Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.535
Filter
1.
Open Biol ; 14(5): 230358, 2024 May.
Article in English | MEDLINE | ID: mdl-38689555

ABSTRACT

The nucleolus is the most prominent liquid droplet-like membrane-less organelle in mammalian cells. Unlike the nucleolus in terminally differentiated somatic cells, those in totipotent cells, such as murine zygotes or two-cell embryos, have a unique nucleolar structure known as nucleolus precursor bodies (NPBs). Previously, it was widely accepted that NPBs in zygotes are simply passive repositories of materials that will be gradually used to construct a fully functional nucleolus after zygotic genome activation (ZGA). However, recent research studies have challenged this simplistic view and demonstrated that functions of the NPBs go beyond ribosome biogenesis. In this review, we provide a snapshot of the functions of NPBs in zygotes and early two-cell embryos in mice. We propose that these membrane-less organelles function as a regulatory hub for chromatin organization. On the one hand, NPBs provide the structural platform for centric and pericentric chromatin remodelling. On the other hand, the dynamic changes in nucleolar structure control the release of the pioneer factors (i.e. double homeobox (Dux)). It appears that during transition from totipotency to pluripotency, decline of totipotency and initiation of fully functional nucleolus formation are not independent events but are interconnected. Consequently, it is reasonable to hypothesize that dissecting more unknown functions of NPBs may shed more light on the enigmas of early embryonic development and may ultimately provide novel approaches to improve reprogramming efficiency.


Subject(s)
Cell Nucleolus , Chromatin , Embryonic Development , Animals , Cell Nucleolus/metabolism , Chromatin/metabolism , Mice , Zygote/metabolism , Zygote/cytology , Gene Expression Regulation, Developmental , Chromatin Assembly and Disassembly , Humans
2.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38717338

ABSTRACT

Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.


Subject(s)
DNA Helicases , Multifunctional Enzymes , RNA Helicases , RNA, Untranslated , Humans , Cell Nucleolus/metabolism , Cell Nucleolus/genetics , DNA Damage , DNA Helicases/metabolism , DNA Helicases/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , Protein Aggregates , Proteostasis , R-Loop Structures/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
3.
J Ovarian Res ; 17(1): 99, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730385

ABSTRACT

With increasingly used assisted reproductive technology (ART), the acquisition of high-quality oocytes and early embryos has become the focus of much attention. Studies in mice have found that the transition of chromatin conformation from non-surrounded nucleolus (NSN) to surrounded nucleolus (SN) is essential for oocyte maturation and early embryo development, and similar chromatin transition also exists in human oocytes. In this study, we collected human NSN and SN oocytes and investigated their transcriptome. The analysis of differentially expressed genes showed that epigenetic functions, cyclin-dependent kinases and transposable elements may play important roles in chromatin transition during human oocyte maturation. Our findings provide new insights into the molecular mechanism of NSN-to-SN transition of human oocyte and obtained new clues for improvement of oocyte in vitro maturation technique.


Subject(s)
Chromatin , Oocytes , Transcriptome , Humans , Oocytes/metabolism , Chromatin/metabolism , Chromatin/genetics , Female , Gene Expression Profiling , Cell Nucleolus/metabolism , Cell Nucleolus/genetics
4.
Mol Cell ; 84(8): 1400-1402, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38640892

ABSTRACT

Nucleolar stress has been consistently linked to age-related diseases. In this issue, Sirozh et al.1 find that the common molecular signature of nucleolar stress is the accumulation of free ribosomal proteins, which leads to premature aging in mice; however, it can be reversed by mTOR inhibition.


