Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
J Mol Biol ; 436(4): 168421, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38158176

ABSTRACT

Highly specialized cells, such as neurons and podocytes, have arborized morphologies that serve their specific functions. Actin cytoskeleton and its associated proteins are responsible for the distinctive shapes of cells. The mechanism of their cytoskeleton regulation - contributing to cell shape maintenance - is yet to be fully clarified. Inverted formin 2 (INF2), one of the modulators of the cytoskeleton, is an atypical formin that can both polymerize and depolymerize actin filaments depending on its molar ratio to actin. Prior work has established that INF2 binds to the sides of actin filaments and severs them. Drebrin is another actin-binding protein that also binds filaments laterally and stabilizes them, but the interplay between drebrin and INF2 on actin filament stabilization is not well understood. Here, we have used biochemical assays, electron microscopy, and total internal reflection fluorescence microscopy imaging to show that drebrin protects actin filaments from severing by INF2 without inhibiting its polymerization activity. Notably, truncated drebrin - DrbA1-300 - is sufficient for this protection, though not as effective as the full-length protein. INF2 and drebrin are abundantly expressed in highly specialized cells and are crucial for the temporal regulation of their actin cytoskeleton, consistent with their involvement in peripheral neuropathy.


Subject(s)
Actins , Formins , Neuropeptides , Actin Cytoskeleton/chemistry , Actins/chemistry , Formins/chemistry , Neuropeptides/chemistry , Cell Surface Extensions/chemistry , Neurons/metabolism , Microscopy, Electron
2.
Nature ; 615(7952): 517-525, 2023 03.
Article in English | MEDLINE | ID: mdl-36859545

ABSTRACT

Most human cells require anchorage for survival. Cell-substrate adhesion activates diverse signalling pathways, without which cells undergo anoikis-a form of programmed cell death1. Acquisition of anoikis resistance is a pivotal step in cancer disease progression, as metastasizing cells often lose firm attachment to surrounding tissue2,3. In these poorly attached states, cells adopt rounded morphologies and form small hemispherical plasma membrane protrusions called blebs4-11. Bleb function has been thoroughly investigated in the context of amoeboid migration, but it has been examined far less in other scenarios12. Here we show by three-dimensional imaging and manipulation of cell morphological states that blebbing triggers the formation of plasma membrane-proximal signalling hubs that confer anoikis resistance. Specifically, in melanoma cells, blebbing generates plasma membrane contours that recruit curvature-sensing septin proteins as scaffolds for constitutively active mutant NRAS and effectors. These signalling hubs activate ERK and PI3K-well-established promoters of pro-survival pathways. Inhibition of blebs or septins has little effect on the survival of well-adhered cells, but in detached cells it causes NRAS mislocalization, reduced MAPK and PI3K activity, and ultimately, death. This unveils a morphological requirement for mutant NRAS to operate as an effective oncoprotein. Furthermore, whereas some BRAF-mutated melanoma cells do not rely on this survival pathway in a basal state, inhibition of BRAF and MEK strongly sensitizes them to both bleb and septin inhibition. Moreover, fibroblasts engineered to sustain blebbing acquire the same anoikis resistance as cancer cells even without harbouring oncogenic mutations. Thus, blebs are potent signalling organelles capable of integrating myriad cellular information flows into concerted cellular responses, in this case granting robust anoikis resistance.


Subject(s)
Anoikis , Carcinogenesis , Cell Surface Extensions , Cell Survival , Melanoma , Signal Transduction , Humans , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Phosphatidylinositol 3-Kinases/metabolism , Septins/metabolism , Cell Surface Extensions/chemistry , Cell Surface Extensions/metabolism , Carcinogenesis/genetics , Cell Adhesion , Extracellular Signal-Regulated MAP Kinases , Fibroblasts , Mutation , Cell Shape , Imaging, Three-Dimensional , Mitogen-Activated Protein Kinase Kinases
3.
J Biol Chem ; 298(10): 102388, 2022 10.
Article in English | MEDLINE | ID: mdl-35987384

