Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Sci Rep ; 14(1): 761, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38191892

ABSTRACT

This study aims to the function of miR-22 original mesenchymal stem cells (MSC) on osteosarcoma (OS) proliferation, migration and invasion. Bio-informatics analysis including GEO2R analysis, Gene Ontology analysis, integration analysis were used to confirmed the target genes (miR-22, Twist1, CADM1) in OS. RT-qPCR and western blotting confirmed the different expression of miR-22, Twist1, CADM1 in OS tissues, MG63 and Saos cell lines. MTS assay, CCK8 assay, colony forming assay, EdU assay were performed to detect the proliferation effect of miR-22 on MG63. Transwell migration assay, transwell invasion assay, wound healing assay were used to verify the migration and invasion effect of miR-22 on MG63. Luciferase reporter assay confirm the binding sites between miR-22 and Twist1. RT-qPCR confirmed miR-22 and CADM1 downregulated and Twist1 upregulated in OS tissues, MG63 and Saos. Exosome original MSC labeled with PKH-26 could be uptake by MG63, which upregulated the expression of miR-22 in MG63. High expression of miR-22 in MG63 inhibited proliferation, migration and invasion, which could be rescued by Twist1. Dual luciferase reporter analysis confirmed Twist1 was a target of miR-22. Exosome modified with miR-22 mimic inhibit proliferation, migration and invasion more efficient than exosome original MSC. miR-22 cargo in exo-MSC could uptake by MG63 and supply MG63 with miR-22, which inhibit MG63 proliferation, migration and invasion through targeting Twist1.


Subject(s)
Bone Neoplasms , Exosomes , MicroRNAs , Osteosarcoma , Humans , Exosomes/genetics , Osteosarcoma/genetics , Bone Neoplasms/genetics , Luciferases , Cell Proliferation/genetics , MicroRNAs/genetics , Cell Adhesion Molecule-1/genetics
2.
Int Immunopharmacol ; 128: 111500, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38237222

ABSTRACT

Oxidative stress and inflammation are highly important for sepsis-mediated myocardial damage. The long noncoding RNA (lncRNA) MCM3AP-AS1 is involved in inflammatory diseases, but its function in acute myocardial injury during sepsis has not been fully elucidated. LPS and cecal ligation and puncture (CLP) were used to construct in vitro and in vivo sepsis-induced myocardial damage models, respectively. qRT-PCR was used to evaluate alterations in MCM3AP-AS1 and miR-501-3p alterations. After the MCM3AP-AS1 and miR-501-3p knockdown or overexpression models were established, the viability, apoptosis, inflammation, oxidative stress, and mitochondrial function of the myocardial cells were examined. Dual luciferase activity assay, RNA immunoprecipitation, and fluorescence in situ hybridization (FISH) confirmed the correlation among MCM3AP-AS1, miR-501-3p, and CADM1. Previous studies revealed that MCM3AP-AS1 was downregulated in sepsis patients, myocardial cells treated with LPS, and in the CLP mouse sepsis model, whereas miR-501-3p expression was increased. MCM3AP-AS1 overexpression hampered myocardial damage mediated by LPS and abated inflammation, oxidative stress, and mitochondrial dysfunction in myocardial cells and THP-1 cells. In contrast, MCM3AP-AS1 knockdown or miR-501-3p overexpression promoted all the effects of LPS. In vivo, MCM3AP-AS1 overexpression increased the survival rate of CLP mice; ameliorated myocardial injury; decreased the levels of TNF-α, IL-1ß, IL-6, iNOS, COX2, ICAM1, VCAM1, PGE2, and MDA; and increased the levels of SOD, GSH-PX, Nrf2, and HO-1. Mechanistic studies demonstrated that MCM3AP-AS1 acted as a competitive endogenous RNA to repress miR-501-3p, enhance CADM1 expression, and dampen STAT3/nuclear factor-kappaB (NF-κB) activation. MCM3AP-AS1 suppresses myocardial injury elicited by sepsis by mediating the miR-501-3p/CADM1/STAT3/NF-κB axis.


Subject(s)
Cardiomyopathies , MicroRNAs , RNA, Long Noncoding , STAT3 Transcription Factor , Sepsis , Humans , Animals , Mice , MicroRNAs/genetics , RNA, Long Noncoding/genetics , NF-kappa B/metabolism , Lipopolysaccharides/metabolism , In Situ Hybridization, Fluorescence , Inflammation , Apoptosis , Oxidative Stress , Acetyltransferases/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Cell Adhesion Molecule-1/genetics , Cell Adhesion Molecule-1/metabolism
3.
J Oral Biosci ; 66(1): 151-159, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38030062