Subject(s)
Cell Nucleolus , Ribosomal Proteins , Mice , Animals , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , RNA, Ribosomal/metabolism
5.
Int J Mol Sci ; 25(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38612434

ABSTRACT

At the time of diagnosis, Alzheimer's disease (AD) patients already suffer from significant neuronal loss. The identification of proteins that influence disease progression before the onset of symptoms is thus an essential part of the development of new effective drugs and biomarkers. Here, we used an unbiased 18O labelling proteomics approach to identify proteins showing altered levels in the AD brain. We studied the relationship between the protein with the highest increase in hippocampus, DEAD box Helicase 24 (DDX24), and AD pathology. We visualised DDX24 in the human brain and in a mouse model for Aß42-induced AD pathology-AppNL-F-and studied the interaction between Aß and DDX24 in primary neurons. Immunohistochemistry in the AD brain confirmed the increased levels and indicated an altered subcellular distribution of DDX24. Immunohistochemical studies in AppNL-F mice showed that the increase of DDX24 starts before amyloid pathology or memory impairment is observed. Immunocytochemistry in AppNL-F primary hippocampal neurons showed increased DDX24 intensity in the soma, nucleus and nucleolus. Furthermore, siRNA targeting of DDX24 in neurons decreased APP and Aß42 levels, and the addition of Aß42 to the medium reduced DDX24. In conclusion, we have identified DDX24 as a protein with a potential role in Aß-induced AD pathology.


Subject(s)
Alzheimer Disease , Animals , Humans , Mice , Alzheimer Disease/genetics , Amyloidogenic Proteins , Brain , Cell Nucleolus , DEAD-box RNA Helicases/genetics
6.
Biomolecules ; 14(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38672417

ABSTRACT

Silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene and a consequent lack of FMR protein (FMRP) synthesis are associated with fragile X syndrome, one of the most common inherited intellectual disabilities. FMRP is a multifunctional protein that is involved in many cellular functions in almost all subcellular compartments under both normal and cellular stress conditions in neuronal and non-neuronal cell types. This is achieved through its trafficking signals, nuclear localization signal (NLS), nuclear export signal (NES), and nucleolar localization signal (NoLS), as well as its RNA and protein binding domains, and it is modulated by various post-translational modifications such as phosphorylation, ubiquitination, sumoylation, and methylation. This review summarizes the recent advances in understanding the interaction networks of FMRP with a special focus on FMRP stress-related functions, including stress granule formation, mitochondrion and endoplasmic reticulum plasticity, ribosome biogenesis, cell cycle control, and DNA damage response.


Subject(s)
Cell Nucleolus , Cytosol , Fragile X Mental Retardation Protein , Fragile X Syndrome , Humans , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Cell Nucleolus/metabolism , Cytosol/metabolism , Fragile X Syndrome/metabolism , Fragile X Syndrome/genetics , Animals , Ribonucleoproteins/metabolism , Ribonucleoproteins/genetics , Protein Processing, Post-Translational
7.
Biochem Biophys Res Commun ; 714: 149970, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38663097

ABSTRACT

Movement dynamics in the nucleus involve various biological processes, including DNA repair, which is crucial for cancer prevention. Changes in the movement of the components of the nucleus indicate the changes in movement dynamics in the nucleus. In Schizosaccharomyces pombe, the inner nuclear membrane protein Bqt4 plays an essential role in attaching telomeres to the nuclear envelope. We observed that the deletion of bqt4+ caused a significant decrease in the mean square displacement (MSD) calculated from the distance between the nucleolar center and spindle pole body (SPB), hereafter referred to as MSD(SPB-Nucleolus). The MSD(SPB-Nucleolus) decrease in bqt4Δ was microtubule-dependent. The Rap1-binding ability loss mutant, bqt4F46A, and nonspecific DNA-binding ability mutants, bqt43E-A, did not exhibit an MSD(SPB-Nucleolus) decrease compared to the WT. Moreover, the bqt43E-Arap1Δ double mutant and 1-262 amino acids truncated mutant bqt4ΔN (263-432), which does not have either Rap1-binding or nonspecific DNA-binding abilities, did not exhibit the MSD(SPB-Nucleolus) decrease to the same extent as bqt4Δ. These results suggest that the unknown function of Bqt4 in the C-terminal domain is essential for the maintenance of the pattern of relative movement between SPB and the nucleolus.


Subject(s)
Cell Nucleolus , DNA-Binding Proteins , Nuclear Proteins , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Spindle Pole Bodies , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Cell Nucleolus/metabolism , Spindle Pole Bodies/metabolism , Mutation , Microtubules/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Protein Binding
8.
Nucleic Acids Res ; 52(8): e41, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38554110

ABSTRACT

Human apurinic/apyrimidinic endonuclease 1 (APE1) plays crucial roles in repairing DNA damage and regulating RNA in the nucleus. However, direct visualization of nuclear APE1 in live cells remains challenging. Here, we report a chaperone@DNA probe for live-cell imaging of APE1 in the nucleus and nucleolus in real time. The probe is based on an assembly of phenylboronic acid modified avidin and biotin-labeled DNA containing an abasic site (named PB-ACP), which cleverly protects DNA from being nonspecifically destroyed while enabling targeted delivery of the probe to the nucleus. The PB-ACP construct specifically detects APE1 due to the high binding affinity of APE1 for both avidin and the abasic site in DNA. It is easy to prepare, biocompatible and allowing for long-term observation of APE1 activity. This molecular tool offers a powerful means to investigate the behavior of APE1 in the nuclei of various types of live cells, particularly for the development of improved cancer therapies targeting this protein.


Subject(s)
Cell Nucleolus , Cell Nucleus , DNA Probes , DNA-(Apurinic or Apyrimidinic Site) Lyase , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Humans , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , DNA Probes/chemistry , HeLa Cells , Molecular Chaperones/metabolism , Avidin/chemistry , Avidin/metabolism , DNA/metabolism , Biotin/chemistry
9.
J Alzheimers Dis ; 98(3): 837-857, 2024.
Article in English | MEDLINE | ID: mdl-38489184

ABSTRACT

A hypothesis of Alzheimer's disease etiology is proposed describing how cellular stress induces excessive polyamine synthesis and recycling which can disrupt nucleoli. Polyamines are essential in nucleolar functions, such as RNA folding and ribonucleoprotein assembly. Changes in the nucleolar pool of anionic RNA and cationic polyamines acting as counterions can cause significant nucleolar dynamics. Polyamine synthesis reduces S-adenosylmethionine which, at low levels, triggers tau phosphorylation. Also, polyamine recycling reduces acetyl-CoA needed for acetylcholine, which is low in Alzheimer's disease. Extraordinary nucleolar expansion and/or contraction can disrupt epigenetic control in peri-nucleolar chromatin, such as chromosome 14 with the presenilin-1 gene; chromosome 21 with the amyloid precursor protein gene; chromosome 17 with the tau gene; chromosome 19 with the APOE4 gene; and the inactive X chromosome (Xi; aka "nucleolar satellite") with normally silent spermine synthase (polyamine synthesis) and spermidine/spermine-N1-acetyltransferase (polyamine recycling) alleles. Chromosomes 17, 19 and the Xi have high concentrations of Alu elements which can be transcribed by RNA polymerase III if positioned nucleosomes are displaced from the Alu elements. A sudden flood of Alu RNA transcripts can competitively bind nucleolin which is usually bound to Alu sequences in structural RNAs that stabilize the nucleolar heterochromatic shell. This Alu competition leads to loss of nucleolar integrity with leaking of nucleolar polyamines that cause aggregation of phosphorylated tau. The hypothesis was developed with key word searches (e.g., PubMed) using relevant terms (e.g., Alzheimer's, lupus, nucleolin) based on a systems biology approach and exploring autoimmune disease tautology, gaining synergistic insights from other diseases.


Subject(s)
Alzheimer Disease , Autoimmune Diseases , Humans , Polyamines/metabolism , Alzheimer Disease/genetics , Cell Nucleolus/metabolism , RNA
10.
ACS Chem Biol ; 19(4): 875-885, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38483263

ABSTRACT

It is well established that oxaliplatin, one of the three Pt(II) anticancer drugs approved worldwide, and phenanthriplatin, an important preclinical monofunctional Pt(II) anticancer drug, possess a different mode of action from that of cisplatin and carboplatin, namely, the induction of nucleolar stress. The exact mechanisms that lead to Pt-induced nucleolar stress are, however, still poorly understood. As such, studies aimed at better understanding the biological targets of both oxaliplatin and phenanthriplatin are urgently needed to expand our understanding of Pt-induced nucleolar stress and guide the future design of Pt chemotherapeutics. One approach that has seen great success in the past is the use of Pt-click complexes to study the biological targets of Pt drugs. Herein, we report the synthesis and characterization of the first examples of click-capable phenanthriplatin complexes. Furthermore, through monitoring the relocalization of nucleolar proteins, RNA transcription levels, and DNA damage repair biomarker γH2AX, and by investigating their in vitro cytotoxicity, we show that these complexes successfully mimic the cellular responses observed for phenanthriplatin treatment in the same experiments. The click-capable phenanthriplatin derivatives described here expand the existing library of Pt-click complexes. Significantly they are suitable for studying nucleolar stress mechanisms and further elucidating the biological targets of Pt complexes.


Subject(s)
Antineoplastic Agents , Cell Nucleolus , Organoplatinum Compounds , Phenanthridines , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Cisplatin/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology , Oxaliplatin/pharmacology , Phenanthridines/chemical synthesis , Phenanthridines/chemistry , Phenanthridines/pharmacology , Click Chemistry , Cell Nucleolus/drug effects , Cell Nucleolus/metabolism
11.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38474168

ABSTRACT

Small nucleolar RNAs (snoRNAs) constitute a class of intron-derived non-coding RNAs ranging from 60 to 300 nucleotides. Canonically localized in the nucleolus, snoRNAs play a pivotal role in RNA modifications and pre-ribosomal RNA processing. Based on the types of modifications they involve, such as methylation and pseudouridylation, they are classified into two main families-box C/D and H/ACA snoRNAs. Recent investigations have revealed the unconventional synthesis and biogenesis strategies of snoRNAs, indicating their more profound roles in pathogenesis than previously envisioned. This review consolidates recent discoveries surrounding snoRNAs and provides insights into their mechanistic roles in cancer. It explores the intricate interactions of snoRNAs within signaling pathways and speculates on potential therapeutic solutions emerging from snoRNA research. In addition, it presents recent findings on the long non-coding small nucleolar RNA host gene (lncSNHG), a subset of long non-coding RNAs (lncRNAs), which are the transcripts of parental SNHGs that generate snoRNA. The nucleolus, the functional epicenter of snoRNAs, is also discussed. Through a deconstruction of the pathways driving snoRNA-induced oncogenesis, this review aims to serve as a roadmap to guide future research in the nuanced field of snoRNA-cancer interactions and inspire potential snoRNA-related cancer therapies.


Subject(s)
Neoplasms , RNA, Small Nucleolar , Humans , RNA, Small Nucleolar/genetics , Ribosomes/metabolism , RNA, Ribosomal/metabolism , Cell Nucleolus/metabolism , Neoplasms/metabolism
12.
Elife ; 122024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530350

ABSTRACT

Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.


Subject(s)
Cell Nucleus , Histones , Humans , Histones/genetics , Cell Nucleolus/genetics , Chromatin , Image Processing, Computer-Assisted
13.
Mol Cell ; 84(8): 1527-1540.e7, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38521064

ABSTRACT

Nucleolar stress (NS) has been associated with age-related diseases such as cancer or neurodegeneration. To investigate how NS triggers toxicity, we used (PR)n arginine-rich peptides present in some neurodegenerative diseases as inducers of this perturbation. We here reveal that whereas (PR)n expression leads to a decrease in translation, this occurs concomitant with an accumulation of free ribosomal (r) proteins. Conversely, (PR)n-resistant cells have lower rates of r-protein synthesis, and targeting ribosome biogenesis by mTOR inhibition or MYC depletion alleviates (PR)n toxicity in vitro. In mice, systemic expression of (PR)97 drives widespread NS and accelerated aging, which is alleviated by rapamycin. Notably, the generalized accumulation of orphan r-proteins is a common outcome of chemical or genetic perturbations that induce NS. Together, our study presents a general model to explain how NS induces cellular toxicity and provides in vivo evidence supporting a role for NS as a driver of aging in mammals.


Subject(s)
Neoplasms , Ribosomes , Mice , Animals , Ribosomes/metabolism , Aging/genetics , Peptides/metabolism , Sirolimus/pharmacology , Neoplasms/metabolism , Cell Nucleolus/genetics , Mammals
14.
Cell ; 187(5): 1314-1314.e1, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428399

ABSTRACT

Ribosome production is essential for cell growth. Approximately 200 assembly factors drive this complicated pathway that starts in the nucleolus and ends in the cytoplasm. A large number of structural snapshots of the pre-60S pathway have revealed the principles behind large subunit synthesis. To view this SnapShot, open or download the PDF.


Subject(s)
Cell Nucleolus , Eukaryotic Cells , Ribosomes , Cell Nucleolus/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/chemistry , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosomes/metabolism , Eukaryotic Cells/chemistry , Eukaryotic Cells/cytology , Eukaryotic Cells/metabolism
15.
Cell ; 187(8): 1889-1906.e24, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38503281

ABSTRACT

Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.


Subject(s)
Cell Nucleolus , Nuclear Proteins , Proton-Motive Force , Cell Nucleolus/chemistry , Cell Nucleus/chemistry , Nuclear Proteins/chemistry , RNA/metabolism , Phase Separation , Intrinsically Disordered Proteins/chemistry , Animals , Xenopus laevis , Oocytes/chemistry , Oocytes/cytology
16.
Bull Exp Biol Med ; 176(4): 519-522, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38492107

ABSTRACT

Structural changes in rat hepatocyte nucleoli were studied during deep hypothermia simulated by immersion in water at 5°C for 40 min (ambient air temperature 7°C). In comparison with the control, phenomena of nucleolar stress occurred in rats during hypothermia: the number of fibrillar centers (FC) per nucleus (by 1.7 times) and per nucleolus (by 1.6 times), nucleolonemal nucleoli per nucleus (by 2.8 times), and the relative content of nucleolonemal nucleoli per nucleus (by 2.6 times) significantly decreased (p=0.0000001); the number of FC per nucleolonemal nucleolus also decreased by 1.4 times (p=0.01). In the hepatocyte nuclei, we observed an increase in the relative content of transitional type nucleoli per nucleus (by 1.3 times; p=0.01), the number of FC per transitional type nucleolus (by 1.4 times; p=0.003), the content of free FC per nucleus (by 3 times; p=0.00004), and the percentage of free FC per nucleus (by 3.5 times; p=0.00004). These changes can be considered as compensatory and adaptive reactions, and transitional type nucleoli can be attributed to the "reserve" nucleolar pool.


Subject(s)
Hypothermia , Rats , Animals , Cell Nucleolus , Hepatocytes , Nucleolus Organizer Region/genetics
17.
Nucleus ; 15(1): 2319957, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38443761

ABSTRACT

In higher eukaryotes, the nucleolus harbors at least three sub-phases that facilitate multiple functionalities including ribosome biogenesis. The three prominent coexisting sub-phases are the fibrillar center (FC), the dense fibrillar component (DFC), and the granular component (GC). Here, we review recent efforts in profiling sub-phase compositions that shed light on the types of physicochemical properties that emerge from compositional biases and territorial organization of specific types of macromolecules. We highlight roles played by molecular grammars which refers to protein sequence features including the substrate binding domains, the sequence features of intrinsically disordered regions, and the multivalence of these distinct types of domains / regions. We introduce the concept of a barcode of emergent physicochemical properties of nucleoli. Although our knowledge of the full barcode remains incomplete, we hope that the concept prompts investigations into undiscovered emergent properties and engenders an appreciation for how and why unique microenvironments control biochemical reactions.


