Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2169: 137-147, 2020.
Article in English | MEDLINE | ID: mdl-32548826

ABSTRACT

Caveolin-1 is a 20.5 kDa integral membrane protein that is involved in a myriad of cellular processes including signal transduction, relieving mechano-stresses on the cell, endocytosis, and most importantly caveolae formation. As a consequence, there is intense interest in characterizing caveolin-1 structurally. Out of the many available structural techniques, nuclear magnetic resonance (NMR) spectroscopy is particularly well suited to investigations on integral membrane proteins like caveolin-1 that have significant unstructured regions and unusual topologies. However, the technique requires relatively large amounts of protein (i.e. concentrations in the 0.5-5 mM range), and obtaining these amounts can be difficult especially for highly hydrophobic membrane proteins such as caveolin-1. Herein, we describe a robust protocol for the preparation of caveolin-1 for structural studies using NMR.


Subject(s)
Caveolin 1/isolation & purification , Chromatography, High Pressure Liquid/methods , Magnetic Resonance Spectroscopy/methods , Membrane Proteins/isolation & purification , Animals , Carbon Isotopes/chemistry , Caveolae/metabolism , Caveolin 1/metabolism , Cyanogen Bromide/chemistry , Escherichia coli/metabolism , Humans , Inclusion Bodies/metabolism , Membrane Proteins/metabolism , Nitrogen Isotopes/chemistry
2.
Biomolecules ; 9(10)2019 10 18.
Article in English | MEDLINE | ID: mdl-31635212

ABSTRACT

Caveolae-associated protein caveolin-1 (Cav-1) plays key roles in cellular processes such as mechanosensing, receptor coupling to signaling pathways, cell growth, apoptosis, and cancer. In 1321N1 astrocytoma cells Cav-1 interacts with the P2Y2 receptor (P2Y2R) to modulate its downstream signaling. P2Y2R and its signaling machinery also mediate pro-survival actions after mechanical injury. This study determines if Cav-1 knockdown (KD) affects P2Y2R signaling and its pro-survival actions in the 1321N1 astrocytoma cells mechanical injury model system. KD of Cav-1 decreased its expression in 1321N1 cells devoid of or expressing hHAP2Y2R by ~88% and ~85%, respectively. Cav-1 KD had no significant impact on P2Y2R expression. Post-injury densitometric analysis of pERK1/2 and Akt activities in Cav-1-positive 1321N1 cells (devoid of or expressing a hHAP2Y2R) revealed a P2Y2R-dependent temporal increase in both kinases. These temporal increases in pERK1/2 and pAkt were significantly decreased in Cav-1 KD 1321N1 (devoid of or expressing a hHAP2Y2R). Cav-1 KD led to an ~2.0-fold and ~2.4-fold decrease in the magnitude of the hHAP2Y2R-mediated pERK1/2 and pAkt kinases' activity, respectively. These early-onset hHAP2Y2R-mediated signaling responses in Cav-1-expressing and Cav-1 KD 1321N1 correlated with changes in cell viability (via a resazurin-based method) and apoptosis (via caspase-9 expression). In Cav-1-positive 1321N1 cells, expression of hHAP2Y2R led to a significant increase in cell viability and decreased apoptotic (caspase-9) activity after mechanical injury. In contrast, hHAP2Y2R-elicited changes in viability and apoptotic (caspase-9) activity were decreased after mechanical injury in Cav-1 KD 1321N1 cells expressing hHAP2Y2R. These findings support the importance of Cav-1 in modulating P2Y2R signaling during mechanical injury and its protective actions in a human astrocytoma cell line, whilst shedding light on potential new venues for brain injury or trauma interventions.


Subject(s)
Astrocytoma/metabolism , Caveolin 1/metabolism , Receptors, Purinergic P2Y2/metabolism , Signal Transduction , Stress, Mechanical , Astrocytoma/pathology , Caspase 9/metabolism , Caveolin 1/deficiency , Caveolin 1/isolation & purification , Cell Survival , Humans , Tumor Cells, Cultured
3.
J Virol ; 91(20)2017 10 15.
Article in English | MEDLINE | ID: mdl-28747506