ABSTRACT

BAR (Bin, Amphiphysin, and Rvs) protein domains are responsible for the generation of membrane curvature and represent a critical mechanical component of cellular functions. Thus, BAR domains have great potential as components of membrane-remodeling tools for cell biologists. In this work, we describe the design and implementation of a family of versatile light-gated I-BAR (inverse BAR) domain containing tools derived from the fusion of the Arabidopsis thaliana cryptochrome 2 photoreceptor and I-BAR protein domains ("CRY-BARs") with applications in the remodeling of membrane architectures and the control of cellular dynamics. By taking advantage of the intrinsic membrane-binding propensity of the I-BAR domain, CRY-BARs can be used for spatial and temporal control of cellular processes that require induction of membrane protrusions. Using cell lines and primary neuron cultures, we demonstrate here that the CRY-BAR optogenetic tool evokes membrane dynamic changes associated with cellular activity. Moreover, we provide evidence that ezrin, an actin and phosphatidylinositol 4,5-bisphosphate-binding protein, acts as a relay between the plasma membrane and the actin cytoskeleton and therefore is an important mediator of switch function. Overall, we propose that CRY-BARs hold promise as a useful addition to the optogenetic toolkit to study membrane remodeling in live cells.


Subject(s)
Actin Cytoskeleton , Arabidopsis Proteins , Cell Membrane , Optogenetics , Actin Cytoskeleton/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Protein Domains , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Cell Surface Extensions/chemistry , Optogenetics/methods , Humans , HEK293 Cells
4.
Arch Biochem Biophys ; 709: 108967, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34157295

ABSTRACT

Circular dorsal ruffles (CDRs) are a kind of special ring-shaped membrane structure rich in F-actin, it is highly involved in the invasion-metastasis of tumor. Shear stress is one of the biophysical elements that affects the fate of tumor cells. However, how shear stress contributes to the CDRs formation is still unclear. In this study, we found that shear stress stimulated the formation of CDRs and promoted the migration of human breast MDA-MB-231 carcinoma cells. Integrin-linked kinase (ILK) mediated the recruiting of ADP-ribosylation factors (ARAP1/Arf1) to CDRs. Meanwhile, the transfection of ARAP1 or Arf1 mutant decreased the number of cells with CDRs, the CDRs areas and perimeters, thus blocked the cancer cell migration. This indicated that the ARAP1/Arf1 were necessary for the CDRs formation and cancer cell migration. Further study revealed that shear stress could stimulate the formation of intracellular macropinocytosis (MPS) thus promoted the ARAP1/Arf1 transportation to early endosome to regulate cancer cell migration after the depolymerization of CDRs. Our study elucidates that the CDRs formation is essential in shear stress-induced breast cancer cell migration, which provides a new research target for exploring the cytoskeletal mechanisms of breast cancer malignance.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Cell Movement/physiology , Cell Surface Extensions/metabolism , Neoplasms/metabolism , ADP-Ribosylation Factor 1/metabolism , Actin Cytoskeleton/chemistry , Actins/metabolism , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/ultrastructure , Cell Surface Extensions/chemistry , GTPase-Activating Proteins/metabolism , Humans , Neoplasms/pathology , Pinocytosis/physiology , Polymerization , Protein Serine-Threonine Kinases/metabolism , Stress, Mechanical
5.
STAR Protoc ; 2(2): 100462, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33912849

ABSTRACT

Actin-rich protrusions are membrane extensions generated by actin polymerization that drive mesenchymal-like cell migration. Characterization of protrusions proteome is crucial for understanding their function. We present a complete step-by-step protocol based on microporous filter-based fractionation of protrusive cellular domains coupled with sample preparation for quantitative proteomics, mass spectrometric data acquisition, and data analysis. This protocol enables purification, quantification, and analysis of the distribution of proteins present in protrusions and cell bodies. For complete details on the use and execution of this protocol, please refer to Dermit et al. (2020).


Subject(s)
Cell Body , Cell Surface Extensions , Proteomics , Cell Body/chemistry , Cell Body/metabolism , Cell Line, Tumor , Cell Surface Extensions/chemistry , Cell Surface Extensions/metabolism , Humans
6.
EMBO J ; 40(8): e105789, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33646572

ABSTRACT

The identification of Tunneling Nanotubes (TNTs) and TNT-like structures signified a critical turning point in the field of cell-cell communication. With hypothesized roles in development and disease progression, TNTs' ability to transport biological cargo between distant cells has elevated these structures to a unique and privileged position among other mechanisms of intercellular communication. However, the field faces numerous challenges-some of the most pressing issues being the demonstration of TNTs in vivo and understanding how they form and function. Another stumbling block is represented by the vast disparity in structures classified as TNTs. In order to address this ambiguity, we propose a clear nomenclature and provide a comprehensive overview of the existing knowledge concerning TNTs. We also discuss their structure, formation-related pathways, biological function, as well as their proposed role in disease. Furthermore, we pinpoint gaps and dichotomies found across the field and highlight unexplored research avenues. Lastly, we review the methods employed to date and suggest the application of new technologies to better understand these elusive biological structures.


Subject(s)
Cell Communication , Cell Surface Extensions/chemistry , Nanotubes , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/metabolism , Animals , Cell Surface Extensions/metabolism , Humans
7.
Methods Mol Biol ; 2259: 25-45, 2021.
Article in English | MEDLINE | ID: mdl-33687707

ABSTRACT

Laser capture microdissection (LCM) provides a fast, specific, and versatile method to isolate and enrich cells in mixed populations and/or subcellular structures, for further proteomic study. Furthermore, mass spectrometry (MS) can quickly and accurately generate differential protein expression profiles from small amounts of samples. Although cellular protrusions-such as tunneling nanotubes, filopodia, growth cones, invadopodia, etc.-are involved in essential physiological and pathological actions such as phagocytosis or cancer-cell invasion, the study of their protein composition is progressing slowly due to their fragility and transient nature. The method described herein, combining LCM and MS, has been designed to identify the proteome of different cellular protrusions. First, cells are fixed with a novel fixative method to preserve the cellular protrusions, which are isolated by LCM. Next, the extraction of proteins from the enriched sample is optimized to de-crosslink the fixative agent to improve the identification of proteins by MS. The efficient protein recovery and high sample quality of this method enable the protein profiling of these small and diverse subcellular structures.


Subject(s)
Cell Surface Extensions/chemistry , Laser Capture Microdissection/methods , Mass Spectrometry/methods , Proteome/analysis , Proteomics/methods , Animals , Cell Line , Fixatives , Humans
8.
Elife ; 92020 09 07.
Article in English | MEDLINE | ID: mdl-32894222

ABSTRACT

Actin filaments and microtubules create diverse cellular protrusions, but intermediate filaments, the strongest and most stable cytoskeletal elements, are not known to directly participate in the formation of protrusions. Here we show that keratin intermediate filaments directly regulate the morphogenesis of microridges, elongated protrusions arranged in elaborate maze-like patterns on the surface of mucosal epithelial cells. We found that microridges on zebrafish skin cells contained both actin and keratin filaments. Keratin filaments stabilized microridges, and overexpressing keratins lengthened them. Envoplakin and periplakin, plakin family cytolinkers that bind F-actin and keratins, localized to microridges, and were required for their morphogenesis. Strikingly, plakin protein levels directly dictate microridge length. An actin-binding domain of periplakin was required to initiate microridge morphogenesis, whereas periplakin-keratin binding was required to elongate microridges. These findings separate microridge morphogenesis into distinct steps, expand our understanding of intermediate filament functions, and identify microridges as protrusions that integrate actin and intermediate filaments.