ABSTRACT

OBJECTIVES: This study aimed to clarify the molecular mechanism underlying the higher invasion and metastasis abilities of LMF4 cells than those of HSC-3 cells by comparing the expression levels of the tumor suppressor factor, cell adhesion molecule 1 (CADM1). METHODS: We explored 1) whether CADM1 expression level was downregulated in LMF4 cells compared with HSC-3 cells, 2) whether CADM1 expression knockdown increased the expression levels of matrix metalloproteinases (MMPs), 3) the exact cellular signaling pathways responsible for increased MMP expression after knockdown of CADM1 expression, and 4) whether disruption of CADM1-dependent HSC-3 cell adhesion increased the migratory and invasive activities of HSC-3 cells. RESULTS: CADM1 expression was lower in the LMF4 than in the HSC-3 cells. The knockdown of CADM1 increased the expression of MMP-2 and MMP-9 in HSC-3 cells. In addition, the upregulation of MMP-2 expression after CADM1 knockdown was abrogated by the mitogen-activated protein (MAP)/extracellular signal-regulated kinase kinase (MEK) inhibitor U0126 and the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. The upregulation of MMP-9 expression after the knockdown of CADM1 was abrogated by the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the p38 MAP kinase (MAPK) inhibitor SB203580 and LY294002. Anti-CADM1 neutralizing antibody evoked migratory and invasive abilities of HSC-3 cells. CONCLUSION: The disruption of CADM1-dependent cell-cell adhesion in human oral squamous cell carcinoma cells resulted in tumor progression, possibly through an increase in MMP-2 expression in a MEK/PI3K-dependent manner and an increase in MMP-9 expression in a JNK/p38 MAPK/PI3K-dependent manner.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , MAP Kinase Signaling System/genetics , Carcinoma, Squamous Cell/genetics , Squamous Cell Carcinoma of Head and Neck , Cell Adhesion/genetics , Mouth Neoplasms/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Cell Adhesion Molecule-1/genetics , Cell Adhesion Molecule-1/metabolism
4.
BMC Cancer ; 23(1): 1072, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932662

ABSTRACT

BACKGROUND: Methylation levels may be associated with and serve as markers to predict risk of progression of precancerous cervical lesions. We conducted an epigenome-wide association study (EWAS) of CpG methylation and progression to high-grade cervical intraepithelial neoplasia (CIN2 +) following an abnormal screening test. METHODS: A prospective US cohort of 289 colposcopy patients with normal or CIN1 enrollment histology was assessed. Baseline cervical sample DNA was analyzed using Illumina HumanMethylation 450K (n = 76) or EPIC 850K (n = 213) arrays. Participants returned at provider-recommended intervals and were followed up to 5 years via medical records. We assessed continuous CpG M values for 9 cervical cancer-associated genes and time-to-progression to CIN2+. We estimated CpG-specific time-to-event ratios (TTER) and hazard ratios using adjusted, interval-censored Weibull accelerated failure time models. We also conducted an exploratory EWAS to identify novel CpGs with false discovery rate (FDR) < 0.05. RESULTS: At enrollment, median age was 29.2 years; 64.0% were high-risk HPV-positive, and 54.3% were non-white. During follow-up (median 24.4 months), 15 participants progressed to CIN2+. Greater methylation levels were associated with a shorter time-to-CIN2+ for CADM1 cg03505501 (TTER = 0.28; 95%CI 0.12, 0.63; FDR = 0.03) and RARB Cluster 1 (TTER = 0.46; 95% CI 0.29, 0.71; FDR = 0.01). There was evidence of similar trends for DAPK1 cg14286732, PAX1 cg07213060, and PAX1 Cluster 1. The EWAS detected 336 novel progression-associated CpGs, including those located in CpG islands associated with genes FGF22, TOX, COL18A1, GPM6A, XAB2, TIMP2, GSPT1, NR4A2, and APBB1IP. CONCLUSIONS: Using prospective time-to-event data, we detected associations between CADM1-, DAPK1-, PAX1-, and RARB-related CpGs and cervical disease progression, and we identified novel progression-associated CpGs. IMPACT: Methylation levels at novel CpG sites may help identify individuals with ≤CIN1 histology at higher risk of progression to CIN2+ and inform risk-based cervical cancer screening guidelines.


Subject(s)
Papillomavirus Infections , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Female , Humans , United States , Adult , Uterine Cervical Neoplasms/pathology , Prospective Studies , Epigenome , Early Detection of Cancer , DNA Methylation , Uterine Cervical Dysplasia/diagnosis , Papillomavirus Infections/complications , Papillomaviridae/genetics , Cell Adhesion Molecule-1/genetics
5.
BMC Cancer ; 23(1): 955, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37814227

ABSTRACT

The interruption of normal cell cycle execution acts as an important part to the development of leukemia. It was reported that microRNAs (miRNAs) were closely related to tumorigenesis and progression, and their aberrant expression had been demonstrated to play a crucial role in numerous types of cancer. Our previous study showed that miR-1246 was preferentially overexpressed in chemo-resistant leukemia cell lines, and participated in process of cell cycle progression and multidrug resistant regulation. However, the underlying mechanism remains unclear. In present study, bioinformatics prediction and dual luciferase reporter assay indicated that CADM1 was a direct target of miR-1246. Evidently decreased expression of CADM1 was observed in relapsed primary leukemia patients and chemo-resistant cell lines. Our results furtherly proved that inhibition of miR-1246 could significantly enhance drug sensitivity to Adriamycin (ADM), induce cell cycle arrest at G0/G1 phase, promote cell apoptosis, and relieve its suppression on CADM1 in K562/ADM and HL-60/RS cells. Interference with CADM1 could reduce the increased drug sensitivity induced by miR-1246 inhibition, and notably restore drug resistance by promoting cell cycle progression and cell survival via regulating CDKs/Cyclins complexes in chemo-resistant leukemia cells. Above all, our results demonstrated that CADM1 attenuated the role of miR-1246 in promoting cell cycle progression and cell survival, thus influencing multidrug resistance within chemo-resistant leukemia cells via CDKs/Cyclins. Higher expression of miR-1246 and lower expression of CADM1 might be risk factors for leukemia.


Subject(s)
Leukemia , MicroRNAs , Humans , MicroRNAs/metabolism , HL-60 Cells , Doxorubicin/pharmacology , Cell Cycle/genetics , Leukemia/drug therapy , Leukemia/genetics , Cyclins , Cell Proliferation , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Cell Adhesion Molecule-1/genetics
6.
Clin Epigenetics ; 15(1): 125, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37533074

ABSTRACT

BACKGROUND: Screening plays a key role in secondary prevention of cervical cancer. High-risk human papillomavirus (hrHPV) testing, a highly sensitive test but with limited specificity, has become the gold standard frontline for screening programs. Thus, the importance of effective triage strategies, including DNA methylation markers, has been emphasized. Despite the potential reported in individual studies, methylation markers still require validation before being recommended for clinical practice. This systematic review and meta-analysis aimed to evaluate the performance of DNA methylation-based biomarkers for detecting high-grade intraepithelial lesions (HSIL) in hrHPV-positive women. METHODS: Hence, PubMed, Scopus, and Cochrane databases were searched for studies that assessed methylation in hrHPV-positive women in cervical scrapes. Histologically confirmed HSIL was used as endpoint and QUADAS-2 tool enabled assessment of study quality. A bivariate random-effect model was employed to pool the estimated sensitivity and specificity as well as positive (PPV) and negative (NPV) predictive values. RESULTS: Twenty-three studies were included in this meta-analysis, from which cohort and referral population-based studies corresponded to nearly 65%. Most of the women analyzed were Dutch, and CADM1, FAM19A4, MAL, and miR124-2 were the most studied genes. Pooled sensitivity and specificity were 0.68 (CI 95% 0.63-0.72) and 0.75 (CI 95% 0.71-0.80) for cervical intraepithelial neoplasia (CIN) 2+ detection, respectively. For CIN3+ detection, pooled sensitivity and specificity were 0.78 (CI 95% 0.74-0.82) and 0.74 (CI 95% 0.69-0.78), respectively. For pooled prevalence, PPV for CIN2+ and CIN3+ detection were 0.514 and 0.392, respectively. Furthermore, NPV for CIN2+ and CIN3+ detection were 0.857 and 0.938, respectively. CONCLUSIONS: This meta-analysis confirmed the great potential of DNA methylation-based biomarkers as triage tool for hrHPV-positive women in cervical cancer screening. Standardization and improved validation are, however, required. Nevertheless, these markers might represent an excellent alternative to cytology and genotyping for colposcopy referral of hrHPV-positive women, allowing for more cost-effective screening programs.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Pregnancy , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/genetics , DNA Methylation , Early Detection of Cancer , Colposcopy , Triage , Papillomavirus Infections/diagnosis , Papillomavirus Infections/genetics , Papillomavirus Infections/complications , Referral and Consultation , Papillomaviridae/genetics , Cell Adhesion Molecule-1/genetics
7.
PLoS Biol ; 21(7): e3002197, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37410725

ABSTRACT

Drosophila melanogaster Down syndrome cell adhesion molecule 1 (Dscam1) encodes 19,008 diverse ectodomain isoforms via the alternative splicing of exon 4, 6, and 9 clusters. However, whether individual isoforms or exon clusters have specific significance is unclear. Here, using phenotype-diversity correlation analysis, we reveal the redundant and specific roles of Dscam1 diversity in neuronal wiring. A series of deletion mutations were performed from the endogenous locus harboring exon 4, 6, or 9 clusters, reducing to 396 to 18,612 potential ectodomain isoforms. Of the 3 types of neurons assessed, dendrite self/non-self discrimination required a minimum number of isoforms (approximately 2,000), independent of exon clusters or isoforms. In contrast, normal axon patterning in the mushroom body and mechanosensory neurons requires many more isoforms that tend to associate with specific exon clusters or isoforms. We conclude that the role of the Dscam1 diversity in dendrite self/non-self discrimination is nonspecifically mediated by its isoform diversity. In contrast, a separate role requires variable domain- or isoform-related functions and is essential for other neurodevelopmental contexts, such as axonal growth and branching. Our findings shed new light on a general principle for the role of Dscam1 diversity in neuronal wiring.