Subject(s)
Cell Nucleolus , Protein Domains
18.
Adv Sci (Weinh) ; 11(15): e2309743, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38326089

ABSTRACT

In the realm of cell research, membraneless organelles have become a subject of increasing interest. However, their ever-changing and amorphous morphological characteristics have long presented a formidable challenge when it comes to studying their structure and function. In this paper, a fluorescent probe Nu-AN is reported, which exhibits the remarkable capability to selectively bind to and visualize the nucleolus morphology, the largest membraneless organelle within the nucleus. Nu-AN demonstrates a significant enhancement in fluorescence upon its selective binding to nucleolar RNA, due to the inhibited twisted intramolecular charge-transfer (TICT) and reduced hydrogen bonding with water. What sets Nu-AN apart is its neutral charge and weak interaction with nucleolus RNA, enabling it to label the nucleolus selectively and reversibly. This not only reduces interference but also permits the replacement of photobleached probes with fresh ones outside the nucleolus, thereby preserving imaging photostability. By closely monitoring morphology-specific changes in the nucleolus with this buffering fluorogenic probe, screenings for agents are conducted that induce nucleolar stress within living cells.


Subject(s)
Cell Nucleolus , RNA , Cell Nucleolus/metabolism , RNA/metabolism
19.
Nat Cell Biol ; 26(3): 346-352, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38424273

ABSTRACT

Compartmentalization is an essential feature of eukaryotic life and is achieved both via membrane-bound organelles, such as mitochondria, and membrane-less biomolecular condensates, such as the nucleolus. Known biomolecular condensates typically exhibit liquid-like properties and are visualized by microscopy on the scale of ~1 µm (refs. 1,2). They have been studied mostly by microscopy, examining select individual proteins. So far, several dozen biomolecular condensates are known, serving a multitude of functions, for example, in the regulation of transcription3, RNA processing4 or signalling5,6, and their malfunction can cause diseases7,8. However, it remains unclear to what extent biomolecular condensates are utilized in cellular organization and at what length scale they typically form. Here we examine native cytoplasm from Xenopus egg extract on a global scale with quantitative proteomics, filtration, size exclusion and dilution experiments. These assays reveal that at least 18% of the proteome is organized into mesoscale biomolecular condensates at the scale of ~100 nm and appear to be stabilized by RNA or gelation. We confirmed mesoscale sizes via imaging below the diffraction limit by investigating protein permeation into porous substrates with defined pore sizes. Our results show that eukaryotic cytoplasm organizes extensively via biomolecular condensates, but at surprisingly short length scales.


Subject(s)
Cell Nucleolus , Microscopy , Cytoplasm , Mitochondria , Proteome
20.
J Biol Chem ; 300(3): 105773, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382671

ABSTRACT

The nucleolus, a membrane-less organelle, is responsible for ribosomal RNA transcription, ribosomal RNA processing, and ribosome assembly. Nucleolar size and number are indicative of a cell's protein synthesis rate and proliferative capacity, and abnormalities in the nucleolus have been linked to neurodegenerative diseases and cancer. In this study, we demonstrated that the nucleolar protein ZNF692 directly interacts with nucleophosmin 1 (NPM1). Knocking down ZNF692 resulted in the nucleolar redistribution of NPM1 in ring-like structures and reduced protein synthesis. Purified NPM1 forms spherical condensates in vitro but mixing it with ZNF692 produces irregular condensates more closely resembling living cell nucleoli. Our findings indicate that ZNF692, by interacting with NPM1, plays a critical role in regulating nucleolar architecture and function in living cells.


Subject(s)
Cell Nucleolus , DNA-Binding Proteins , Nucleophosmin , Transcription Factors , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , Nuclear Proteins/metabolism , Protein Binding , RNA, Ribosomal/metabolism , Humans , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...