Cells adopt a wide array of irregular and bumpy shapes, which are scaffolded by an internal structure called the cytoskeleton. This network of filaments can deform the cell membrane the way tent poles frame a canvas. Cells contain three types of cytoskeleton elements (actin filaments, intermediate filaments, and microtubules), each with unique chemical and mechanical properties. One of the main roles of the cytoskeleton is to create protrusions, a range of structures that 'stick out' of a cell to allow movement and interactions with the environment. Both actin filaments and microtubules help form protrusions, but the role of intermediate filaments remains unclear. Microridges are a type of protrusion found on cells covered by mucus, for instance on the surface of the eye, inside the mouth, or on fish skin. These small bumps are organised on the membrane of a cell in fingerprint-like arrangements. Scientists know that actin networks are necessary for microridges to form; yet, many structures supported by actin filaments are not stable over time, suggesting that another component of the cytoskeleton might be lending support. Intermediate filaments are the strongest, most stable type of cytoskeleton element, and they can connect to actin filaments via linker proteins. However, research has yet to show that this kind of cooperation happens in any membrane protrusion. Here, Inaba et al. used high-resolution microscopy to monitor microridge development in the skin of live fish. In particular, they focused on a type of intermediate filaments known as keratin filaments. This revealed that, inside microridges, the keratin and actin networks form alongside each other, with linker proteins called Envoplakin and Periplakin connecting the two structures together. Genetic experiments revealed that Envoplakin and Periplakin must attach to actin for microridges to start forming. However, the two proteins bind to keratin for protrusions to grow. This work therefore highlights how intermediate filaments and linker proteins contribute to the formation of these structures. Many tissues must be covered in mucus to remain moist and healthy. As microridges likely contribute to mucus retention, the findings by Inaba et al. may help to better understand how disorders linked to problems in mucus emerge.


Subject(s)
Cell Surface Extensions , Keratins , Plakins , Animals , Cell Surface Extensions/chemistry , Cell Surface Extensions/metabolism , Epithelial Cells/chemistry , Epithelial Cells/cytology , Epithelial Cells/metabolism , Intermediate Filaments/chemistry , Intermediate Filaments/metabolism , Keratins/chemistry , Keratins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Plakins/chemistry , Plakins/metabolism , Protein Precursors/chemistry , Protein Precursors/metabolism , Skin/cytology , Zebrafish , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism
9.
Sci Rep ; 10(1): 2527, 2020 02 13.
Article in English | MEDLINE | ID: mdl-32054874

ABSTRACT

Membrane nanotubes are dynamic structures that may connect cells over long distances. Nanotubes are typically thin cylindrical tubes, but they may occasionally have a beaded architecture along the tube. In this paper, we study the role of membrane mechanics in governing the architecture of these tubes and show that the formation of bead-like structures along the nanotubes can result from local heterogeneities in the membrane either due to protein aggregation or due to membrane composition. We present numerical results that predict how membrane properties, protein density, and local tension compete to create a phase space that governs the morphology of a nanotube. We also find that there exists a discontinuity in the energy that impedes two beads from fusing. These results suggest that the membrane-protein interaction, membrane composition, and membrane tension closely govern the tube radius, number of beads, and the bead morphology.


Subject(s)
Cell Membrane/chemistry , Cell Surface Extensions/chemistry , Nanotubes/chemistry , Animals , Biomechanical Phenomena , Humans , Membrane Proteins/analysis , Models, Biological , Protein Aggregates , Thermodynamics
10.
J Bacteriol ; 202(8)2020 03 26.
Article in English | MEDLINE | ID: mdl-32041794

ABSTRACT

The mechanism underlying Spiroplasma swimming is an enigma. This small bacterium possesses two helical shapes with opposite-handedness at a time, and the boundary between them, called a kink, travels down, possibly accompanying the dual rotations of these physically connected helical structures, without any rotary motors such as flagella. Although the outline of dynamics and structural basis has been proposed, the underlying cause to explain the kink translation is missing. We here demonstrated that the cell morphology of Spiroplasma eriocheiris was fixed at the right-handed helix after motility was stopped by the addition of carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and the preferential state was transformed to the other-handedness by the trigger of light irradiation. This process coupled with the generation and propagation of the artificial kink, presumably without any energy input through biological motors. These findings indicate that the coexistence of two chiral helices is sufficient to propagate the kink and thus to propel the cell body.IMPORTANCE Many swimming bacteria generate a propulsion force by rotating helical filaments like a propeller. However, the nonflagellated bacteria Spiroplasma spp. swim without the use of the appendages. The tiny wall-less bacteria possess two chiral helices at a time, and the boundary called a kink travels down, possibly accompanying the dual rotations of the helices. To solve this enigma, we developed an assay to determine the handedness of the body helices at the single-wind level, and demonstrated that the coexistence of body helices triggers the translation of the kink and that the cell body moves by the resultant cell bend propagation. This finding provides us a totally new aspect of bacterial motility, where the body functions as a transformable screw to propel itself forward.


Subject(s)
Cell Surface Extensions/physiology , Spiroplasma/cytology , Biomechanical Phenomena , Cell Polarity , Cell Surface Extensions/chemistry , Models, Biological , Spiroplasma/chemistry , Spiroplasma/physiology
11.
Biophys J ; 117(8): 1485-1495, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31445681

ABSTRACT

Bleb-type cellular protrusions play key roles in a range of biological processes. It was recently found that bleb growth is facilitated by a local supply of membrane from tubular invaginations, but the interplay between the expanding bleb and the membrane tubes remains poorly understood. On the one hand, the membrane area stored in tubes may serve as a reservoir for bleb expansion. On the other hand, the sequestering of excess membrane in stabilized invaginations may effectively increase the cell membrane tension, which suppresses spontaneous protrusions. Here, we investigate this duality through physical modeling and in vivo experiments. In agreement with observations, our model describes the transition into a tube-flattening mode of bleb expansion while also predicting that the blebbing rate is impaired by elevating the concentration of the curved membrane proteins that form the tubes. We show both theoretically and experimentally that the stabilizing effect of tubes could be counterbalanced by the cortical myosin contractility. Our results largely suggest that proteins able to induce membrane tubulation, such as those containing N-BAR domains, can buffer the effective membrane tension-a master regulator of all cell deformations.


Subject(s)
Cell Membrane/chemistry , Cell Surface Extensions/chemistry , Models, Theoretical , Stress, Mechanical , Animals , Myosins/chemistry , Protein Domains , Zebrafish
12.
J Vis Exp ; (125)2017 07 11.
Article in English | MEDLINE | ID: mdl-28745622

ABSTRACT

Filopodia are dynamic, finger-like cellular protrusions associated with migration and cell-cell communication. In order to better understand the complex signaling mechanisms underlying filopodial initiation, elongation and subsequent stabilization or retraction, it is crucial to determine the spatio-temporal protein activity in these dynamic structures. To analyze protein function in filopodia, we recently developed a semi-automated tracking algorithm that adapts to filopodial shape-changes, thus allowing parallel analysis of protrusion dynamics and relative protein concentration along the whole filopodial length. Here, we present a detailed step-by-step protocol for optimized cell handling, image acquisition and software analysis. We further provide instructions for the use of optional features during image analysis and data representation, as well as troubleshooting guidelines for all critical steps along the way. Finally, we also include a comparison of the described image analysis software with other programs available for filopodia quantification. Together, the presented protocol provides a framework for accurate analysis of protein dynamics in filopodial protrusions using image analysis software.


Subject(s)
Cell Surface Extensions/chemistry , Pseudopodia/chemistry , Software/trends , Animals , COS Cells , Chlorocebus aethiops , HeLa Cells , Humans
13.
Curr Opin Cell Biol ; 44: 68-78, 2017 02.
Article in English | MEDLINE | ID: mdl-27836411

ABSTRACT

Unconventional myosins are actin-based molecular motors that serve a multitude of roles within the cell. One group of myosin motors, the MyTH4-FERM myosins, play an integral part in building and maintaining finger-like protrusions, which allow cells to interact with their external environment. Suggested to act primarily as transporters, these motor proteins enrich adhesion molecules, actin-regulatory proteins and other factors at the tips of filopodia, microvilli, and stereocilia. Below we review data from biophysical, biochemical, and cell biological studies, which implicate these myosins as central players in the assembly, maintenance and function of actin-based protrusions.


Subject(s)
Cell Surface Extensions/metabolism , Myosins/metabolism , Actins/metabolism , Animals , Cell Surface Extensions/chemistry , Humans , Myosins/analysis , Pseudopodia/metabolism
14.
PLoS Comput Biol ; 12(3): e1004841, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27015526

ABSTRACT

Cells transition from spread to rounded morphologies in diverse physiological contexts including mitosis and mesenchymal-to-amoeboid transitions. When these drastic shape changes occur rapidly, cell volume and surface area are approximately conserved. Consequently, the rounded cells are suddenly presented with a several-fold excess of cell surface whose area far exceeds that of a smooth sphere enclosing the cell volume. This excess is stored in a population of bleb-like protrusions (BLiPs), whose size distribution is shown by electron micrographs to be skewed. We introduce three complementary models of rounded cell morphologies with a prescribed excess surface area. A 2D Hamiltonian model provides a mechanistic description of how discrete attachment points between the cell surface and cortex together with surface bending energy can generate a morphology that satisfies a prescribed excess area and BLiP number density. A 3D random seed-and-growth model simulates efficient packing of BLiPs over a primary rounded shape, demonstrating a pathway for skewed BLiP size distributions that recapitulate 3D morphologies. Finally, a phase field model (2D and 3D) posits energy-based constitutive laws for the cell membrane, nematic F-actin cortex, interior cytosol, and external aqueous medium. The cell surface is equipped with a spontaneous curvature function, a proxy for the cell surface-cortex couple, that is a priori unknown, which the model "learns" from the thin section transmission electron micrograph image (2D) or the "seed and growth" model image (3D). Converged phase field simulations predict self-consistent amplitudes and spatial localization of pressure and stress throughout the cell for any posited stationary morphology target and cell compartment constitutive properties. The models form a general framework for future studies of cell morphological dynamics in a variety of biological contexts.


Subject(s)
Cell Size , Cell Surface Extensions/chemistry , Cell Surface Extensions/ultrastructure , Membrane Fluidity , Models, Chemical , Models, Molecular , Animals , CHO Cells , Computer Simulation , Cricetulus
15.
Phys Rev Lett ; 116(6): 068101, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26919015

ABSTRACT

We study the nucleation of blebs, i.e., protrusions arising from a local detachment of the membrane from the cortex of a cell. Based on a simple model of elastic linkers with force-dependent kinetics, we show that bleb nucleation is governed by membrane peeling. By this mechanism, the growth or shrinkage of a detached membrane patch is completely determined by the linker kinetics, regardless of the energetic cost of the detachment. We predict the critical nucleation radius for membrane peeling and the corresponding effective energy barrier. These may be typically smaller than those predicted by classical nucleation theory, implying a much faster nucleation. We also perform simulations of a continuum stochastic model of membrane-cortex adhesion to obtain the statistics of bleb nucleation times as a function of the stress on the membrane. The determinant role of membrane peeling changes our understanding of bleb nucleation and opens new directions in the study of blebs.


Subject(s)
Cell Membrane/chemistry , Cell Surface Extensions/chemistry , Actomyosin/physiology , Cell Adhesion/physiology , Cell Membrane/physiology , Cell Surface Extensions/physiology , Models, Biological , Stochastic Processes
16.
Biol Cell ; 107(11): 419-25, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26094971

ABSTRACT

BACKGROUND INFORMATION: Tunneling nanotubes (TnTs) are thin plasma membrane bridges mediating transfers of materials and signals between cells. Heterogeneity of heterocellular and homocellular TnTs is largely described but ultrafine imaging of these light-sensitive floating nanometric structures represents a real challenge in microscopy. We propose here imaging strategies designed to dissect structural and dynamic aspects of TnT formation and function in fixed or living PC12 cells. RESULTS: Through time-gated Continuous Wave STimulated Emission Depletion (gCW STED) nanoscopy associated with deconvolution, we provided nanoscale details of membrane and cytoskeleton organisations in two subtypes of TnTs, namely type 1 TnT (TnT1) and type 2 TnT (TnT2). In fixed PC12 cells, TnT1 (length, several tens of micrometres; diameter, 100-650 nm) exhibited a large trumpet-shaped origin, a clear cytosolic tunnel and different bud-shaped connections from closed-ended to open-ended tips. TnT1 contained both actin and tubulin. TnT2 (length, max 20 µm, diameter, 70-200 nm) only contained actin without clear cytosolic tunnel. In living PC12 cells, we observed through gCW STED additional details, unrevealed so far, including a filament spindle emerging from an organising centre at the origin of TnT1 and branched or bulbous attachments of TnT2. However, the power of depletion laser in STED nanoscopy was deleterious for TnTs and prolonged time-lapse experiments were almost prohibited. By circumventing the hazard of photoxicity, we were able to monitor dynamics of bud-shaped tips and intercellular transfer of wheat germ agglutinin labelled cellular elements through time-gated confocal microscopy. CONCLUSIONS: Our work identified new structural characteristics of two subtypes of TnTs in PC12 cells as well as dynamics of formation and transfer through complementary imaging methods combined with image processing. Therefore, we could achieve maximum lateral resolution and sample preservation during acquisitions to reveal new insights into TnT studies. SIGNIFICANCE: Due to large disparity of TnT-like structures in neuronal, immune, cancer or epithelial cells, high- and superresolution approaches can be utilised for full characterisation of these yet poorly understood routes of cell-to-cell communication.


Subject(s)
Cell Membrane/chemistry , Cell Surface Extensions/chemistry , Microscopy, Confocal/methods , Time-Lapse Imaging/methods , Animals , Cell Communication , Cell Membrane/physiology , Cell Surface Extensions/physiology , PC12 Cells , Rats
17.
Biophys J ; 107(3): 576-587, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25099797

ABSTRACT

Actin-based cellular protrusions are a ubiquitous feature of cell morphology, e.g., filopodia and microvilli, serving a huge variety of functions. Despite this, there is still no comprehensive model for the mechanisms that determine the geometry of these protrusions. We present here a detailed computational model that addresses a combination of multiple biochemical and physical processes involved in the dynamic regulation of the shape of these protrusions. We specifically explore the role of actin polymerization in determining both the height and width of the protrusions. Furthermore, we show that our generalized model can explain multiple morphological features of these systems, and account for the effects of specific proteins and mutations.


Subject(s)
Actins/chemistry , Cell Surface Extensions/metabolism , Elasticity , Models, Biological , Actins/metabolism , Cell Surface Extensions/chemistry , Polymerization
18.
Sci Rep ; 2: 950, 2012.
Article in English | MEDLINE | ID: mdl-23230515

ABSTRACT

Spinae are tubular surface appendages broadly found in Gram-negative bacteria. Little is known about their architecture, function or origin. Here, we report structural characterization of the spinae from marine bacteria Roseobacter sp. YSCB. Electron cryo-tomography revealed that a single filament winds into a hollow flared base with progressive change to a cylinder. Proteinase K unwound the spinae into proteolysis-resistant filaments. Thermal treatment ripped the spinae into ribbons that were melted with prolonged heating. Circular dichroism spectroscopy revealed a dominant beta-structure of the spinae. Differential scanning calorimetry analyses showed three endothermic transformations at 50-85°C, 98°C and 123°C, respectively. The heating almost completely disintegrated the spinae, abolished the 98°C transition and destroyed the beta-structure. Infrared spectroscopy identified the amide I spectrum maximum at a position similar to that of amyloid fibrils. Therefore, the spinae distinguish from other bacterial appendages, e.g. flagella and stalks, in both the structure and mechanism of assembly.


Subject(s)
Cell Surface Extensions/ultrastructure , Roseobacter/metabolism , Calorimetry, Differential Scanning , Cell Surface Extensions/chemistry , Cell Surface Extensions/physiology , Circular Dichroism , Cryoelectron Microscopy , Temperature
19.
J Vis Exp ; (66): e4119, 2012 Aug 27.
Article in English | MEDLINE | ID: mdl-22952016

ABSTRACT

Cellular invasion into local tissues is a process important in development and homeostasis. Malregulated invasion and subsequent cell movement is characteristic of multiple pathological processes, including inflammation, cardiovascular disease and tumor cell metastasis. Focalized proteolytic degradation of extracellular matrix (ECM) components in the epithelial or endothelial basement membrane is a critical step in initiating cellular invasion. In tumor cells, extensive in vitro analysis has determined that ECM degradation is accomplished by ventral actin-rich membrane protrusive structures termed invadopodia. Invadopodia form in close apposition to the ECM, where they moderate ECM breakdown through the action of matrix metalloproteinases (MMPs). The ability of tumor cells to form invadopodia directly correlates with the ability to invade into local stroma and associated vascular components. Visualization of invadopodia-mediated ECM degradation of cells by fluorescent microscopy using dye-labeled matrix proteins coated onto glass coverslips has emerged as the most prevalent technique for evaluating the degree of matrix proteolysis and cellular invasive potential. Here we describe a version of the standard method for generating fluorescently-labeled glass coverslips utilizing a commercially available Oregon Green-488 gelatin conjugate. This method is easily scaled to rapidly produce large numbers of coated coverslips. We show some of the common microscopic artifacts that are often encountered during this procedure and how these can be avoided. Finally, we describe standardized methods using readily available computer software to allow quantification of labeled gelatin matrix degradation mediated by individual cells and by entire cellular populations. The described procedures provide the ability to accurately and reproducibly monitor invadopodia activity, and can also serve as a platform for evaluating the efficacy of modulating protein expression or testing of anti-invasive compounds on extracellular matrix degradation in single and multicellular settings.


Subject(s)
Extracellular Matrix Proteins/chemistry , Extracellular Matrix/chemistry , Microscopy, Fluorescence/methods , Carboxylic Acids/chemistry , Cell Surface Extensions/chemistry , Cell Surface Extensions/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Matrix Metalloproteinases/chemistry , Matrix Metalloproteinases/metabolism , Microscopy, Fluorescence/instrumentation , Proteolysis
20.
Histol Histopathol ; 27(6): 807-16, 2012 06.
Article in English | MEDLINE | ID: mdl-22473700

ABSTRACT

Telocytes (TC) are a class of interstitial cells present in heart. Their characteristic feature is the presence of extremely long and thin prolongations (called telopodes). Therefore, we were interested to see whether or not TCs form networks in normal cardiac tissues, as previously suggested. Autopsy samples of cardiac tissues were obtained from 13 young human cadavers, without identifiable cardiac pathology and with a negative personal history of cardiovascular disease. Immunohistochemistry on formalin-fixed paraffin-embedded tissues was performed using monoclonal antibodies for CD117/c-kit. Additionally, ventricular samples from 5 Sprague-Dawley rats were ultrastructurally evaluated under transmission electron microscopy. We found c-kit positive cells with TC features in subepicardium, as well in subepicardial arteries and in subepicardial fat. TCs were also present in the subendocardium. Light and electron microscopy revealed the existence of intramyocardial networks built up by bipolar TCs. Larger c-kit positive multipolar TCs were found between cardiac muscle bundles. Our results support the existence of a cardiac network of telocytes.


Subject(s)
Heart Ventricles/cytology , Myocardium/cytology , Adolescent , Adult , Animals , Autopsy , Biomarkers/analysis , Cadaver , Cell Surface Extensions/chemistry , Cell Surface Extensions/ultrastructure , Child , Child, Preschool , Female , Heart Ventricles/chemistry , Heart Ventricles/ultrastructure , Humans , Immunohistochemistry , Male , Microscopy, Electron, Transmission , Myocardium/chemistry , Myocardium/ultrastructure , Proto-Oncogene Proteins c-kit/analysis , Rats , Rats, Sprague-Dawley , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL