Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Cells ; 10(12)2021 12 14.
Article in English | MEDLINE | ID: mdl-34944040

ABSTRACT

Alighting aphids probe a new host plant by intracellular test punctures for suitability. These induce immediate calcium signals that emanate from the punctured sites and might be the first step in plant recognition of aphid feeding and the subsequent elicitation of plant defence responses. Calcium is also involved in the transmission of non-persistent plant viruses that are acquired by aphids during test punctures. Therefore, we wanted to determine whether viral infection alters calcium signalling. For this, calcium signals triggered by aphids were imaged on transgenic Arabidopsis plants expressing the cytosolic FRET-based calcium reporter YC3.6-NES and infected with the non-persistent viruses cauliflower mosaic (CaMV) and turnip mosaic (TuMV), or the persistent virus, turnip yellows (TuYV). Aphids were placed on infected leaves and calcium elevations were recorded by time-lapse fluorescence microscopy. Calcium signal velocities were significantly slower in plants infected with CaMV or TuMV and signal areas were smaller in CaMV-infected plants. Transmission tests using CaMV-infected Arabidopsis mutants impaired in pathogen perception or in the generation of calcium signals revealed no differences in transmission efficiency. A transcriptomic meta-analysis indicated significant changes in expression of receptor-like kinases in the BAK1 pathway as well as of calcium channels in CaMV- and TuMV-infected plants. Taken together, infection with CaMV and TuMV, but not with TuYV, impacts aphid-induced calcium signalling. This suggests that viruses can modify plant responses to aphids from the very first vector/host contact.


Subject(s)
Aphids/physiology , Calcium/metabolism , Plant Leaves/parasitology , Plant Leaves/virology , Plant Viruses/physiology , Animals , Arabidopsis/genetics , Arabidopsis/parasitology , Arabidopsis/virology , Arabidopsis Proteins/metabolism , Calcium Signaling , Caulimovirus/physiology , Mutation/genetics , Plant Leaves/genetics
2.
Cells ; 10(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-34571927

ABSTRACT

Histone deacetylases (HDACs) are vital epigenetic modifiers not only in regulating plant development but also in abiotic- and biotic-stress responses. Though to date, the functions of HD2C-an HD2-type HDAC-In plant development and abiotic stress have been intensively explored, its function in biotic stress remains unknown. In this study, we have identified HD2C as an interaction partner of the Cauliflower mosaic virus (CaMV) P6 protein. It functions as a positive regulator in defending against CaMV infection. The hd2c mutants show enhanced susceptibility to CaMV infection. In support, the accumulation of viral DNA, viral transcripts, and the deposition of histone acetylation on the viral minichromosomes are increased in hd2c mutants. P6 interferes with the interaction between HD2C and HDA6, and P6 overexpression lines have similar phenotypes with hd2c mutants. In further investigations, P6 overexpression lines, together with CaMV infection plants, are more sensitive to ABA and NaCl with a concomitant increasing expression of ABA/NaCl-regulated genes. Moreover, the global levels of histone acetylation are increased in P6 overexpression lines and CaMV infection plants. Collectively, our results suggest that P6 dysfunctions histone deacetylase HD2C by physical interaction to promote CaMV infection.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/virology , Caulimovirus/isolation & purification , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Histone Deacetylases/metabolism , Plant Leaves/virology , Viral Proteins/metabolism , Virus Diseases/virology , Acetylation , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Caulimovirus/physiology , DNA-Binding Proteins/genetics , Histone Deacetylases/chemistry , Histone Deacetylases/genetics , Phenotype , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/virology , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/metabolism , Nicotiana/virology , Viral Proteins/genetics , Virus Diseases/genetics , Virus Diseases/metabolism
3.
Virology ; 553: 9-22, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33197754

ABSTRACT

During an infection, Cauliflower mosaic virus (CaMV) forms inclusion bodies (IBs) mainly composed of viral protein P6, where viral activities occur. Because viral processes occur in IBs, understanding the mechanisms by which they are formed is crucial. FL-P6 expressed in N. benthamiana leaves formed IBs of a variety of shapes and sizes. Small IBs were dynamic, undergoing fusion/dissociation events. Co-expression of actin-binding polypeptides with FL-P6 altered IB size distribution and inhibited movement. This suggests that IB movement is required for fusion and growth. A P6 deletion mutant was discovered that formed a single large IB per cell, which suggests it exhibited altered fusion/dissociation dynamics. Myosin-inhibiting drugs did not affect small IB movement, while those inhibiting actin polymerization did. Large IBs colocalized with components of the aggresome pathway, while small ones generally did not. This suggests a possible involvement of the aggresome pathway in large IB formation.


Subject(s)
Caulimovirus/physiology , Inclusion Bodies, Viral/physiology , Trans-Activators/metabolism , Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Coiled Bodies/metabolism , Diacetyl/analogs & derivatives , Diacetyl/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Inclusion Bodies, Viral/ultrastructure , Microfilament Proteins/metabolism , Mutation , Plant Leaves/virology , Protein Domains , Nicotiana/virology , Trans-Activators/chemistry , Trans-Activators/genetics
4.
Insect Sci ; 26(1): 86-96, 2019 Feb.
Article in English | MEDLINE | ID: mdl-28731285

ABSTRACT

Insect-vectored plant viruses can induce changes in plant phenotypes, thus influencing plant-vector interactions in a way that may promote their dispersal according to their mode of transmission (i.e., circulative vs. noncirculative). This indirect vector manipulation requires host-virus-vector coevolution and would thus be effective solely in very specific plant-virus-vector species associations. Some studies suggest this manipulation may depend on multiple factors relative to various intrinsic characteristics of vectors such as transmission efficiency. In anintegrative study, we tested the effects of infection of the Brassicaceae Camelina sativa with the noncirculative Cauliflower mosaic virus (CaMV) or the circulative Turnip yellows virus (TuYV) on the host-plant colonization of two aphid species differing in their virus transmission efficiency: the polyphagous Myzus persicae, efficient vector of both viruses, and the Brassicaceae specialist Brevicoryne brassicae, poor vector of TuYV and efficient vector of CaMV. Results confirmed the important role of virus mode of transmission as plant-mediated effects of CaMV on the two aphid species induced negative alterations of feeding behavior (i.e., decreased phloem sap ingestion) and performance that were both conducive for virus fitness by promoting dispersion after a rapid acquisition. In addition, virus transmission efficiency may also play a role in vector manipulation by viruses as only the responses of the efficient vector to plant-mediated effects of TuYV, that is, enhanced feeding behavior and performances, were favorable to their acquisition and further dispersal. Altogether, this work demonstrated that vector transmission efficiency also has to be considered when studying the mechanisms underlying vector manipulation by viruses. Our results also reinforce the idea that vector manipulation requires coevolution between plant, virus and vector.


Subject(s)
Aphids/physiology , Behavior, Animal , Caulimovirus/physiology , Insect Vectors/physiology , Luteoviridae/physiology , Animals , Brassicaceae , Food Preferences
5.
Plant Physiol Biochem ; 116: 1-8, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28477474

ABSTRACT

Seed longevity is the period during which the plant seed is able to germinate. This property is strongly influenced by environment conditions experienced by seeds during their formation and storage. In the present study we have analyzed how the biotic stress derived from the infection of Cauliflower mosaic virus (CaMV), Turnip mosaic virus (TuMV), Cucumber mosaic virus (CMV) and Alfalfa mosaic virus (AMV) affects seed tolerance to deterioration measuring germination rates after an accelerated aging treatment. Arabidopsis wild type plants infected with AMV and CMV rendered seeds with improved tolerance to deterioration when compared to the non-inoculated plants. On the other hand, CaMV infection generated seeds more sensitive to deterioration. No seeds were obtained from TuMV infected plants. Similar pattern of viral effects was observed in the double mutant athb22 athb25, which is more sensitive to accelerated seed aging than wild type. However, we observed a significant reduction of the seed germination for CMV (65% vs 55%) and healthy (50% vs 30%) plants in these mutants. The seed quality differences were overcomed using the A. thaliana athb25-1D dominant mutant, which over accumulated gibberellic acid (GA), except for TuMV which generated some siliques with low seed tolerance to deterioration. For AMV and TuMV (in athb25-1D), the seed quality correlated with the accumulation of the messengers of the gibberellin 3-oxidase family, the mucilage of the seed and the GA1. For CMV and CaMV it was not a good correlation suggesting that other factors are affecting seed viability.


Subject(s)
Arabidopsis/physiology , Arabidopsis/virology , Seeds/physiology , Alfalfa mosaic virus/physiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Caulimovirus/physiology , Cucumovirus/physiology , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Germination/genetics , Germination/physiology , Gibberellins/metabolism , Potyvirus/physiology , Seeds/metabolism , Seeds/virology
6.
Virol J ; 13: 128, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27411713

ABSTRACT

BACKGROUND: Woodland strawberry (Fragaria vesca) infected with Strawberry vein banding virus (SVBV) exhibits chlorotic symptoms along the leaf veins. However, little is known about the molecular mechanism of strawberry disease caused by SVBV. METHODS: We performed the next-generation sequencing (RNA-Seq) study to identify gene expression changes induced by SVBV in woodland strawberry using mock-inoculated plants as a control. RESULTS: Using RNA-Seq, we have identified 36,850 unigenes, of which 517 were differentially expressed in the virus-infected plants (DEGs). The unigenes were annotated and classified with Gene Ontology (GO), Clusters of Orthologous Group (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The KEGG pathway analysis of these genes suggested that strawberry disease caused by SVBV may affect multiple processes including pigment metabolism, photosynthesis and plant-pathogen interactions. CONCLUSIONS: Our research provides comprehensive transcriptome information regarding SVBV infection in strawberry.


Subject(s)
Caulimovirus/genetics , Fragaria/genetics , Fragaria/virology , Plant Diseases/virology , Plant Proteins/genetics , Plant Viruses/genetics , Caulimovirus/isolation & purification , Caulimovirus/physiology , Fragaria/metabolism , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/virology , Plant Proteins/metabolism , Plant Viruses/isolation & purification , Plant Viruses/physiology , Transcriptome
7.
New Phytol ; 211(3): 1020-34, 2016 08.
Article in English | MEDLINE | ID: mdl-27120694

ABSTRACT

Virus interactions with plant silencing and innate immunity pathways can potentially alter the susceptibility of virus-infected plants to secondary infections with nonviral pathogens. We found that Arabidopsis plants infected with Cauliflower mosaic virus (CaMV) or transgenic for CaMV silencing suppressor P6 exhibit increased susceptibility to Pseudomonas syringae pv. tomato (Pst) and allow robust growth of the Pst mutant hrcC-, which cannot deploy effectors to suppress innate immunity. The impaired antibacterial defense correlated with the suppressed oxidative burst, reduced accumulation of the defense hormone salicylic acid (SA) and diminished SA-dependent autophagy. The viral protein domain required for suppression of these plant defense responses is dispensable for silencing suppression but essential for binding and activation of the plant target-of-rapamycin (TOR) kinase which, in its active state, blocks cellular autophagy and promotes CaMV translation. Our findings imply that CaMV P6 is a versatile viral effector suppressing both silencing and innate immunity. P6-mediated suppression of oxidative burst and SA-dependent autophagy may predispose CaMV-infected plants to bacterial infection.


Subject(s)
Arabidopsis/immunology , Arabidopsis/virology , Autophagy/drug effects , Caulimovirus/physiology , Pseudomonas syringae/growth & development , Respiratory Burst , Salicylic Acid/pharmacology , Viral Proteins/metabolism , Arabidopsis/drug effects , Arabidopsis/microbiology , Arabidopsis Proteins/metabolism , Caulimovirus/drug effects , Caulimovirus/pathogenicity , Gene Silencing/drug effects , Immunity, Innate/drug effects , Plant Diseases/microbiology , Plant Diseases/virology , Protein Domains , Pseudomonas syringae/drug effects , Respiratory Burst/drug effects , Sequence Deletion , Viral Proteins/chemistry
8.
J Exp Bot ; 67(7): 2039-48, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26687180

ABSTRACT

The genomes of many plant viruses have a coding capacity limited to <10 proteins, yet it is becoming increasingly clear that individual plant virus proteins may interact with several targets in the host for establishment of infection. As new functions are uncovered for individual viral proteins, virologists have realized that the apparent simplicity of the virus genome is an illusion that belies the true impact that plant viruses have on host physiology. In this review, we discuss our evolving understanding of the function of the P6 protein of Cauliflower mosaic virus (CaMV), a process that was initiated nearly 35 years ago when the CaMV P6 protein was first described as the 'major inclusion body protein' (IB) present in infected plants. P6 is now referred to in most articles as the transactivator (TAV)/viroplasmin protein, because the first viral function to be characterized for the Caulimovirus P6 protein beyond its role as an inclusion body protein (the viroplasmin) was its role in translational transactivation (the TAV function). This review will discuss the currently accepted functions for P6 and then present the evidence for an entirely new function for P6 in intracellular movement.


Subject(s)
Caulimovirus/physiology , Plant Diseases/virology , Trans-Activators/physiology , Viral Proteins/physiology , Models, Biological , Movement , Virion/physiology
9.
Gene ; 557(2): 130-7, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25498335

ABSTRACT

BACKGROUND: Abiotic and biotic stresses alter genome stability and physiology of plants. Under some stressful situations, a state of stress tolerance can be passed on to the offspring rendering them more suitable to stressful events than their parents. In plants, the exploration of transgenerational response has remained exclusive to model species, such as Arabidopsis thaliana. Here, we expand transgenerational research to include Brassica rapa, a close relative to economically important plant canola (Brassica napus), as it is exposed to the biotic stress of a double-stranded DNA virus Cauliflower mosaic virus (CaMV). RESULTS: Parent plants exposed to a low dose of 50ng purified CaMV virions just prior to the bolting stage produced significantly larger seeds than mock inoculated and healthy treatments. The progeny from these large seeds displayed resistance to the pathogen stress applied in the parental generation. Differences in defense pathways involving fatty acids, and primary and secondary metabolites were detected by de novo transcriptome sequencing of CaMV challenged progeny exhibiting different levels of resistance. CONCLUSIONS: Our study highlights biological and cellular processes that may be linked to the growth and yield of economically important B. rapa, in a transgenerational manner. Although much remains unknown as to the mechanisms behind transgenerational inheritance, our work shows a disease resistance response that persists for several weeks and is associated with an increase in seed size. Evidence suggests that a number of changes involved in the persistent stress adaption are reflected in the transcriptome. The results from this study demonstrate that treating B. rapa with dsDNA virus within a critical time frame and with a specified amount of infectious pathogen produces economically important agricultural plants with superior coping strategies for growing in unfavorable conditions.


Subject(s)
Brassica rapa/metabolism , Caulimovirus/physiology , Seeds/metabolism , Brassica rapa/anatomy & histology , Brassica rapa/immunology , Brassica rapa/virology , Disease Resistance , Gene Expression Regulation, Plant , Genes, Plant , Host-Pathogen Interactions , Molecular Sequence Annotation , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/anatomy & histology , Seeds/immunology , Seeds/virology , Transcriptome
10.
Planta ; 240(4): 855-75, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25092118

ABSTRACT

MAIN CONCLUSION: We have designed two near- constitutive and stress-inducible promoters (CmYLCV9.11 and CmYLCV4); those are highly efficient in both dicot and monocot plants and have prospective to substitute the CaMV 35S promoter. We performed structural and functional studies of the full-length transcript promoter from Cestrum yellow leaf curling virus (CmYLCV) employing promoter/leader deletion and activating cis-sequence analysis. We designed a 465-bp long CmYLCV9.11 promoter fragment (-329 to +137 from transcription start site) that showed enhanced promoter activity and was highly responsive to both biotic and abiotic stresses. The CmYLCV9.11 promoter was about 28-fold stronger than the CaMV35S promoter in transient and stable transgenic assays using ß-glucuronidase (GUS) reporter gene. The CmYLCV9.11 promoter also demonstrated stronger activity than the previously reported CmYLCV promoter fragments, CmpC (-341 to +5) and CmpS (-349 to +59) in transient systems like maize protoplasts and onion epidermal cells as well as transgenic systems. A good correlation between CmYLCV9.11 promoter-driven GUS-accumulation/enzymatic activities with corresponding uidA-mRNA level in transgenic tobacco plants was shown. Histochemical (X-Gluc) staining of transgenic seedlings, root and floral parts expressing the GUS under the control of CmYLCV9.11, CaMV35S, CmpC and CmpS promoters also support the above findings. The CmYLCV9.11 promoter is a constitutive promoter and the expression level in tissues of transgenic tobacco plants was in the following order: root > leaf > stem. The tobacco transcription factor TGA1a was found to bind strongly to the CmYLCV9.11 promoter region, as shown by Gel-shift assay and South-Western blot analysis. In addition, the CmYLCV9.11 promoter was regulated by a number of abiotic and biotic stresses as studied in transgenic Arabidopsis and tobacco plants. The newly derived CmYLCV9.11 promoter is an efficient tool for biotechnological applications.


Subject(s)
Arabidopsis/genetics , Caulimovirus/physiology , Gene Expression Regulation, Plant/genetics , Promoter Regions, Genetic/genetics , Arabidopsis/physiology , Flowers/genetics , Flowers/physiology , Gene Expression , Genes, Reporter , Onions/genetics , Onions/physiology , Plant Diseases/immunology , Plant Roots/genetics , Plant Roots/physiology , Protoplasts , Recombinant Proteins , Seedlings/genetics , Seedlings/physiology , Stress, Physiological , Nicotiana/genetics , Nicotiana/physiology
11.
Biochem Biophys Res Commun ; 452(1): 14-20, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25117444

ABSTRACT

The construction of high-level protein expression vectors using the CaMV 35S promoter in concert with highly efficient translation initiation signals for Agrobacterium tumefaciens is a relatively less explored field compared to that of Escherichia coli. In the current study, we experimentally investigated the capacity of the CaMV 35S promoter to direct GFP gene expression in A. tumefaciens in the context of different viral and chloroplastic translation initiation signals. GFP expression and concomitant translational efficiency was monitored by confocal microscopy and Western blot analysis. Among all of the constructs, the highest level of translation was observed for the construct containing the phage T7 translation initiation region followed by the chloroplastic Rubisco Large Subunit (rbcL) 58-nucleotide 5' leader region including its SD-like sequence (GGGAGGG). Replacing the SD-like (GGGAGGG) with non SD-like (TTTATTT) or replacing the remaining 52 nucleotides of rbcL with nonspecific sequence completely abolished translation. In addition, this 58 nucleotide region of rbcL serves as a translational enhancer in plants when located within the 5' UTR of mRNA corresponding to GFP. Other constructs, including those containing sequences upstream of the coat proteins of Alfalfa Mosaic Virus, or the GAGG sequence of T4 phage or the chloroplastic atpI and/or PsbA 5' UTR sequence, supported low levels of GFP expression or none at all. From these studies, we propose that we have created high expression vectors in A. tumefaciens and/or plants which contain the CaMV 35S promoter, followed by the translationally strong T7 SD plus RBS translation initiation region or the rbcL 58-nucleotide 5' leader region upstream of the gene of interest.


Subject(s)
Agrobacterium tumefaciens/genetics , Caulimovirus/physiology , Chloroplasts/physiology , Protein Biosynthesis , Signal Transduction , 5' Untranslated Regions , Base Sequence , Blotting, Western , DNA Primers , Electrophoresis, Polyacrylamide Gel , Enhancer Elements, Genetic , Green Fluorescent Proteins/genetics , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
12.
Virus Genes ; 48(1): 153-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24258394

ABSTRACT

The dahlia (Dahlia variabilis) genome contains an endogenous pararetrovirus sequence (EPRS) tentatively designated as DvEPRS. The DvEPRS shares genome structure and organization that is typical of members of the Caulimovirus genus. Studies were carried out to better understand the nature of this integration and to determine the gene expression of this DvEPRS. Genomic Southern hybridization showed multiple and random integration events of the DvEPRS in the dahlia genome. To investigate the presence of DvEPRS transcripts, RT-PCR was done on DNase-treated total RNA from DvEPRS-infected dahlia plants. Results showed the expression of open reading frames I, V, and VI. Direct PCR from sap extracts produced more intense DNA amplicons of Dahlia mosaic virus and Dahlia common mosaic virus which are believed to exist as typical episomal caulimoviruses, whereas significantly less intense amplicon was seen in case of DvEPRS in comparison with internal transcribed spacer region of dahlias amplicon. The DvEPRS in wild and cultivated species of Dahlia offer a model system to study the molecular events underlying the ecology, evolution and spread of DvEPRS within natural and managed ecosystems and the factors affecting integration of these EPRS in the plant genome.


Subject(s)
Caulimovirus/physiology , Dahlia/virology , Gene Expression , Viral Proteins/biosynthesis , Virus Integration , Blotting, Southern , Caulimovirus/genetics , Genome, Plant , Viral Proteins/genetics
13.
J Biomol Struct Dyn ; 32(8): 1193-201, 2014.
Article in English | MEDLINE | ID: mdl-24099636

ABSTRACT

Previously, we described some structural features of spherical particles (SPs) generated by thermal remodelling of the tobacco mosaic virus. The SPs represent a universal platform that could bind various proteins. Here, we report that entire isometric virions of heterogeneous nature bind non-specifically to the SPs. Formaldehyde (FA) was used for covalent binding of a virus to the SPs surface for stabilizing the SP-virus complexes. Transmission and high resolution scanning electron microscopy showed that the SPs surface was covered with virus particles. The architecture of SP-virion complexes was examined by immunologic methods. Mean diameters of SPs and SP-human enterovirus C and SP-cauliflower mosaic virus (CaMV) compositions were determined by nanoparticle tracking analysis (NTA) in liquid. Significantly, neither free SPs nor individual virions were detected by NTA in either FA-crosslinked or FA-untreated compositions. Entirely, all virions were bound to the SPs surface and the SP sites within the SP-CaMV complexes were inaccessible for anti-SP antibodies. Likewise, the SPs immunogenicity within the FA-treated SPs-CaMV compositions was negligible. Apparently, the SP antigenic sites were hidden and masked by virions within the compositions. Previously, we reported that the SPs exhibited adjuvant activity when foreign proteins/epitopes were mixed with or crosslinked to SPs. We found that immunogenicity of entire CaMV crosslinked to SP was rather low which could be due to the above-mentioned masking of the SPs booster. Contrastingly, immunogenicity of the FA-untreated compositions increased significantly, presumably, due to partial release of virions and unmasking of some SPs-buster sites after animals immunization.


Subject(s)
Caulimovirus/physiology , Tobacco Mosaic Virus/physiology , Virion/physiology , Antigens, Viral/immunology , Bromovirus/immunology , Bromovirus/physiology , Caulimovirus/immunology , Encephalomyocarditis virus/immunology , Encephalomyocarditis virus/physiology , Enterovirus C, Human/immunology , Enterovirus C, Human/physiology , Epitopes , Tobacco Mosaic Virus/immunology , Virion/immunology
14.
Curr Opin Virol ; 3(6): 629-38, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24075119

ABSTRACT

Virion associated protein (VAP) binds to the icosahedral capsid of cauliflower mosaic virus (CaMV) - a plant pararetrovirus. The interactive coiled-coil domains of this protein can interact with the coiled-coils of either the movement protein or the aphid transmission factor, thereby mediating both cell-to-cell movement and aphid transmission. The host counters CaMV infection with two lines of defense: innate immunity and silencing. The viral protein 'transactivator/viroplasmin' (TAV) is recognized as an effector and either initiates the innate immunity reaction in a non-permissive host or interferes with it in a permissive host. As a silencing suppressor, TAV interferes with dicing of dsRNAs.


Subject(s)
Caulimovirus/physiology , Host-Pathogen Interactions , Insecta/virology , Plants/virology , Virus Attachment , Animals , Protein Binding , Viral Proteins/metabolism
15.
Virus Genes ; 47(2): 347-56, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23828619

ABSTRACT

Seventeen provinces of Iran were surveyed during 2003-2012 to find Brassicaceae hosts of Cauliflower mosaic virus (CaMV). A total 397 samples were collected from plants with virus-like symptoms. Among those tested by ELISA, 255 samples (67.2 %) were found to be infected with CaMV. Mechanical transmission tests showed that the Iranian isolates have similar biological properties on a number of Brassica and Raphanus plant species and cultivars tested. However, the isolates varied in the severity of symptoms they induced and in the capacity to infect B. oleracea var. capitata, on the basis of which they were grouped into two distinct biotypes L/MMo (latent/mild mottle) and severe (S) infection. The molecular diversity of natural population of CaMV were investigated based on the complete sequences of OFR 6 of 36 Iranian isolates collected from different geographically distant regions in Iran alongside the sequences of 14 previously reported isolates. Phylogenetic analyses indicated that the Iranian CaMV isolates belong to two groups (GI and GII). Most of the Iranian isolates fell into GI with other exotic isolates; however, the isolates from North-East Iran with Xinjiang from China fell into GII. The phylogenetic group GII (the North-East Iranian isolates) closely corresponded to the S biological group however other Iranian isolates corresponded to the L/MMo biological group. The within-population diversity was lower than the between population diversity suggesting the contribution of a founder effect on diversification of CaMV isolates. The Iranian isolates were differentiated from other exotic CaMV isolates and clustered into two RFLP groups using Hpy99I which closely corresponded to the biological and phylogenetic groups. This study showed the evolutionary process in CaMV isolates is shaped by a combination of host range differentiation and nucleotide substitution using the approach of population genetics.


Subject(s)
Brassica/virology , Caulimovirus/classification , Caulimovirus/isolation & purification , Genetic Variation , Plant Diseases/virology , Raphanus/virology , Caulimovirus/genetics , Caulimovirus/physiology , Cluster Analysis , Iran , Molecular Sequence Data , Open Reading Frames , Phylogeny , RNA, Viral/genetics , Sequence Analysis, DNA , Sequence Homology
16.
PLoS One ; 8(5): e64657, 2013.
Article in English | MEDLINE | ID: mdl-23724074

ABSTRACT

The cellular multiplicity of infection (MOI) is a key parameter for describing the interactions between virions and cells, predicting the dynamics of mixed-genotype infections, and understanding virus evolution. Two recent studies have reported in vivo MOI estimates for Tobacco mosaic virus (TMV) and Cauliflower mosaic virus (CaMV), using sophisticated approaches to measure the distribution of two virus variants over host cells. Although the experimental approaches were similar, the studies employed different definitions of MOI and estimation methods. Here, new model-selection-based methods for calculating MOI were developed. Seven alternative models for predicting MOI were formulated that incorporate an increasing number of parameters. For both datasets the best-supported model included spatial segregation of virus variants over time, and to a lesser extent aggregation of virus-infected cells was also implicated. Three methods for MOI estimation were then compared: the two previously reported methods and the best-supported model. For CaMV data, all three methods gave comparable results. For TMV data, the previously reported methods both predicted low MOI values (range: 1.04-1.23) over time, whereas the best-supported model predicted a wider range of MOI values (range: 1.01-2.10) and an increase in MOI over time. Model selection can therefore identify suitable alternative MOI models and suggest key mechanisms affecting the frequency of coinfected cells. For the TMV data, this leads to appreciable differences in estimated MOI values.


Subject(s)
Caulimovirus/physiology , Host-Pathogen Interactions/physiology , Models, Theoretical , Plants/virology , Tobacco Mosaic Virus/physiology , Virus Replication/physiology , Poisson Distribution
17.
Plant J ; 75(2): 290-308, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23379770

ABSTRACT

Viruses use and subvert host cell mechanisms to support their replication and spread between cells, tissues and organisms. Microtubules and associated motor proteins play important roles in these processes in animal systems, and may also play a role in plants. Although transport processes in plants are mostly actin based, studies, in particular with Tobacco mosaic virus (TMV) and its movement protein (MP), indicate direct or indirect roles of microtubules in the cell-to-cell spread of infection. Detailed observations suggest that microtubules participate in the cortical anchorage of viral replication complexes, in guiding their trafficking along the endoplasmic reticulum (ER)/actin network, and also in developing the complexes into virus factories. Microtubules also play a role in the plant-to-plant transmission of Cauliflower mosaic virus (CaMV) by assisting in the development of specific virus-induced inclusions that facilitate viral uptake by aphids. The involvement of microtubules in the formation of virus factories and of other virus-induced inclusions suggests the existence of aggresomal pathways by which plant cells recruit membranes and proteins into localized macromolecular assemblies. Although studies related to the involvement of microtubules in the interaction of viruses with plants focus on specific virus models, a number of observations with other virus species suggest that microtubules may have a widespread role in viral pathogenesis.


Subject(s)
Microtubules/virology , Plant Viruses/physiology , Virus Replication , Animals , Caulimovirus/physiology , Cytoskeleton/virology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Insecta/virology , Plant Diseases/virology , Plant Viral Movement Proteins/metabolism , Plant Viruses/pathogenicity , Tobacco Mosaic Virus/pathogenicity , Tobacco Mosaic Virus/physiology
18.
PLoS Pathog ; 8(11): e1003009, 2012.
Article in English | MEDLINE | ID: mdl-23133389

ABSTRACT

For any organism, population size, and fluctuations thereof, are of primary importance in determining the forces driving its evolution. This is particularly true for viruses--rapidly evolving entities that form populations with transient and explosive expansions alternating with phases of migration, resulting in strong population bottlenecks and associated founder effects that increase genetic drift. A typical illustration of this pattern is the progression of viral disease within a eukaryotic host, where such demographic fluctuations are a key factor in the emergence of new variants with altered virulence. Viruses initiate replication in one or only a few infection foci, then move through the vasculature to seed secondary infection sites and so invade distant organs and tissues. Founder effects during this within-host colonization might depend on the concentration of infectious units accumulating and circulating in the vasculature, as this represents the infection dose reaching new organs or "territories". Surprisingly, whether or not the easily measurable circulating (plasma) virus load directly drives the size of population bottlenecks during host colonization has not been documented in animal viruses, while in plants the virus load within the sap has never been estimated. Here, we address this important question by monitoring both the virus concentration flowing in host plant sap, and the number of viral genomes founding the population in each successive new leaf. Our results clearly indicate that the concentration of circulating viruses directly determines the size of bottlenecks, which hence controls founder effects and effective population size during disease progression within a host.


Subject(s)
Brassica rapa/virology , Caulimovirus/physiology , Genome, Viral/physiology , Plant Diseases/virology , Plant Leaves/virology , Viral Load/physiology , Animals , Aphids/virology
19.
PLoS One ; 6(8): e23241, 2011.
Article in English | MEDLINE | ID: mdl-21853093

ABSTRACT

Host-to-host transmission--a key step in plant virus infection cycles--is ensured predominantly by vectors, especially aphids and related insects. A deeper understanding of the mechanisms of virus acquisition, which is critical to vector-transmission, might help to design future virus control strategies, because any newly discovered molecular or cellular process is a potential target for hampering viral spread within host populations. With this aim in mind, an aphid membrane-feeding assay was developed where aphids transmitted two non-circulative viruses [cauliflower mosaic virus (CaMV) and turnip mosaic virus] from infected protoplasts. In this assay, virus acquisition occurs exclusively from living cells. Most interestingly, we also show that CaMV is less efficiently transmitted by aphids in the presence of oryzalin--a microtubule-depolymerising drug. The example presented here demonstrates that our technically simple "virus-acquisition phenotyping assay" (VAPA) provides a first opportunity to implement correlative studies relating the physiological state of infected plant cells to vector-transmission efficiency.


Subject(s)
Biological Assay/methods , Insect Vectors/virology , Plant Diseases/virology , Plant Viruses/physiology , Animals , Aphids/virology , Brassica rapa/virology , Caulimovirus/physiology , Phenotype , Protoplasts/virology
20.
Virus Res ; 159(1): 69-72, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21571015

ABSTRACT

The genome of the floriculture pathogen Dahlia mosaic caulimovirus (DMV) encodes six open reading frames. Generally, caulimovirus gene VI products (P6s) are thought to be multifunctional proteins required for viral infection and it is likely that self-association is required for some of these functions. In this study, yeast two-hybrid and maltose binding protein (MBP) pull-down assays indicated that full-length DMV P6 specifically self-associates. Further analyses indicated that only the DMV P6 N-terminal region, consisting of 115 amino acids, interacts with full-length P6 and with itself. This distinguishes the DMV P6 from its Cauliflower mosaic virus counterpart, which contains four regions involved in self-association. Thus, our results suggest that each caulimovirus P6 may possess a unique pattern of protein-protein interactions. Bioinformatic tools identified a putative nuclear exclusion signal located between amino acid residues 10-20, suggesting another possible function for the P6 N-terminal region.


Subject(s)
Caulimovirus/physiology , Protein Multimerization , Viral Proteins/metabolism , Dahlia/virology , Protein Binding , Protein Interaction Mapping , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...