evaluate the humoral response in cattle and goats after vaccination with purified and semi-purified Clostridium perfringens type D epsilon toxoid. The following three different vaccines were used: vaccine 1 (V1), a semi-purified toxoid adsorbed to aluminum hydroxide; vaccine 2 (V2), a purified toxoid adsorbed to aluminum hydroxide; and vaccine (V3), a purified toxoid adsorbed on chitosan microparticles. Groups of cattle (n = 6-7) and goats (n = 6-7) were vaccinated on days 0 and 30, and serum samples for antitoxin titration were collected every 30 days for one-year post-vaccination. Goats were revaccinated on day 360, and their serum was evaluated on days 367 and 374. The antibody peaks ranged between 6.90 and 11.47 IU/mL in cattle and from 1.11 to 4.40 IU/mL in goats. In cattle administered with the V1 and V2 vaccines, we observed that the antibody titers were maintained above 0.2 IU/mL until the end of the experiment. In goats, V2 elicited long-lasting antibodies, and all animals maintained the protective titers for 210 days after the first dose. In conclusion, the purified toxoid vaccine with aluminum hydroxide adjuvant was able to induce strong and long-lasting humoral responses in both species and could be an alternative for improving the immunization schedule against enterotoxemia in goats and cattle.


Subject(s)
Bacterial Toxins/immunology , Cattle Diseases/immunology , Cattle Diseases/microbiology , Clostridium Infections/veterinary , Clostridium perfringens/immunology , Goat Diseases/microbiology , Goat Diseases/prevention & control , Toxoids/administration & dosage , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Bacterial Toxins/administration & dosage , Bacterial Toxins/chemistry , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/chemistry , Bacterial Vaccines/immunology , Cattle , Clostridium perfringens/classification , Enterotoxemia/prevention & control , Goats , Immunity, Humoral , Immunization , Rabbits
17.
Front Immunol ; 12: 729217, 2021.
Article in English | MEDLINE | ID: mdl-34616397

ABSTRACT

Infection with the zoonotic trematode Fasciola hepatica, common in many regions with a temperate climate, leads to delayed growth and loss of productivity in cattle, while infection in sheep can have more severe effects, potentially leading to death. Previous transcriptomic analyses revealed upregulation of TGFB1, cell death and Toll-like receptor signalling, T-cell activation, and inhibition of nitric oxide production in macrophages in response to infection. However, the differences between ovine and bovine responses have not yet been explored. The objective of this study was to further investigate the transcriptomic response of ovine peripheral blood mononuclear cells (PBMC) to F. hepatica infection, and to elucidate the differences between ovine and bovine PBMC responses. Sixteen male Merino sheep were randomly assigned to infected or control groups (n = 8 per group) and orally infected with 120 F. hepatica metacercariae. Transcriptomic data was generated from PBMC at 0, 2 and 16 weeks post-infection (wpi), and analysed for differentially expressed (DE) genes between infected and control animals at each time point (analysis 1), and for each group relative to time 0 (analysis 2). Analysis 2 was then compared to a similar study performed previously on bovine PBMC. A total of 453 DE genes were found at 2 wpi, and 2 DE genes at 16 wpi (FDR < 0.1, analysis 1). Significantly overrepresented biological pathways at 2 wpi included role of PKR in interferon induction and anti-viral response, death receptor signalling and RIG-I-like receptor signalling, which suggested that an activation of innate response to intracellular nucleic acids and inhibition of cellular apoptosis were taking place. Comparison of analysis 2 with the previous bovine transcriptomic study revealed that anti-inflammatory response pathways which were significantly overrepresented in the acute phase in cattle, including IL-10 signalling, Th2 pathway, and Th1 and Th2 activation were upregulated only in the chronic phase in sheep. We propose that the earlier activation of anti-inflammatory responses in cattle, as compared with sheep, may be related to the general absence of acute clinical signs in cattle. These findings offer scope for "smart vaccination" strategies for this important livestock parasite.


Subject(s)
Cattle Diseases/genetics , Fascioliasis/veterinary , Leukocytes, Mononuclear/metabolism , Sheep Diseases/genetics , Transcriptome , Animals , Cattle , Cattle Diseases/immunology , Cattle Diseases/parasitology , Fasciola hepatica/immunology , Fascioliasis/genetics , Fascioliasis/immunology , Fascioliasis/parasitology , Gene Expression Profiling/veterinary , Gene Regulatory Networks , Host-Parasite Interactions , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/parasitology , Male , Phenotype , Sheep , Sheep Diseases/immunology , Sheep Diseases/parasitology , Signal Transduction , Species Specificity , Time Factors
18.
Anim Genet ; 52(6): 881-886, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34636442

ABSTRACT

Genome-wide association studies were conducted to identify the more informative genomic regions and SNPs, as well as to identify candidate genes associated with infectious bovine keratoconjunctivitis (IBK) resistance/susceptibility in Hereford cattle. A Bayes B statistical approach was initially applied in genome-wide association studies by using deregressed estimated breeding values for IBK resistance/susceptibility. To estimate the combined effect of a genomic region that is potentially associated with QTL, 2504 non-overlapping 1-Mb windows that varied in SNP number were defined, with the most informative 24 windows including 427 SNPs and explaining more than 20% of the estimated genetic variance for IBK resistance/susceptibility. These regions were explored with respect to their biological functions through functional analysis to map potential candidate genes. The significant SNPs were mapped on chromosomes 1, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 18, 20, 23, and 28, and candidate genes were detected as related to the IBK. Most informative SNPs in term of genetic variance were located in proximity of genes related to phenotypic expression of lesions and biological processes associated to the IBK. Knowledge about phenotypic and genomic variation generated in the present study can be used to on design selection strategies to improve the resistance to IBK of Hereford cattle herds.


Subject(s)
Cattle Diseases/genetics , Disease Resistance/genetics , Keratoconjunctivitis/veterinary , Polymorphism, Single Nucleotide , Animals , Brazil , Cattle , Cattle Diseases/immunology , Genome-Wide Association Study , Keratoconjunctivitis/genetics
19.
Vet Microbiol ; 262: 109235, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34530231

ABSTRACT

Inflammation in the respiratory tract is thought to worsen the disease response to Mycoplasma bovis infection. This study investigated the cells involved in this response with a focus on proteases and cytokines as harmful effector mechanisms. By immunohistochemistry, Mac387-positive macrophages were the main cell type comprising the foci of caseous necrosis in cattle with M. bovis pneumonia. Thus, the study evaluated how priming of different types of macrophages with bacterial lysate (or pro-inflammatory cytokines induced by the bacterial lysate) affected their responses to M. bovis infection. Inducible responses were detected in monocyte-derived macrophages (M1-MDMs and M2-MDMs), whereas pulmonary alveolar macrophages (PAMs) were minimally affected by priming or infection. M. bovis-infected MDMs secreted MMP-12 and SPLA2, and priming with pro-inflammatory cytokines increased the secretion of cathepsin B in response to M. bovis infection. Of these, there were higher concentrations of cathepsin B and SPLA2 in lungs with M. bovis pneumonia compared to healthy lungs, and these are potential mechanisms for macrophage-induced lung damage in M. bovis infection. Priming of MDMs with either bacterial lysate or with pro-inflammatory cytokines caused an enhanced response to M. bovis infection with respect to IL-8 and IL-1ß secretion. The findings of this study suggest proteases, lipases and cytokines derived from monocyte-derived macrophages as possible mediators by which prior inflammation in the respiratory tract worsen disease outcomes from M. bovis infection.


Subject(s)
Cattle Diseases , Mycoplasma Infections , Mycoplasma bovis , Phospholipases A2, Secretory , Pneumonia , Animals , Cathepsin B/metabolism , Cattle , Cattle Diseases/immunology , Cytokines/immunology , Inflammation/veterinary , Macrophages/immunology , Macrophages/microbiology , Mycoplasma Infections/immunology , Mycoplasma Infections/microbiology , Mycoplasma Infections/veterinary , Mycoplasma bovis/immunology , Pneumonia/veterinary
20.
Vet Res ; 52(1): 122, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34535180

ABSTRACT

Mastitis is a complex inflammatory disease caused by pathogenic infection of mammary tissue in dairy cows. The molecular mechanism behind its occurrence, development, and regulation consists of a multi-gene network including microRNA (miRNA). Until now, there is no report on the role of miR-125b in regulating mastitis in dairy cows. This study found that miR-125b expression is significantly decreased in lipopolysaccharide (LPS)-induced MAC-T bovine mammary epithelial cells. Also, its expression is negatively correlated with the expression of NF-κB inhibitor interacting Ras-like 2 (NKIRAS2) gene. MiR-125b target genes were identified using a double luciferase reporter gene assay, which showed that miR-125b can bind to the 3' untranslated region (3' UTR) of the NKIRAS2, but not the 3'UTR of the TNF-α induced protein 3 (TNFAIP3). In addition, miR-125b overexpression and silencing were used to investigate the role of miR-125b on inflammation in LPS-induced MAC-T. The results demonstrate that a reduction in miR-125b expression in LPS-induced MAC-T cells increases NKIRAS2 expression, which then reduces NF-κB activity, leading to low expression of the inflammatory factors IL-6 and TNF-α. Ultimately, this reduces the inflammatory response in MAC-T cells. These results indicate that miR-125b is a pro-inflammatory regulator and that its silencing can alleviate bovine mastitis. These findings lay a foundation for elucidating the molecular regulation mechanism of cow mastitis.


Subject(s)
Carrier Proteins/genetics , Cattle Diseases/genetics , Gene Targeting/veterinary , Inflammation/veterinary , MicroRNAs/genetics , Animals , Carrier Proteins/metabolism , Cattle , Cattle Diseases/immunology , Cell Line , Epithelial Cells/immunology , Inflammation/genetics , Inflammation/immunology , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...