Subject(s)
Down Syndrome , Drosophila Proteins , Animals , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Cell Adhesion Molecule-1/genetics , Cell Adhesion Molecule-1/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Down Syndrome/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Neurons/metabolism
8.
J Int Med Res ; 51(4): 3000605231168017, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37114505

ABSTRACT

OBJECTIVES: To explore the relationship between CADM1 expression and sensitivity to TPF-induced chemotherapy in laryngeal squamous cell carcinoma (LSCC) patients, then investigate its potential mechanisms. METHODS: Differential CADM1 expression was examined in chemotherapy-sensitive and chemotherapy-insensitive LSCC patient samples after TPF-induced chemotherapy using microarray analysis. Receiver operating characteristic (ROC) curve analysis and bioinformatics approaches were used to investigate the diagnostic value of CADM1. Small interfering RNAs (siRNAs) were used to knock down CADM1 expression in an LSCC cell line. Differential CADM1 expression was compared by qRT-PCR assays in 35 LSCC patients treated with chemotherapy, including 20 chemotherapy-sensitive and 15 chemotherapy-insensitive patients. RESULTS: Public database and primary patient data both suggest that CADM1 mRNA is expressed at lower levels in chemotherapy-insensitive LSCC samples, suggesting its potential usefulness as a biomarker. Knockdown of CADM1 with siRNAs led to decreased sensitivity of LSCC cells to TPF chemotherapy. CONCLUSIONS: Upregulation of CADM1 expression can alter the sensitivity of LSCC tumors to TPF induction chemotherapy. CADM1 is a possible molecular marker and therapeutic target for induction chemotherapy in LSCC patients.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Laryngeal Neoplasms , MicroRNAs , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Laryngeal Neoplasms/drug therapy , Laryngeal Neoplasms/genetics , Microarray Analysis , RNA, Small Interfering/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Cell Proliferation , Cell Adhesion Molecule-1/genetics , Cell Adhesion Molecule-1/metabolism
9.
J Clin Lab Anal ; 37(2): e24833, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36604807

ABSTRACT

BACKGROUND: The specific pathogenesis of atrial fibrillation (AF) remains unclear. In this study, we examined the expression of differential messenger RNAs (mRNAs), circular RNAs (circRNAs), and long-stranded noncoding RNAs (lncRNAs) from human peripheral blood mononuclear cells to initially construct a circRNA/lncRNA-miRNA-mRNA ceRNA regulatory network to explore the pathogenesis of AF and to screen for potential biomarkers. METHODS: A total of four pairs of AF cases and healthy subjects were selected to detect differentially expressed mRNAs, circRNAs, and lncRNAs in peripheral blood mononuclear cells by microarray analysis. And 20 pairs of peripheral blood from AF patients and healthy subjects were selected for validation of mRNA, circRNA, and lncRNA by quantitative real-time PCR (qRT-PCR).The relevant ceRNA networks were constructed by GO and KEGG and correlation analysis. RESULTS: The results showed that compared with healthy subjects, there were 813 differentially expressed mRNAs (DEmRNAs) in peripheral blood monocytes of AF, including 445 upregulated genes and 368 downregulated genes, 120 differentially expressed circRNAs (DEcircRNAs), including 65 upregulated and 55 downregulated, 912 differentially expressed lncRNAs (DElncRNAs), including 531 upregulated and 381 downregulated lncRNAs. GO and KEGG analysis of DERNA revealed the biological processes and pathways involved in AF. Based on microarray data and predicted miRNAs, a ceRNA network containing 34 mRNAs, 212 circRNAs, 108 lncRNAs, and 38 miRNAs was constructed. CONCLUSION: We revealed a novel ceRNA network in AF and showed that downregulated XIST, circRNA_2773, and CADM1 were negatively correlated with miR-486-5p expression and had a potential targeting relationship with miR-486-5p.


Subject(s)
Atrial Fibrillation , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Messenger/genetics , RNA, Long Noncoding/genetics , Leukocytes, Mononuclear/metabolism , Gene Regulatory Networks , Biomarkers , Cell Adhesion Molecule-1/genetics
10.
Nat Commun ; 14(1): 459, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36709330

ABSTRACT

Multiple trans-synaptic complexes organize synapse development, yet their roles in the mature brain and cooperation remain unclear. We analyzed the postsynaptic adhesion protein LRRTM1 in the prefrontal cortex (PFC), a region relevant to cognition and disorders. LRRTM1 knockout (KO) mice had fewer synapses, and we asked whether other synapse organizers counteract further loss. This determined that the immunoglobulin family member SynCAM 1 controls synapse number in PFC and was upregulated upon LRRTM1 loss. Combined LRRTM1 and SynCAM 1 deletion substantially lowered dendritic spine number in PFC, but not hippocampus, more than the sum of single KO impairments. Their cooperation extended presynaptically, and puncta of Neurexins, LRRTM1 partners, were less abundant in double KO (DKO) PFC. Electrophysiology and fMRI demonstrated aberrant neuronal activity in DKO mice. Further, DKO mice were impaired in social interactions and cognitive tasks. Our results reveal concerted roles of LRRTM1 and SynCAM 1 across synaptic, network, and behavioral domains.


Subject(s)
Cell Adhesion Molecule-1 , Membrane Proteins , Nerve Tissue Proteins , Synapses , Animals , Mice , Cognition , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Prefrontal Cortex/metabolism , Synapses/metabolism , Cell Adhesion Molecule-1/genetics , Cell Adhesion Molecule-1/metabolism
11.
Naunyn Schmiedebergs Arch Pharmacol ; 396(4): 649-657, 2023 04.
Article in English | MEDLINE | ID: mdl-36441265

ABSTRACT

Cervical cancer is one of the leading causes of women's mortality in developing countries. The prevalence of cervical cancer is higher in developing countries like India and continents like Africa. Hyper-methylation of tumor suppressor genes through human papillomavirus (HPV) infection is known to be one of the major causes of cervical cancer. The promoter hypermethylation of the cell adhesion molecule 1 (CADM1) and suppressor of cytokine signalling (SOCS1) genes due to DNMT1 overexpression leads to their epigenetic silencing followed by gene repression causing cervical cancer. In silico study on the inhibition effect of capsaicin on DNMT1 was simulated by different servers. The binding energy was observed to be -7.8 kcal/mol. In vitro studies on the effect of capsaicin on aberrant methylation of CADM1 and SOCS1 were performed on the adenocarcinoma cervical cancer cell line, HeLa. The IC50 of capsaicin was observed to be 160 µM through crystal violet assay. DNA methylation of the CADM1 and SOCS1 was analyzed by methylation-specific PCR along with their reversal using capsaicin (20 µM) by treating the cells for 72 h and 6 days. In silico results suggested that capsaicin has an inhibitory effect on DNMT1, which regulates DNA methylation leading to the hypermethylation of CADM1 and SOCS1 genes. The in vitro studies suggested that hypermethylation leads to the inhibition of CADM1 and SOCS1 expression, which could be reversed using capsaicin with visible changes in methylation-specific and unmethylation-specific bands in MS-PCR, respectively. The present study shows the reversal of methylation of CADM1 and SOCS1 after 72 h which showed a further increase in case of 6 days of treatment using 20 µM capsaicin, which makes capsaicin a potent candidate for causing demethylation of CADM1 and SOCS1 genes that may lead to the reactivation of the downregulated gene.


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , Cell Adhesion Molecule-1/genetics , Cell Adhesion Molecule-1/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Capsaicin/pharmacology , DNA Methylation , Suppressor of Cytokine Signaling Proteins/genetics , HeLa Cells , Demethylation , Cell Line, Tumor , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism
12.
Front Endocrinol (Lausanne) ; 13: 969914, 2022.
Article in English | MEDLINE | ID: mdl-36523593

ABSTRACT

Introduction: Advanced papillary thyroid cancer (PTC) has a poor prognosis, 60~70% of which become radio iodine refractory (RAI-R), but the molecular markers that assess PTC progress to advanced PTC remain unclear. Meanwhile, current targeted therapies are badly effective due to drug resistance and adverse side effects. Ligand-receptor pairs (L/R pairs) play an important role in the interactions between tumor cells and other cells in the tumor microenvironment (TME). Nowadays, therapies targeting ligand-receptor pairs in the TME are advancing rapidly in the treatment of advanced cancers. However, therapies targeting L/R pairs applied to advanced PTC remains challenging because of limited knowledge about L/R pairs in PTC. Methods: We screened the critical L/R pair: CADM1-CADM1 using 65311 single-cell RNA sequencing (scRNA-seq) samples from 7 patients in different stage of PTC and bulk RNA-seq datasets containing data from 487 tumor samples and 58 para-carcinoma samples. Moreover, the expression levels of CADM1-CADM1 was assessed by quantitative real time polymerase chain reaction (qRT-PCR) and the function was analyzed using Transwell immigration assay. Results: We found that CADM1_CADM1 could be regarded as a biomarker representing a good prognosis of PTC. In addition, the high expression of CADM1_CADM1 can strongly increase the sensitivity of many targeted drugs, which can alleviate drug resistance. And the results of qRT-PCR showed us that the expression of CADM1_CADM1 in PTC was down-regulated and overexpression of CADM1 could suppresses tumor cell invasion migration. Conclusion: Our study identified that CADM1_CADM1 played an essential role in the progression of PTC for the first time and our findings provide a new potential prognostic and therapeutic ligand-receptor pair for advanced PTC.


Subject(s)
Cell Adhesion Molecule-1 , Single-Cell Gene Expression Analysis , Thyroid Cancer, Papillary , Humans , Cell Adhesion Molecule-1/genetics , Cell Adhesion Molecule-1/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Ligands , RNA-Seq , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Tumor Microenvironment/genetics
13.
Cell Death Dis ; 13(10): 892, 2022 10 22.
Article in English | MEDLINE | ID: mdl-36270981

ABSTRACT

X-linked lymphoproliferative disease (XLP) is either caused by loss of the SLAM-associated protein (SAP; XLP-1) or the X-linked inhibitor of apoptosis (XIAP; XLP-2). In both instances, infection with the oncogenic human Epstein Barr virus (EBV) leads to pathology, but EBV-associated lymphomas only emerge in XLP-1 patients. Therefore, we investigated the role of XIAP during B cell transformation by EBV. Using humanized mice, IAP inhibition in EBV-infected mice led to a loss of B cells and a tendency to lower viral titers and lymphomagenesis. Loss of memory B cells was also observed in four newly described patients with XIAP deficiency. EBV was able to transform their B cells into lymphoblastoid cell lines (LCLs) with similar growth characteristics to patient mothers' LCLs in vitro and in vivo. Gene expression analysis revealed modest elevated lytic EBV gene transcription as well as the expression of the tumor suppressor cell adhesion molecule 1 (CADM1). CADM1 expression on EBV-infected B cells might therefore inhibit EBV-associated lymphomagenesis in patients and result in the absence of EBV-associated malignancies in XLP-2 patients.


Subject(s)
Epstein-Barr Virus Infections , Lymphoproliferative Disorders , Animals , Humans , Mice , Cell Adhesion Molecule-1/genetics , Cell Adhesion Molecule-1/metabolism , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/metabolism , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/pathology , Signaling Lymphocytic Activation Molecule Associated Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism , B-Lymphocytes
14.
Res Vet Sci ; 152: 307-313, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36084372

ABSTRACT

Human inflammatory breast cancer (IBC) and canine inflammatory mammary cancer (IMC) are the most aggressive and lethal types of mammary tumors with specific characteristics such as exacerbated angiogenesis, lymphangiogenesis and lymphangiotropism. E-cadherin expression is another specific feature of IBC not previously studied in canine IMC. In this study, the expression of E-cadherin and CADM1 (Cell Adhesion molecule 1) and their possible role as key molecules involved in the pathogenesis of IMC were immunohistochemically analyzed in 19 canine IMC and 15 grade III non-IMC cases. E-cadherin and CADM1 expression was higher in IMC cases (p = 0.002, p = 0.008, respectively). In the IMC group, E-cadherin cytoplasmic immunolabeling was more frequent (p = 0.035) and it was associated to the expression of the angiogenic and lymphangiogenic factors COX-2 (p = 0.009), VEGF-A (p = 0.031) and VEGF-D (p = 0.008). The differential mRNA expression between IMC and non-IMC was studied by microarray analysis in 6 cases. E-cadherin gene (CDH1) was not up-regulated in IMC cases at a transcriptional level; interestingly CADM1 was 7-fold upregulated. The differential expression of E-cadherin protein in IMC suggests a possible role of E-cadherin in the characteristic exacerbated angiogenesis and lymphangiogenesis and further support IMC as a natural model for the study of human IBC. Future studies in IBC and IMC including a broad panel of adhesion molecules are necessary to elucidate their role in the metastatic process and angiogenesis.


Subject(s)
Dog Diseases , Inflammatory Breast Neoplasms , Mammary Neoplasms, Animal , Animals , Dogs , Cadherins/genetics , Cadherins/metabolism , Cell Adhesion Molecule-1/genetics , Dog Diseases/metabolism , Inflammatory Breast Neoplasms/metabolism , Inflammatory Breast Neoplasms/pathology , Inflammatory Breast Neoplasms/veterinary , Mammary Neoplasms, Animal/pathology , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/veterinary
15.
Int J Mol Sci ; 23(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35805896

ABSTRACT

Small-cell lung cancer (SCLC) is the most aggressive form of lung cancer and the leading cause of global cancer-related mortality. Despite the earlier identification of membrane-proximal cleavage of cell adhesion molecule 1 (CADM1) in cancers, the role of the membrane-bound fragment of CAMD1 (MF-CADM1) is yet to be clearly identified. In this study, we first isolated MF-CADM1-specific fully human single-chain variable fragments (scFvs) from the human synthetic scFv antibody library using the phage display technology. Following the selected scFv conversion to human immunoglobulin G1 (IgG1) scFv-Fc antibodies (K103.1-4), multiple characterization studies, including antibody cross-species reactivity, purity, production yield, and binding affinity, were verified. Finally, via intensive in vitro efficacy and toxicity evaluation studies, we identified K103.3 as a lead antibody that potently promotes the death of human SCLC cell lines, including NCI-H69, NCI-H146, and NCI-H187, by activated Jurkat T cells without severe endothelial toxicity. Taken together, these findings suggest that antibody-based targeting of MF-CADM1 may be an effective strategy to potentiate T cell-mediated SCLC death, and MF-CADM1 may be a novel potential therapeutic target in SCLC for antibody therapy.


Subject(s)
Lung Neoplasms , Single-Chain Antibodies , Small Cell Lung Carcinoma , Cell Adhesion Molecule-1/genetics , Cell Surface Display Techniques , Humans , Single-Chain Antibodies/pharmacology
16.
Dis Markers ; 2022: 2192001, 2022.
Article in English | MEDLINE | ID: mdl-35845138

ABSTRACT

Background: The competing endogenous RNA (CeRNA) network plays important roles in the occurrence and development of colon cancer. This research is aimed at constructing a miRNA-mRNA network associated with exosomes in colon cancer. Methods: We explored the GEO database and then analyzed the RNAs of 722 samples to obtain differentially expressed miRNAs (DEMs) and mRNAs (DEGs) alongside the progress of colon cancer. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEM target genes and DEGs were performed. In addition, a miRNA-mRNA network related to exosomes in colon cancer was constructed based on DEMs and DEGs. Finally, the expression of miRNA and mRNA in the network was verified by GEPIA2 on the base of TCGA database. Results: Through our analysis, 19 DEMs (17 up and 2 down) and 1672 DEGs (954 up and 718 down) were screened. The GO and KEGG results show that these DEGs were mainly enriched in ribonucleoprotein complex biogenesis, noncoding RNA metabolic process, cell-substrate junction, cadherin binding, transcription coregulator activity, and regulation of the human T-cell leukemia virus 1 infection-related pathway. Besides, a miRNA-mRNA network, including 4 miRNAs (hsa-miR-623, hsa-miR-320c, hsa-miR-486-5p, and hsa-miR-1290) and 7 mRNAs (GNAI1, CADM1, PGRMC2, etc.), was constructed. Three of these seven mRNAs were downregulated in colon cancer. Ultimately, the GNAI1, CADM1, and PGRMC2 expression levels were verified by TCGA database. Conclusions: This study reveals the network relationship between colon cancer exosome-derived miRNA and targeted mRNA. It deepens our understanding of new molecular mechanisms and pathways that may play a role in the occurrence and metastasis of colon cancer.


Subject(s)
Colonic Neoplasms , Exosomes , MicroRNAs , RNA, Long Noncoding , Cell Adhesion Molecule-1/genetics , Colonic Neoplasms/genetics , Exosomes/genetics , Exosomes/metabolism , Gene Regulatory Networks , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
17.
Int J Eat Disord ; 55(6): 747-753, 2022 06.
Article in English | MEDLINE | ID: mdl-35470453

ABSTRACT

Anorexia nervosa (AN) is a devastating disorder with evidence of underexplored heritability. Twin and family studies estimate heritability (h2 ) to be 57%-64%, and genome-wide association studies (GWAS) reveal significant genetic correlations with psychiatric and anthropometric traits and a total of nine genome-wide significant loci. Whether significantly associated single nucleotide polymorphisms identified by GWAS are causal or tag true causal variants, remains to be elucidated. We propose a novel method for bridging this knowledge gap by fine-mapping short structural variants (SSVs) in and around GWAS-identified loci. SSV fine-mapping of loci associated with complex disorders such as schizophrenia, amyotrophic lateral sclerosis, and Alzheimer's disease has uncovered genetic risk markers, phenotypic variability between patients, new pathological mechanisms, and potential therapeutic targets. We analyze previous investigations' methods and propose utilizing an evaluation algorithm to prioritize 10 SSVs for each of the top two AN GWAS-identified loci followed by Sanger sequencing and fragment analysis via capillary electrophoresis to characterize these SSVs for case/control association studies. Success of previous SSV analyses in complex disorders and effective utilization of similar methodologies supports our proposed method. Furthermore, the structural and spatial properties of the 10 SSVs identified for each of the top two AN GWAS-associated loci, cell adhesion molecule 1 (CADM1) and NCK interacting protein with SH3 domain (NCKIPSD), are similar to previous studies. We propose SSV fine-mapping of AN-associated loci will identify causal genetic architecture. Deepening understandings of AN may lead to novel therapeutic targets and subsequently increase quality-of-life for individuals living with the illness. PUBLIC SIGNIFICANCE STATEMENT: Anorexia nervosa is a severe and complex illness, arising from a combination of environmental and genetic factors. Recent studies estimate the contribution of genetic variability; however, the specific DNA sequences and how they contribute remain unknown. We present a novel approach, arguing that the genetic variant class, short structural variants, could answer this knowledge gap and allow development of biologically targeted therapeutics, improving quality-of-life and patient outcomes for affected individuals.


Subject(s)
Anorexia Nervosa , Anorexia Nervosa/genetics , Case-Control Studies , Cell Adhesion Molecule-1/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Phenotype , Polymorphism, Single Nucleotide
18.
Mol Cancer Res ; 20(8): 1260-1271, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35426938

ABSTRACT

BRCA1-associated protein 1 (BAP1) is a tumor suppressor gene that is mutated in cancer, including uveal melanoma. Loss-of-function BAP1 mutations are associated with uveal melanoma metastasis and poor prognosis, but the mechanisms underlying these effects remain unclear. Upregulation of cell-cell adhesion proteins is involved with collective migration and metastatic seeding of cancer cells. Here, we show that BAP1 loss in uveal melanoma patient samples is associated with upregulated gene expression of multiple cell adhesion molecules (CAM), including E-cadherin (CDH1), cell adhesion molecule 1 (CADM1), and syndecan-2 (SDC2). Similar findings were observed in uveal melanoma cell lines and single-cell RNA-sequencing data from uveal melanoma patient samples. BAP1 reexpression in uveal melanoma cells reduced E-cadherin and CADM1 levels. Functionally, knockdown of E-cadherin decreased spheroid cluster formation and knockdown of CADM1 decreased growth of BAP1-mutant uveal melanoma cells. Together, our findings demonstrate that BAP1 regulates the expression of CAMs which may regulate metastatic traits. IMPLICATIONS: BAP1 mutations and increased metastasis may be due to upregulation of CAMs.


Subject(s)
Melanoma , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Uveal Neoplasms , Antigens, CD , Cadherins/genetics , Cell Adhesion Molecule-1/genetics , Humans , Melanoma/pathology , Syndecan-2 , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Uveal Neoplasms/pathology
19.
Sci Rep ; 12(1): 3565, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241698

ABSTRACT

Human papillomavirus (HPV) is detected in up to 96% of anal squamous cell cancers, where screening programs needed. However, the best methodology is still undetermined. Host DNA methylation markers CADM1, MAL and miR124 have been identified in cervical disease, but not anal disease. Anal swabs varying by disease grade were assessed for DNA methylation of CADM1, MAL and miR124-2. Each marker was compared across disease grades, stratified by HPV and HIV status. Receiver operating characteristic curves identified the predictive value of significant gene candidates. CADM1 methylation was significantly higher in high-grade squamous intraepithelial lesions (HSIL) compared with low-grade (LSIL) (p = 0.005) or normal (p < 0.001) samples with 67.2% correctly identified as HSIL. MAL methylation was significantly (p = 0.002) increased in HSIL compared with LSIL in HIV positive participants with 79.8% correctly indicated as HSIL. Gene miR124-2, showed no difference between disease grades. Biomarkers with established diagnostic value in cervical disease have limited utility in the prediction of anal disease, with CADM1 identified as a marker with screening potential in a gay and bisexual men (GBM) population and MAL in HIV positive GBM population. New markers specific to the anal mucosa are required to improve triage of high-risk individuals.


Subject(s)
Alphapapillomavirus , Anus Neoplasms , HIV Infections , Papillomavirus Infections , Squamous Intraepithelial Lesions , Uterine Cervical Neoplasms , Anus Neoplasms/diagnosis , Anus Neoplasms/genetics , Biomarkers , Cell Adhesion Molecule-1/genetics , DNA Methylation/genetics , Female , HIV Infections/genetics , Humans , Male , Myelin and Lymphocyte-Associated Proteolipid Proteins/genetics , Papillomaviridae/genetics , Papillomavirus Infections/diagnosis , Papillomavirus Infections/genetics , Uterine Cervical Neoplasms/pathology
20.
Cancer Sci ; 113(5): 1669-1678, 2022 May.
Article in English | MEDLINE | ID: mdl-35213073

ABSTRACT

The initial step of organ infiltration of malignant cells is the interaction with host vascular endothelial cells, which is often mediated by specific combinations of cell adhesion molecules. Cell adhesion molecule 1 (CADM1) is overexpressed in adult T-cell leukemia/lymphoma (ATL) and provides a cell-surface diagnostic marker. CADM1 promotes the adhesion of ATL cells to vascular endothelial cells and multiple organ infiltration in mice. However, its binding partner on host cells has not yet been identified. In this study, we show that CADM1 promotes transendothelial migration of ATL cells in addition to the adhesion to vascular endothelial cells. Moreover, CADM1 enhances liver infiltration of mouse T-cell lymphoma cells, EL4, after tail vein injection, whereas a CADM1 mutant lacking adhesive activity did not. Among the known CADM1-binding proteins expressed in primary endothelial cells, only CADM1 and CADM4 could induce morphological extension of ATL cells when plated onto glass coated with these proteins. Furthermore, CADM1-mediated liver infiltration of EL4 cells was canceled in conventional and vascular endothelium-specific Cadm1 knockout mice, whereas it was not canceled in Cadm4 knockout mice. These results suggest that CADM1 on host vascular endothelial cells is required for organ infiltration of ATL and other T-cell lymphomas expressing CADM1.


Subject(s)
Cell Adhesion Molecule-1/metabolism , Endothelium, Vascular , Lymphoma, T-Cell , Animals , Cell Adhesion , Cell Adhesion Molecule-1/genetics , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Humans , Immunoglobulins/chemistry , Immunoglobulins/genetics , Lymphoma, T-Cell/genetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...