ABSTRACT

Autophagy plays important roles in maintaining cellular homeostasis. It uses double- or multiple-membrane vesicles termed autophagosomes to remove protein aggregates and damaged organelles from the cytoplasm for recycling. Hepatitis C virus (HCV) has been shown to induce autophagy to enhance its own replication. Here we describe a procedure that combines membrane flotation and affinity chromatography for the purification of autophagosomes from cells that harbor an HCV subgenomic RNA replicon. The purified autophagosomes had double- or multiple-membrane structures with a diameter ranging from 200 nm to 600 nm. The analysis of proteins associated with HCV-induced autophagosomes by proteomics led to the identification of HCV nonstructural proteins as well as proteins involved in membrane trafficking. Notably, caveolin-1, caveolin-2, and annexin A2, which are proteins associated with lipid rafts, were also identified. The association of lipid rafts with HCV-induced autophagosomes was confirmed by Western blotting, immunofluorescence microscopy, and immunoelectron microscopy. Their association with autophagosomes was also confirmed in HCV-infected cells. The association of lipid rafts with autophagosomes was specific to HCV, as it was not detected in autophagosomes induced by nutrient starvation. Further analysis indicated that the autophagosomes purified from HCV replicon cells could mediate HCV RNA replication in a lipid raft-dependent manner, as the depletion of cholesterol, a major component of lipid rafts, from autophagosomes abolished HCV RNA replication. Our studies thus demonstrated that HCV could specifically induce the association of lipid rafts with autophagosomes for its RNA replication.IMPORTANCE HCV can cause severe liver diseases, including cirrhosis and hepatocellular carcinoma, and is one of the most important human pathogens. Infection with HCV can lead to the reorganization of membrane structures in its host cells, including the induction of autophagosomes. In this study, we developed a procedure to purify HCV-induced autophagosomes and demonstrated that HCV could induce the localization of lipid rafts to autophagosomes to mediate its RNA replication. This finding provided important information for further understanding the life cycle of HCV and its interaction with the host cells.


Subject(s)
Autophagosomes/physiology , Hepacivirus/physiology , Membrane Microdomains/physiology , Virus Replication , Annexin A2/chemistry , Annexin A2/isolation & purification , Autophagosomes/chemistry , Autophagosomes/virology , Autophagy , Blotting, Western , Caveolin 1/chemistry , Caveolin 1/isolation & purification , Caveolin 2/chemistry , Caveolin 2/isolation & purification , Cell Line , Cholesterol/analysis , Chromatography, Affinity , Host-Pathogen Interactions , Humans , Membrane Microdomains/chemistry , Membrane Microdomains/virology , Microscopy, Fluorescence , Microscopy, Immunoelectron , Proteomics , RNA, Viral/physiology , Replicon , Viral Nonstructural Proteins/metabolism
4.
J Proteome Res ; 10(11): 4970-82, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-21928809

ABSTRACT

The adipocyte is a key regulator of mammalian metabolism. To advance our understanding of this important cell, we have used quantitative proteomics to define the protein composition of the adipocyte plasma membrane (PM) in the presence and absence of insulin. Using this approach, we have identified a high confidence list of 486 PM proteins, 52 of which potentially represent novel cell surface proteins, including a member of the adiponectin receptor family and an unusually high number of hydrolases with no known function. Several novel insulin-responsive proteins including the sodium/hydrogen exchanger, NHE6 and the collagens III and VI were also identified, and we provide evidence of PM-ER association suggestive of a unique functional association between these two organelles in the adipocyte. Together these studies provide a wealth of potential therapeutic targets for the manipulation of adipocyte function and a valuable resource for metabolic research and PM biology.


Subject(s)
Adipocytes/metabolism , Cell Membrane/metabolism , Membrane Proteins/metabolism , 3T3-L1 Cells , Animals , Calnexin/isolation & purification , Calnexin/metabolism , Caveolin 1/isolation & purification , Caveolin 1/metabolism , Cell Fractionation , Cell Membrane/ultrastructure , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Membrane Proteins/isolation & purification , Mice , Proteomics , Qa-SNARE Proteins/isolation & purification , Qa-SNARE Proteins/metabolism , Sodium-Hydrogen Exchangers/metabolism , Syntaxin 16/isolation & purification , Syntaxin 16/metabolism , Tandem Mass Spectrometry
5.
Biotechniques ; 49(5): 837-8, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21091450

ABSTRACT

Since the discovery of cellular membrane rafts, the defining of these domains has remained ambiguous due to a great number of isolation procedures proposed for the extraction of the rafts from cells. Characterization of membrane rafts using Triton X-100 insolubility is limited by the fact that weak interactions between proteins and lipids within the membrane rafts cannot be detected. In order to study the role of membrane rafts in cell signal transduction, it is crucial that weak membrane raft-associated proteins are detected. In this report, we demonstrate that by incorporating 3,3'-dithiobis(sulfosuccinimidyl propionate) (DTSSP) crosslinking and freezing at -80°C into the membrane raft isolation procedure of HaCaT cells, both membrane raft-associated proteins caveolin-1 and Fas receptor are able to be reproducibly isolated into a single fraction containing the membrane rafts of the cells.


Subject(s)
Caveolin 1/isolation & purification , Cross-Linking Reagents , Freezing , Membrane Microdomains/chemistry , fas Receptor/isolation & purification , Cell Fractionation/methods , Cell Line , Centrifugation, Density Gradient , Succinimides
6.
Anat Histol Embryol ; 37(5): 325-31, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18312604

ABSTRACT

Androgen-binding protein (ABP) and oxytocin (OT) are among the factors that control smooth muscle proliferation and tumour growth through oxytocin receptor (OTR). A close functional interaction of OTR and caveolin 1 has been shown to modulate cell growth and proliferation. We investigated samples from 10 patients (mean age 68.3) who underwent transurethral prostate resection because of benign prostate hyperplasia (BPH) by immunohistochemistry. Post-mortem prostate samples of three young men (age 18, 28, 33) were used as controls. Tissue samples were embedded in epoxy resin and cut into serial 1 microm sections for colocalization of ABP, OTR, proliferation marker p21 and caveolin 1. ABP was found in stroma of the smooth muscle cells in all studied samples. OTR staining occurred in most of these cells in BPH while controls contained only scattered cells positive for OTR. There were no apparent differences in immunostaining for p21 while immunoreactivity for caveolin 1 was observed in most cells in BPH and only in few cells in controls. Caveolin 1 was mostly colocalized with ABP and OTR in BPH samples while controls did only occasionally show this colocalization. Our observations indicate an interaction of ABP and OTR, associated with caveolin 1, which may account in part for known non-genomic actions of gonadal steroids. Androgen dependent prostate growth in BPH may be linked to these mechanisms.


Subject(s)
Androgen-Binding Protein/metabolism , Caveolin 1/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Prostatic Hyperplasia/metabolism , Receptors, Oxytocin/metabolism , Adult , Aged , Androgen-Binding Protein/isolation & purification , Case-Control Studies , Caveolin 1/isolation & purification , Cell Division/physiology , Cyclin-Dependent Kinase Inhibitor p21/isolation & purification , Humans , Immunohistochemistry , Male , Oxytocin/metabolism , Prostate/cytology , Prostate/metabolism , Receptors, Oxytocin/isolation & purification , Tissue Distribution
7.
Int J Parasitol ; 38(2): 191-202, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17803998

ABSTRACT

Caveolins are integral membrane proteins implicated in cholesterol homeostasis and transport, endocytosis mechanisms and regulation of signal transduction in differentiated cells. In this work a caveolin-1 gene from the nematode Trichinella spiralis (Ts-cav-1) was cloned and identified as an adult-specific antigen. For this, a cDNA library of T. spiralis 3-day-old adult worms was screened using a stage-specific cDNA-labelled probe. One positive clone contained a cDNA insert of 1427-bp and a full-length open reading frame (ORF) of 687-bp, which encodes for a 229 amino acid polypeptide with a theoretical molecular weight of 26kDa. BLAST and FASTA searches revealed a 36% and 57% identity with Caenorhabditis elegans caveolin-1, respectively. Confocal laser microscopy analysis using antibodies generated against Ts-CAV-1 protein and cross-sections of adult parasites showed that Ts-CAV-1 gradually accumulates on the surface of Trichinella oocytes and embryos, reaching a maximum at 3days p.i., and decreasing during new-born larvae (NBL) development. RT-PCR assays of parasites from 1 to 4days p.i. showed a similar gene expression profile to that observed for Ts-CAV-1 which suggests a specific developmental regulation. Free cholesterol was mainly distributed in the female germ line and it displayed increasing membrane accumulation, similar to the pattern obtained for Ts-CAV-1 protein, which suggests a temporal membrane association with Ts-CAV-1 that in turn will perform the functions mentioned above. Our results strongly indicate that Ts-cav-1 from T. spiralis plays a role in oocyte maturation and embryogenesis during development, demonstrating gender-specific expression.


Subject(s)
Caveolin 1/isolation & purification , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Oocysts/metabolism , Trichinella spiralis/embryology , Trichinella spiralis/metabolism , Amino Acid Sequence , Animals , Antigens, Helminth/genetics , Base Sequence , Blotting, Western/methods , Caveolin 1/genetics , Caveolin 1/metabolism , Caveolin 3/genetics , Female , Gene Expression , Microscopy, Confocal , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...