Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 265
Filter
1.
Nat Genet ; 55(3): 389-398, 2023 03.
Article in English | MEDLINE | ID: mdl-36823319

ABSTRACT

Interacting proteins tend to have similar functions, influencing the same organismal traits. Interaction networks can be used to expand the list of candidate trait-associated genes from genome-wide association studies. Here, we performed network-based expansion of trait-associated genes for 1,002 human traits showing that this recovers known disease genes or drug targets. The similarity of network expansion scores identifies groups of traits likely to share an underlying genetic and biological process. We identified 73 pleiotropic gene modules linked to multiple traits, enriched in genes involved in processes such as protein ubiquitination and RNA processing. In contrast to gene deletion studies, pleiotropy as defined here captures specifically multicellular-related processes. We show examples of modules linked to human diseases enriched in genes with known pathogenic variants that can be used to map targets of approved drugs for repurposing. Finally, we illustrate the use of network expansion scores to study genes at inflammatory bowel disease genome-wide association study loci, and implicate inflammatory bowel disease-relevant genes with strong functional and genetic support.


Subject(s)
Cell Biology , Cells , Disease , Genetic Association Studies , Genetic Pleiotropy , Genetic Association Studies/methods , Humans , Ubiquitination/genetics , RNA Processing, Post-Transcriptional/genetics , Cells/metabolism , Cells/pathology , Drug Repositioning/methods , Drug Repositioning/trends , Disease/genetics , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Genome-Wide Association Study , Phenotype , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology
3.
Nat Cell Biol ; 23(11): 1129-1135, 2021 11.
Article in English | MEDLINE | ID: mdl-34750578

ABSTRACT

Massive single-cell profiling efforts have accelerated our discovery of the cellular composition of the human body while at the same time raising the need to formalize this new knowledge. Here, we discuss current efforts to harmonize and integrate different sources of annotations of cell types and states into a reference cell ontology. We illustrate with examples how a unified ontology can consolidate and advance our understanding of cell types across scientific communities and biological domains.


Subject(s)
Atlases as Topic , Cell Biology , Cell Lineage , Cells/classification , Single-Cell Analysis , Biological Ontologies , Biomarkers/metabolism , Cells/metabolism , Cells/pathology , Data Mining , Disease , Gene Ontology , Genomics , High-Throughput Nucleotide Sequencing , Humans , Phenotype , Systems Integration , Transcriptome
4.
Nat Cell Biol ; 23(11): 1117-1128, 2021 11.
Article in English | MEDLINE | ID: mdl-34750582

ABSTRACT

The Human Reference Atlas (HRA) aims to map all of the cells of the human body to advance biomedical research and clinical practice. This Perspective presents collaborative work by members of 16 international consortia on two essential and interlinked parts of the HRA: (1) three-dimensional representations of anatomy that are linked to (2) tables that name and interlink major anatomical structures, cell types, plus biomarkers (ASCT+B). We discuss four examples that demonstrate the practical utility of the HRA.


Subject(s)
Atlases as Topic , Cell Biology , Cell Lineage , Cells/classification , Single-Cell Analysis , Biomarkers/metabolism , Cells/metabolism , Cells/pathology , Computer Graphics , Disease , Genomics , High-Throughput Nucleotide Sequencing , Humans , Phenotype , Transcriptome
5.
Nature ; 594(7862): 201-206, 2021 06.
Article in English | MEDLINE | ID: mdl-34108694

ABSTRACT

The performance of light microscopes is limited by the stochastic nature of light, which exists in discrete packets of energy known as photons. Randomness in the times that photons are detected introduces shot noise, which fundamentally constrains sensitivity, resolution and speed1. Although the long-established solution to this problem is to increase the intensity of the illumination light, this is not always possible when investigating living systems, because bright lasers can severely disturb biological processes2-4. Theory predicts that biological imaging may be improved without increasing light intensity by using quantum photon correlations1,5. Here we experimentally show that quantum correlations allow a signal-to-noise ratio beyond the photodamage limit of conventional microscopy. Our microscope is a coherent Raman microscope that offers subwavelength resolution and incorporates bright quantum correlated illumination. The correlations allow imaging of molecular bonds within a cell with a 35 per cent improved signal-to-noise ratio compared with conventional microscopy, corresponding to a 14 per cent improvement in concentration sensitivity. This enables the observation of biological structures that would not otherwise be resolved. Coherent Raman microscopes allow highly selective biomolecular fingerprinting in unlabelled specimens6,7, but photodamage is a major roadblock for many applications8,9. By showing that the photodamage limit can be overcome, our work will enable order-of-magnitude improvements in the signal-to-noise ratio and the imaging speed.


Subject(s)
Lasers , Lighting , Microscopy/methods , Photons , Quantum Theory , Spectrum Analysis, Raman , Cells/pathology , Cells/radiation effects , Lasers/adverse effects , Lighting/adverse effects , Microscopy/instrumentation , Photons/adverse effects , Signal-To-Noise Ratio , Spectrum Analysis, Raman/instrumentation , Spectrum Analysis, Raman/methods
6.
Sci Rep ; 11(1): 5950, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33723274

ABSTRACT

Cells interpret cues from and interact with fibrous microenvironments through the body based on the mechanics and organization of these environments and the phenotypic state of the cell. This in turn regulates mechanoactive pathways, such as the localization of mechanosensitive factors. Here, we leverage the microscale heterogeneity inherent to engineered fiber microenvironments to produce a large morphologic data set, across multiple cells types, while simultaneously measuring mechanobiological response (YAP/TAZ nuclear localization) at the single cell level. This dataset describing a large dynamic range of cell morphologies and responses was coupled with a machine learning approach to predict the mechanobiological state of individual cells from multiple lineages. We also noted that certain cells (e.g., invasive cancer cells) or biochemical perturbations (e.g., modulating contractility) can limit the predictability of cells in a universal context. Leveraging this finding, we developed further models that incorporate biochemical cues for single cell prediction or identify individual cells that do not follow the established rules. The models developed here provide a tool for connecting cell morphology and signaling, incorporating biochemical cues in predictive models, and identifying aberrant cell behavior at the single cell level.


Subject(s)
Cell Physiological Phenomena , Cells/cytology , Cellular Microenvironment , Mechanotransduction, Cellular , Models, Biological , Algorithms , Animals , Cell Line, Tumor , Cell Nucleus , Cells/pathology , Fibroblasts , Humans , Mice , Neural Networks, Computer , Tumor Microenvironment
7.
Int J Mol Sci ; 22(4)2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33670011

ABSTRACT

Immunotherapy has changed the treatment paradigm in multiple solid and hematologic malignancies. However, response remains limited in a significant number of cases, with tumors developing innate or acquired resistance to checkpoint inhibition. Certain "hot" or "immune-sensitive" tumors become "cold" or "immune-resistant", with resultant tumor growth and disease progression. Multiple factors are at play both at the cellular and host levels. The tumor microenvironment (TME) contributes the most to immune-resistance, with nutrient deficiency, hypoxia, acidity and different secreted inflammatory markers, all contributing to modulation of immune-metabolism and reprogramming of immune cells towards pro- or anti-inflammatory phenotypes. Both the tumor and surrounding immune cells require high amounts of glucose, amino acids and fatty acids to fulfill their energy demands. Thus, both compete over one pool of nutrients that falls short on needs, obliging cells to resort to alternative adaptive metabolic mechanisms that take part in shaping their inflammatory phenotypes. Aerobic or anaerobic glycolysis, oxidative phosphorylation, tryptophan catabolism, glutaminolysis, fatty acid synthesis or fatty acid oxidation, etc. are all mechanisms that contribute to immune modulation. Different pathways are triggered leading to genetic and epigenetic modulation with consequent reprogramming of immune cells such as T-cells (effector, memory or regulatory), tumor-associated macrophages (TAMs) (M1 or M2), natural killers (NK) cells (active or senescent), and dendritic cells (DC) (effector or tolerogenic), etc. Even host factors such as inflammatory conditions, obesity, caloric deficit, gender, infections, microbiota and smoking status, may be as well contributory to immune modulation, anti-tumor immunity and response to immune checkpoint inhibition. Given the complex and delicate metabolic networks within the tumor microenvironment controlling immune response, targeting key metabolic modulators may represent a valid therapeutic option to be combined with checkpoint inhibitors in an attempt to regain immune function.


Subject(s)
Cells/pathology , Neoplasms/immunology , Neoplasms/metabolism , Humans , Immunity , Microbiota , Neoplasms/genetics , Neoplasms/microbiology , Tumor Microenvironment/immunology , Warburg Effect, Oncologic
8.
Cell Calcium ; 93: 102321, 2021 01.
Article in English | MEDLINE | ID: mdl-33310302

ABSTRACT

Mitochondria are autonomous and dynamic cellular organelles orchestrating a diverse range of cellular activities. Numerous cell-signaling pathways target these organelles and Ca2+ is one of the most significant. Mitochondria are able to rapidly and transiently take up Ca2+, thanks to the mitochondrial Ca2+ uniporter complex, as well as to extrude it through the Na+/Ca2+ and H+/Ca2+ exchangers. The transient accumulation of Ca2+ in the mitochondrial matrix impacts on mitochondrial functions and cell pathophysiology. Here we summarize the role of mitochondrial Ca2+ signaling in both physiological (yang) and pathological (yin) processes and the methods that can be used to investigate mitochondrial Ca2+ homeostasis. As an example of the pivotal role of mitochondria in pathology, we described the state of the art of mitochondrial Ca2+ alterations in different pathological conditions, with a special focus on Alzheimer's disease.


Subject(s)
Calcium Signaling , Cells/metabolism , Cells/pathology , Mitochondria/metabolism , Yin-Yang , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Homeostasis , Humans
9.
Cell Biol Int ; 45(3): 481-497, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31908104

ABSTRACT

This review is dedicated to the role of nitration of proteins by tyrosine residues in physiological and pathological conditions. First of all, we analyze the biochemical evidence of peroxynitrite formation and reactions that lead to its formation, types of posttranslational modifications (PTMs) induced by reactive nitrogen species, as well as three biological pathways of tyrosine nitration. Then, we describe two possible mechanisms of protein nitration that are involved in intracellular signal transduction, as well as its interconnection with phosphorylation/dephosphorylation of tyrosine. Next part of the review is dedicated to the role of proteins nitration in different pathological conditions. In this section, special attention is devoted to the role of nitration in changes of functional properties of actin-protein that undergoes PTMs both in normal and pathological conditions. Overall, this review is devoted to the main features of protein nitration by tyrosine residue and the role of this process in intracellular signal transduction in basal and pathological conditions.


Subject(s)
Cells/metabolism , Signal Transduction , Tyrosine/metabolism , Animals , Cells/pathology , Humans , Nitric Oxide/metabolism , Nitrosation , Protein Processing, Post-Translational
10.
Cell Biol Int ; 45(3): 498-506, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31855304

ABSTRACT

Mucopolysaccharidoses (MPS) are a group of genetic disorders belonging to lysosomal storage diseases. They are caused by genetic defects leading to a lack or severe deficiency of activity of one of lysosomal hydrolases involved in degradation of glycosaminoglycans (GAGs). Partially degraded GAGs accumulate in lysosomes, which results in dysfunctions of cells, tissues, and organs. Until recently, it was assumed that GAG accumulation in cells is the major, if not the only, mechanism of pathogenesis in MPS, as GAGs may be a physical ballast for lysosomes causing inefficiency of cells due to a large amount of a stored material. However, recent reports suggest that in MPS cells there are changes in many different processes, which might be even more important for pathogenesis than lysosomal accumulation of GAGs per se. Moreover, there are many recently published results indicating that lysosomes not only are responsible for degradation of various macromolecules, but also play crucial roles in the regulation of cellular metabolism. Therefore, it appears plausible that previous failures in treatment of MPS (i.e., possibility to correct only some symptoms and slowing down of the disease rather than fully effective management of MPS) might be caused by underestimation of changes in cellular processes and concentration solely on decreasing GAG levels in cells.


Subject(s)
Cells/pathology , Mucopolysaccharidoses/pathology , Animals , Apoptosis , Autophagy , Humans , Mitochondria/metabolism , Models, Genetic , Mucopolysaccharidoses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL