Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 360
Filter
1.
Can J Physiol Pharmacol ; 102(1): 1-13, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37903419

ABSTRACT

Cardiovascular diseases remain a leading cause of hospitalization affecting approximately 38 million people worldwide. While pharmacological and revascularization techniques can improve the patient's survival and quality of life, they cannot help reversing myocardial infarction injury and heart failure. Direct reprogramming of somatic cells to cardiomyocyte and cardiac progenitor cells offers a new approach to cellular reprogramming and paves the way for translational regenerative medicine. Direct reprogramming can bypass the pluripotent stage with the potential advantage of non-immunogenic cell products, reduced carcinogenic risk, and no requirement for embryonic tissue. The process of directly reprogramming cardiac cells was first achieved through the overexpression of transcription factors such as GATA4, MEF2C, and TBX5. However, over the past decade, significant work has been focused on enhancing direct reprogramming using a mixture of transcription factors, microRNAs, and small molecules to achieve cardiac cell fate. This review discusses the evolution of direct reprogramming, recent progress in achieving efficient cardiac cell fate conversion, and describes the reprogramming mechanisms at a molecular level. We also explore various viral and non-viral delivery methods currently being used to aid in the delivery of reprogramming factors to improve efficiency. However, further studies will be needed to overcome molecular and epigenetic barriers to successfully achieve translational cardiac regenerative therapeutics.


Subject(s)
Cellular Reprogramming Techniques , Quality of Life , Humans , Cellular Reprogramming Techniques/methods , Myocytes, Cardiac , Cellular Reprogramming , Transcription Factors/genetics , Regenerative Medicine/methods , Fibroblasts
2.
Cells ; 11(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36497171

ABSTRACT

Continuous loss of cardiomyocytes (CMs) is one of the fundamental characteristics of many heart diseases, which eventually can lead to heart failure. Due to the limited proliferation ability of human adult CMs, treatment efficacy has been limited in terms of fully repairing damaged hearts. It has been shown that cell lineage conversion can be achieved by using cell reprogramming approaches, including human induced pluripotent stem cells (hiPSCs), providing a promising therapeutic for regenerative heart medicine. Recent studies using advanced cellular reprogramming-based techniques have also contributed some new strategies for regenerative heart repair. In this review, hiPSC-derived cell therapeutic methods are introduced, and the clinical setting challenges (maturation, engraftment, immune response, scalability, and tumorigenicity), with potential solutions, are discussed. Inspired by the iPSC reprogramming, the approaches of direct cell lineage conversion are merging, such as induced cardiomyocyte-like cells (iCMs) and induced cardiac progenitor cells (iCPCs) derived from fibroblasts, without induction of pluripotency. The studies of cellular and molecular pathways also reveal that epigenetic resetting is the essential mechanism of reprogramming and lineage conversion. Therefore, CRISPR techniques that can be repurposed for genomic or epigenetic editing become attractive approaches for cellular reprogramming. In addition, viral and non-viral delivery strategies that are utilized to achieve CM reprogramming will be introduced, and the therapeutic effects of iCMs or iCPCs on myocardial infarction will be compared. After the improvement of reprogramming efficiency by developing new techniques, reprogrammed iCPCs or iCMs will provide an alternative to hiPSC-based approaches for regenerative heart therapies, heart disease modeling, and new drug screening.


Subject(s)
Heart Diseases , Induced Pluripotent Stem Cells , Adult , Humans , Cellular Reprogramming , Induced Pluripotent Stem Cells/metabolism , Cellular Reprogramming Techniques/methods , Myocytes, Cardiac/metabolism , Regenerative Medicine/methods , Heart Diseases/metabolism
3.
Cells ; 11(14)2022 07 07.
Article in English | MEDLINE | ID: mdl-35883581

ABSTRACT

Human amniotic epithelial cells (hAECs) represent an interesting clinical alternative to human embryonic (hESCs) and induced pluripotent (hiPSCs) stem cells in regenerative medicine. The potential of hAECs can be enhanced ex vivo by their partial pre-differentiation. The aim of this study was to evaluate the effectiveness of 18-day differentiation of hAECs into endodermal cells, hepatic precursor cells, and cells showing functional features of hepatocytes using culture media supplemented with high (100 ng/mL) concentrations of EGF or HGF. The cells obtained after differentiation showed changes in morphology and increased expression of AFP, ALB, CYP3A4, CYP3A7, and GSTP1 genes. HGF was more effective than EGF in increasing the expression of liver-specific genes in hAECs. However, EGF stimulated the differentiation process more efficiently and yielded more hepatocyte-like cells capable of synthesizing α-fetoprotein during differentiation. Additionally, after 18 days, GST transferases, albumin, and CYP P450s, which proved their partial functionality, were expressed. In summary, HGF and EGF at a dose of 100 ng/mL can be successfully used to obtain hepatocyte-like cells between days 7 and 18 of hAEC differentiation. However, the effectiveness of this process is lower compared with hiPSC differentiation; therefore, optimization of the composition of the medium requires further research.


Subject(s)
Cellular Reprogramming Techniques , Epithelial Cells , Induced Pluripotent Stem Cells , Amnion/metabolism , Cell Transdifferentiation , Cells, Cultured , Cellular Reprogramming Techniques/methods , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Epithelial Cells/metabolism , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism
4.
Cells ; 11(14)2022 07 08.
Article in English | MEDLINE | ID: mdl-35883588

ABSTRACT

Type 1 diabetes is a chronic illness in which the native beta (ß)-cell population responsible for insulin release has been the subject of autoimmune destruction. This condition requires patients to frequently measure their blood glucose concentration and administer multiple daily exogenous insulin injections accordingly. Current treatments fail to effectively treat the disease without significant side effects, and this has led to the exploration of different approaches for its treatment. Gene therapy and the use of viral vectors has been explored extensively and has been successful in treating a range of diseases. The use of viral vectors to deliver ß-cell transcription factors has been researched in the context of type 1 diabetes to induce the pancreatic transdifferentiation of cells to replace the ß-cell population destroyed in patients. Studies have used various combinations of pancreatic and ß-cell transcription factors in order to induce pancreatic transdifferentiation and have achieved varying levels of success. This review will outline why pancreatic transcription factors have been utilised and how their application can allow the development of insulin-producing cells from non ß-cells and potentially act as a cure for type 1 diabetes.


Subject(s)
Cell Transdifferentiation , Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Cell Transdifferentiation/genetics , Cellular Reprogramming Techniques/methods , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/therapy , Humans , Insulin , Transcription Factors/genetics
5.
Am J Physiol Heart Circ Physiol ; 322(3): H373-H385, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35030072

ABSTRACT

Omecamtiv mecarbil (OM), a myosin activator, was reported to induce complex concentration- and species-dependent effects on contractile function, and clinical studies indicated a low therapeutic index with diastolic dysfunction at concentrations above 1 µM. To further characterize effects of OM in a human context and under different preload conditions, we constructed a setup that allows isometric contractility analysis of human induced pluripotent stem cell (hiPSC)-derived engineered heart tissues (EHTs). The results were compared with effects of OM on the very same EHTs measured under auxotonic conditions. OM induced a sustained, concentration-dependent increase in time to peak under all conditions (maximally two- to threefold). Peak force, in contrast, was increased by OM only in human, but not rat EHTs and only under isometric conditions, varied between hiPSC lines and showed a biphasic concentration dependency with maximal effects at 1 µM. Relaxation time tended to fall under auxotonic and strongly increased under isometric conditions, again with biphasic concentration dependency. Diastolic tension concentration dependently increased under all conditions. The latter was reduced by an inhibitor of the mitochondrial sodium calcium exchanger (CGP-37157). OM induced increases in mitochondrial oxidation in isolated cardiomyocytes, indicating that OM, an inotrope that does not increase intracellular and mitochondrial Ca2+, can induce mismatch between an increase in ATP and ROS production and unstimulated mitochondrial redox capacity. Taken together, we developed a novel setup well suitable for isometric measurements of EHTs. The effects of OM on contractility and diastolic tension are complex with concentration-, time-, species- and loading-dependent differences. Effects on mitochondrial function require further studies.NEW & NOTEWORTHY We developed a novel setup allowing precise control of preload of EHT and characterized effects of the myosin activator OM. OM not only exerted contraction-slowing and positive inotropic effects but also increased diastolic tension. Effect size and direction varied between species, auxotonic and isometric conditions, concentration, and time. We also observed OM-induced increase of mitochondrial ROS, which has not been observed before and may explain part of the effects on contractility.


Subject(s)
Cardiotonic Agents/pharmacology , Cellular Reprogramming Techniques/methods , Myocardial Contraction , Myocytes, Cardiac/drug effects , Urea/analogs & derivatives , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Cell Line , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/physiology , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Urea/pharmacology
6.
Blood ; 139(4): 523-537, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35084470

ABSTRACT

Current limitations in using chimeric antigen receptor T(CART) cells to treat patients with hematological cancers include limited expansion and persistence in vivo that contribute to cancer relapse. Patients with chronic lymphocytic leukemia (CLL) have terminally differentiated T cells with an exhausted phenotype and experience low complete response rates after autologous CART therapy. Because PI3K inhibitor therapy is associated with the development of T-cell-mediated autoimmunity, we studied the effects of inhibiting the PI3Kδ and PI3Kγ isoforms during the manufacture of CART cells prepared from patients with CLL. Dual PI3Kδ/γ inhibition normalized CD4/CD8 ratios and maximized the number of CD8+ T-stem cell memory, naive, and central memory T-cells with dose-dependent decreases in expression of the TIM-3 exhaustion marker. CART cells manufactured with duvelisib (Duv-CART cells) showed significantly increased in vitro cytotoxicity against CD19+ CLL targets caused by increased frequencies of CD8+ CART cells. Duv-CART cells had increased expression of the mitochondrial fusion protein MFN2, with an associated increase in the relative content of mitochondria. Duv-CART cells exhibited increased SIRT1 and TCF1/7 expression, which correlated with epigenetic reprograming of Duv-CART cells toward stem-like properties. After transfer to NOG mice engrafted with a human CLL cell line, Duv-CART cells expressing either a CD28 or 41BB costimulatory domain demonstrated significantly increased in vivo expansion of CD8+ CART cells, faster elimination of CLL, and longer persistence. Duv-CART cells significantly enhanced survival of CLL-bearing mice compared with conventionally manufactured CART cells. In summary, exposure of CART to a PI3Kδ/γ inhibitor during manufacturing enriched the CART product for CD8+ CART cells with stem-like qualities and enhanced efficacy in eliminating CLL in vivo.


Subject(s)
Immunotherapy, Adoptive/methods , Isoquinolines/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Purines/therapeutic use , Animals , Cells, Cultured , Cellular Reprogramming Techniques/methods , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/metabolism , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Epigenesis, Genetic , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mice
7.
Cancer Res ; 82(2): 320-333, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34845001

ABSTRACT

Basal-like breast cancer is the most aggressive breast cancer subtype with the worst prognosis. Despite its high recurrence rate, chemotherapy is the only treatment for basal-like breast cancer, which lacks expression of hormone receptors. In contrast, luminal A tumors express ERα and can undergo endocrine therapy for treatment. Previous studies have tried to develop effective treatments for basal-like patients using various therapeutics but failed due to the complex and dynamic nature of the disease. In this study, we performed a transcriptomic analysis of patients with breast cancer to construct a simplified but essential molecular regulatory network model. Network control analysis identified potential targets and elucidated the underlying mechanisms of reprogramming basal-like cancer cells into luminal A cells. Inhibition of BCL11A and HDAC1/2 effectively drove basal-like cells to transition to luminal A cells and increased ERα expression, leading to increased tamoxifen sensitivity. High expression of BCL11A and HDAC1/2 correlated with poor prognosis in patients with breast cancer. These findings identify mechanisms regulating breast cancer phenotypes and suggest the potential to reprogram basal-like breast cancer cells to enhance their targetability. SIGNIFICANCE: A network model enables investigation of mechanisms regulating the basal-to-luminal transition in breast cancer, identifying BCL11A and HDAC1/2 as optimal targets that can induce basal-like breast cancer reprogramming and endocrine therapy sensitivity.


Subject(s)
Antineoplastic Agents, Hormonal/therapeutic use , Cellular Reprogramming Techniques/methods , Cellular Reprogramming/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Tamoxifen/therapeutic use , Transcriptome/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Antineoplastic Agents, Hormonal/pharmacology , Cohort Studies , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/metabolism , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Gene Regulatory Networks , Histone Deacetylase 1/genetics , Histone Deacetylase 2/genetics , Humans , MCF-7 Cells , Phenotype , Repressor Proteins/genetics , Tamoxifen/pharmacology , Transfection , Treatment Outcome , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
8.
Nat Protoc ; 16(12): 5707-5738, 2021 12.
Article in English | MEDLINE | ID: mdl-34837085

ABSTRACT

Tissue nanotransfection (TNT) is an electromotive gene transfer technology that was developed to achieve tissue reprogramming in vivo. This protocol describes how to fabricate the required hardware, commonly referred to as a TNT chip, and use it for in vivo TNT. Silicon hollow-needle arrays for TNT applications are fabricated in a standardized and reproducible way. In <1 s, these silicon hollow-needle arrays can be used to deliver plasmids to a predetermined specific depth in murine skin in response to pulsed nanoporation. Tissue nanotransfection eliminates the need to use viral vectors, minimizing the risk of genomic integration or cell transformation. The TNT chip fabrication process typically takes 5-6 d, and in vivo TNT takes 30 min. This protocol does not require specific expertise beyond a clean room equipped for basic nanofabrication processes.


Subject(s)
Cellular Reprogramming Techniques/methods , Electroporation/methods , Microtechnology/methods , Nanotechnology/methods , Oligonucleotide Array Sequence Analysis/methods , Transfection/methods , Animals , Male , Mice , Mice, Inbred C57BL , Microtechnology/instrumentation , Nanotechnology/instrumentation , Oligonucleotide Array Sequence Analysis/instrumentation , Plasmids/chemistry , Plasmids/metabolism , Quality Control , Silicon/chemistry , Skin/metabolism , Transfection/instrumentation
9.
PLoS Comput Biol ; 17(11): e1009576, 2021 11.
Article in English | MEDLINE | ID: mdl-34748539

ABSTRACT

Advances in genetic engineering technologies have allowed the construction of artificial genetic circuits, which have been used to generate spatial patterns of differential gene expression. However, the question of how cells can be programmed, and how complex the rules need to be, to achieve a desired tissue morphology has received less attention. Here, we address these questions by developing a mathematical model to study how cells can collectively grow into clusters with different structural morphologies by secreting diffusible signals that can influence cellular growth rates. We formulate how growth regulators can be used to control the formation of cellular protrusions and how the range of achievable structures scales with the number of distinct signals. We show that a single growth inhibitor is insufficient for the formation of multiple protrusions but may be achieved with multiple growth inhibitors, and that other types of signals can regulate the shape of protrusion tips. These examples illustrate how our approach could potentially be used to guide the design of regulatory circuits for achieving a desired target structure.


Subject(s)
Cell Proliferation/physiology , Cell Shape/physiology , Cellular Reprogramming Techniques/methods , Models, Biological , Animals , Cell Aggregation/physiology , Cell Communication/physiology , Cell Surface Extensions/physiology , Cellular Reprogramming Techniques/statistics & numerical data , Computational Biology , Computer Simulation , Gene Regulatory Networks , Genetic Engineering/methods , Genetic Engineering/statistics & numerical data , Growth Inhibitors/physiology , Humans , Morphogenesis/physiology , Synthetic Biology
10.
Cancer Treat Rev ; 101: 102227, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34656019

ABSTRACT

Immune checkpoint inhibitors have revolutionized the treatment landscape for a number of cancers over the last few decades. Nevertheless, a majority of patients still do not benefit from these treatments. Such patient-specific lack of response can be predicted, in part, from the immune phenotypes present in the tumor microenvironment. We provide a perspective on options to reprogram the tumors and their microenvironment to increase the therapeutic efficacy of immunotherapies and expand their efficacy against cold tumors. Additionally, we review data from current preclinical and clinical trials aimed at testing the different therapeutic options in monotherapy or preferably in combination with checkpoint inhibitors.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy , Neoplasms , Cellular Reprogramming Techniques/methods , Combined Modality Therapy , Humans , Immunotherapy/methods , Immunotherapy/trends , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
11.
Stem Cell Reports ; 16(10): 2503-2519, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34559999

ABSTRACT

We here demonstrate that microsatellite (MS) alterations are elevated in both mouse and human induced pluripotent stem cells (iPSCs), but importantly we have now identified a type of human iPSC in which these alterations are considerably reduced. We aimed in our present analyses to profile the InDels in iPSC/ntESC genomes, especially in MS regions. To detect somatic de novo mutations in particular, we generated 13 independent reprogramed stem cell lines (11 iPSC and 2 ntESC lines) from an identical parent somatic cell fraction of a C57BL/6 mouse. By using this cell set with an identical genetic background, we could comprehensively detect clone-specific alterations and, importantly, experimentally validate them. The effectiveness of employing sister clones for detecting somatic de novo mutations was thereby demonstrated. We then successfully applied this approach to human iPSCs. Our results require further careful genomic analysis but make an important inroad into solving the issue of genome abnormalities in iPSCs.


Subject(s)
Genetic Profile , INDEL Mutation , Induced Pluripotent Stem Cells/metabolism , Microsatellite Repeats , Animals , Cells, Cultured , Cellular Reprogramming , Cellular Reprogramming Techniques/methods , Humans , Mice , Mice, Inbred C57BL , Whole Genome Sequencing
12.
Stem Cell Reports ; 16(10): 2548-2564, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34506726

ABSTRACT

The specification of inhibitory neurons has been described for the mouse and human brain, and many studies have shown that pluripotent stem cells (PSCs) can be used to create interneurons in vitro. It is unclear whether in vitro methods to produce human interneurons generate all the subtypes found in brain, and how similar in vitro and in vivo interneurons are. We applied single-nuclei and single-cell transcriptomics to model interneuron development from human cortex and interneurons derived from PSCs. We provide a direct comparison of various in vitro interneuron derivation methods to determine the homogeneity achieved. We find that PSC-derived interneurons capture stages of development prior to mid-gestation, and represent a minority of potential subtypes found in brain. Comparison with those found in fetal or adult brain highlighted decreased expression of synapse-related genes. These analyses highlight the potential to tailor the method of generation to drive formation of particular subtypes.


Subject(s)
Interneurons/metabolism , Neural Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Transcriptome , Cell Differentiation , Cellular Reprogramming Techniques/methods , Humans , Single-Cell Analysis , Transcription Factors/metabolism
13.
Int J Mol Sci ; 22(17)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34502264

ABSTRACT

Direct conversion of one cell type into another is a trans-differentiation process. Recent advances in fibroblast research revealed that epithelial cells can give rise to fibroblasts by epithelial-mesenchymal transition. Conversely, fibroblasts can also give rise to epithelia by undergoing a mesenchymal to epithelial transition. To elicit stem cell-like properties in fibroblasts, the Oct4 transcription factor acts as a master transcriptional regulator for reprogramming somatic cells. Notably, the production of gene complexes with cell-permeable peptides, such as low-molecular-weight protamine (LMWP), was proposed to induce reprogramming without cytotoxicity and genomic mutation. We designed a complex with non-cytotoxic LMWP to prevent the degradation of Oct4 and revealed that the positively charged cell-permeable LMWP helped condense the size of the Oct4-LMWP complexes (1:5 N:P ratio). When the Oct4-LMWP complex was delivered into mouse embryonic fibroblasts (MEFs), stemness-related gene expression increased while fibroblast intrinsic properties decreased. We believe that the Oct4-LMWP complex developed in this study can be used to reprogram terminally differentiated somatic cells or convert them into stem cell-like cells without risk of cell death, improving the stemness level and stability of existing direct conversion techniques.


Subject(s)
Cell-Penetrating Peptides/chemistry , Cellular Reprogramming Techniques/methods , Fibroblasts/metabolism , Gene Transfer Techniques , Octamer Transcription Factor-3/chemistry , Octamer Transcription Factor-3/genetics , Stem Cells/metabolism , Actins/genetics , Actins/metabolism , Animals , Antigens, CD34/metabolism , Cell Differentiation/genetics , Cell-Penetrating Peptides/chemical synthesis , Cell-Penetrating Peptides/metabolism , Cells, Cultured , Embryo, Mammalian , Fibroblasts/cytology , Fibronectins/genetics , Fibronectins/metabolism , Mice, Inbred C57BL , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/metabolism , Protamines/chemistry , Protamines/metabolism , S100 Calcium-Binding Protein A4/genetics , S100 Calcium-Binding Protein A4/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Stem Cells/cytology , Vimentin/genetics , Vimentin/metabolism
14.
Nat Commun ; 12(1): 4734, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354077

ABSTRACT

The tumor microenvironment (TME) is a complex amalgam of tumor cells, immune cells, endothelial cells and fibroblastic stromal cells (FSC). Cancer-associated fibroblasts are generally seen as tumor-promoting entity. However, it is conceivable that particular FSC populations within the TME contribute to immune-mediated tumor control. Here, we show that intratumoral treatment of mice with a recombinant lymphocytic choriomeningitis virus-based vaccine vector expressing a melanocyte differentiation antigen resulted in T cell-dependent long-term control of melanomas. Using single-cell RNA-seq analysis, we demonstrate that viral vector-mediated transduction reprogrammed and activated a Cxcl13-expressing FSC subset that show a pronounced immunostimulatory signature and increased expression of the inflammatory cytokine IL-33. Ablation of Il33 gene expression in Cxcl13-Cre-positive FSCs reduces the functionality of intratumoral T cells and unleashes tumor growth. Thus, reprogramming of FSCs by a self-antigen-expressing viral vector in the TME is critical for curative melanoma treatment by locally sustaining the activity of tumor-specific T cells.


Subject(s)
Melanoma, Experimental/therapy , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Cellular Reprogramming Techniques/methods , Chemokine CXCL13/genetics , Chemokine CXCL13/immunology , Female , Genetic Vectors , Interleukin-33/deficiency , Interleukin-33/genetics , Interleukin-33/immunology , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/immunology , Lymphocytic choriomeningitis virus/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Stromal Cells/immunology , Stromal Cells/pathology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Tumor Microenvironment/immunology
15.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34360992

ABSTRACT

Several protocols exist for generating megakaryocytes (MKs) and platelets from human induced pluripotent stem cells (hiPSCs) with limited efficiency. We observed previously that mesoderm induction improved endothelial and stromal differentiation. We, therefore, hypothesized that a protocol modification prior to hemogenic endothelial cell (HEC) differentiation will improve MK progenitor (MKP) production and increase platelet output. We further asked if basic media composition affects MK maturation. In an iterative process, we first compared two HEC induction protocols. We found significantly more HECs using the modified protocol including activin A and CHIR99021, resulting in significantly increased MKs. MKs released comparable platelet amounts irrespective of media conditions. In a final validation phase, we obtained five-fold more platelets per hiPSC with the modified protocol (235 ± 84) compared to standard conditions (51 ± 15; p < 0.0001). The regenerative potency of hiPSC-derived platelets was compared to adult donor-derived platelets by profiling angiogenesis-related protein expression. Nineteen of 24 angiogenesis-related proteins were expressed equally, lower or higher in hiPSC-derived compared to adult platelets. The hiPSC-platelet's coagulation hyporeactivity compared to adult platelets was confirmed by thromboelastometry. Further stepwise improvement of hiPSC-platelet production will, thus, permit better identification of platelet-mediated regenerative mechanisms and facilitate manufacture of sufficient amounts of functional platelets for clinical application.


Subject(s)
Blood Platelets/cytology , Cell Differentiation , Cellular Reprogramming Techniques/methods , Induced Pluripotent Stem Cells/cytology , Megakaryocytes/cytology , Cells, Cultured , Culture Media/chemistry , Humans , Induced Pluripotent Stem Cells/metabolism
16.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34360991

ABSTRACT

The possibility to reproduce key tissue functions in vitro from induced pluripotent stem cells (iPSCs) is offering an incredible opportunity to gain better insight into biological mechanisms underlying development and disease, and a tool for the rapid screening of drug candidates. This review attempts to summarize recent strategies for specification of iPSCs towards hepatobiliary lineages -hepatocytes and cholangiocytes-and their use as platforms for disease modeling and drug testing. The application of different tissue-engineering methods to promote accurate and reliable readouts is discussed. Space is given to open questions, including to what extent these novel systems can be informative. Potential pathways for improvement are finally suggested.


Subject(s)
Cellular Reprogramming Techniques/methods , Digestive System Diseases/therapy , Drug Discovery/methods , Hepatocytes/cytology , Induced Pluripotent Stem Cells/cytology , Precision Medicine/methods , Animals , Cell Lineage , Digestive System Diseases/metabolism , Digestive System Diseases/pathology , Hepatocytes/metabolism , Humans , Tissue Engineering/methods
17.
Front Immunol ; 12: 673723, 2021.
Article in English | MEDLINE | ID: mdl-34211468

ABSTRACT

Reprogramming of primary virus-infected cells is the critical step that turns viral attacks harmful to humans by initiating super-spreading at cell, organism and population levels. To develop early anti-viral therapies and proactive administration, it is important to understand the very first steps of this process. Plant somatic embryogenesis (SE) is the earliest and most studied model for de novo programming upon severe stress that, in contrast to virus attacks, promotes individual cell and organism survival. We argued that transcript level profiles of target genes established from in vitro SE induction as reference compared to virus-induced profiles can identify differential virus traits that link to harmful reprogramming. To validate this hypothesis, we selected a standard set of genes named 'ReprogVirus'. This approach was recently applied and published. It resulted in identifying 'CoV-MAC-TED', a complex trait that is promising to support combating SARS-CoV-2-induced cell reprogramming in primary infected nose and mouth cells. In this perspective, we aim to explain the rationale of our scientific approach. We are highlighting relevant background knowledge on SE, emphasize the role of alternative oxidase in plant reprogramming and resilience as a learning tool for designing human virus-defense strategies and, present the list of selected genes. As an outlook, we announce wider data collection in a 'ReprogVirus Platform' to support anti-viral strategy design through common efforts.


Subject(s)
COVID-19/prevention & control , Cellular Reprogramming Techniques/methods , Plant Somatic Embryogenesis Techniques/methods , SARS-CoV-2/genetics , COVID-19/pathology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant/genetics , Humans , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Plant Development/genetics , Plant Proteins/metabolism , Plants/embryology , Plants/genetics , Reactive Oxygen Species/metabolism
18.
Curr Opin Genet Dev ; 70: 32-39, 2021 10.
Article in English | MEDLINE | ID: mdl-34062490

ABSTRACT

Diabetes is a group of metabolic disorders, which results from insufficient functional pancreatic ß-cell mass either due to the autoimmune destruction of insulin producing ß-cells, or their death or de-differentiation as compensation for insulin resistance. The ability to reprogram cell types within close developmental proximity to ß-cells offers a strategy to replenish ß-cell mass and a future possible treatment of diabetes. Here, we review recent advances in the fields of pancreas development and lineage reprogramming. We also probe the possibility of using reprogrammed cells as an approach by which to further understand developmental mechanisms, in particular roadblocks to changing cell identity. Finally, we highlight fundamental challenges that need to be overcome to advance lineage reprogramming for generating pancreatic cells.


Subject(s)
Cellular Reprogramming/physiology , Pancreas/cytology , Animals , Cell Lineage , Cell Plasticity , Cellular Reprogramming Techniques/methods , Gene Expression Regulation , Humans , Pancreas/embryology , Pancreas/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Int J Nanomedicine ; 16: 3741-3754, 2021.
Article in English | MEDLINE | ID: mdl-34113099

ABSTRACT

INTRODUCTION: The reprogramming of induced cardiomyocytes (iCMs) is of particular significance in regenerative medicine; however, it remains a great challenge to fabricate an efficient and safe gene delivery system to induce reprogramming of iCMs for therapeutic applications in heart injury. Here, we report branched polyethyleneimine (BP) coated nitrogen-enriched carbon dots (BP-NCDs) as highly efficient nanocarriers loaded with microRNAs-combo (BP-NCDs/MC) for cardiac reprogramming. METHODS: The BP-NCDs nanocarriers were prepared and characterized by several analytical techniques. RESULTS: The BP-NCDs nanocarriers showed good microRNAs-combo binding affinity, negligible cytotoxicity, and long-term microRNAs expression. Importantly, BP-NCDs/MC nanocomplexes led to the efficient direct reprogramming of fibroblasts into iCMs without genomic integration and resulting in effective recovery of cardiac function after myocardial infarction (MI). CONCLUSION: This study offers a novel strategy to provide safe and effective microRNAs-delivery nanoplatforms based on carbon dots for promising cardiac regeneration and disease therapy.


Subject(s)
Carbon/chemistry , Cellular Reprogramming Techniques/methods , Fibroblasts/cytology , Gene Transfer Techniques , MicroRNAs/administration & dosage , Myocardial Infarction/therapy , Myocytes, Cardiac/cytology , Animals , Cellular Reprogramming , Fibroblasts/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocytes, Cardiac/metabolism , Regenerative Medicine
20.
Curr Opin Genet Dev ; 70: 15-23, 2021 10.
Article in English | MEDLINE | ID: mdl-34087754

ABSTRACT

The conversion of differentiated cells to a pluripotent state through somatic cell nuclear transfer provided the first unequivocal evidence that differentiation was reversible. In more recent times, introducing a combination of key transcription factors into terminally differentiated mammalian cells was shown to drive their conversion to induced pluripotent stem cells (iPSCs). These discoveries were transformative, but the relatively slow speed (2-3 weeks) and low efficiency of reprogramming (0.1-1%) made deciphering the underlying molecular mechanisms difficult and complex. Cell fusion provides an alternative reprogramming approach that is both efficient and tractable, particularly when combined with modern multi-omics analysis of individual cells. Here we review the history and the recent advances in cell-cell fusion that are enabling a better understanding cell fate conversion, and we discuss how this knowledge could be used to shape improved strategies for regenerative medicine.


Subject(s)
Cellular Reprogramming Techniques/methods , Cellular Reprogramming/physiology , Animals , Cell Compartmentation , Cell Differentiation , Cell Fusion , Epigenesis, Genetic , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Mitochondria , Regenerative Medicine/methods , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...