Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.509
Filter
1.
Trends Immunol ; 45(5): 327-328, 2024 May.
Article in English | MEDLINE | ID: mdl-38664101

ABSTRACT

Lawrence et al. report that fetal cortical boundaries are susceptible to morphogenetic stress that regulates a microglia state resembling postnatal, axon-tract associated microglia (ATM). This state performs a newfound function at these boundaries by preventing the formation of cavitary lesions, mediated in part by Spp1-regulated phagocytosis of fibronectin 1.


Subject(s)
Microglia , Microglia/physiology , Animals , Humans , Phagocytosis , Cerebral Cortex/embryology , Cerebral Cortex/cytology , Brain/embryology , Brain/physiology , Fibronectins/metabolism
2.
Sci Rep ; 14(1): 9355, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654093

ABSTRACT

Thyroid hormones (TH) play critical roles during nervous system development and patients carrying coding variants of MCT8 (monocarboxylate transporter 8) or THRA (thyroid hormone receptor alpha) present a spectrum of neurological phenotypes resulting from perturbed local TH action during early brain development. Recently, human cerebral organoids (hCOs) emerged as powerful in vitro tools for disease modelling recapitulating key aspects of early human cortex development. To begin exploring prospects of this model for thyroid research, we performed a detailed characterization of the spatiotemporal expression of MCT8 and THRA in developing hCOs. Immunostaining showed MCT8 membrane expression in neuronal progenitor cell types including early neuroepithelial cells, radial glia cells (RGCs), intermediate progenitors and outer RGCs. In addition, we detected robust MCT8 protein expression in deep layer and upper layer neurons. Spatiotemporal SLC16A2 mRNA expression, detected by fluorescent in situ hybridization (FISH), was highly concordant with MCT8 protein expression across cortical cell layers. FISH detected THRA mRNA expression already in neuroepithelium before the onset of neurogenesis. THRA mRNA expression remained low in the ventricular zone, increased in the subventricular zone whereas strong THRA expression was observed in excitatory neurons. In combination with a robust up-regulation of known T3 response genes following T3 treatment, these observations show that hCOs provide a promising and experimentally tractable model to probe local TH action during human cortical neurogenesis and eventually to model the consequences of impaired TH function for early cortex development.


Subject(s)
Cerebral Cortex , Monocarboxylic Acid Transporters , Neurogenesis , Organoids , RNA, Messenger , Symporters , Thyroid Hormone Receptors alpha , Female , Humans , Pregnancy , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Gene Expression Regulation, Developmental , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Neurogenesis/genetics , Neurons/metabolism , Organoids/metabolism , Pregnancy Trimester, First/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Symporters/genetics , Symporters/metabolism , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormones/metabolism , Thyroid Hormones/genetics
3.
Math Biosci ; 372: 109185, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561099

ABSTRACT

We have designed a stochastic model of embryonic neurogenesis in the mouse cerebral cortex, using the formalism of compound Poisson processes. The model accounts for the dynamics of different progenitor cell types and neurons. The expectation and variance of the cell number of each type are derived analytically and illustrated through numerical simulations. The effects of stochastic transition rates between cell types, and stochastic duration of the cell division cycle have been investigated sequentially. The model does not only predict the number of neurons, but also their spatial distribution into deeper and upper cortical layers. The model outputs are consistent with experimental data providing the number of neurons and intermediate progenitors according to embryonic age in control and mutant situations.


Subject(s)
Cerebral Cortex , Neural Stem Cells , Neurogenesis , Stochastic Processes , Animals , Mice , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Cerebral Cortex/growth & development , Cerebral Cortex/physiology , Neurogenesis/physiology , Neural Stem Cells/physiology , Neural Stem Cells/cytology , Models, Neurological , Neurons/physiology , Neurons/cytology
4.
Glia ; 72(7): 1290-1303, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38506330

ABSTRACT

Astrocytes represent a diverse and morphologically complex group of glial cells critical for shaping and maintaining nervous system homeostasis, as well as responding to injuries. Understanding the origins of astroglial heterogeneity, originated from a limited number of progenitors, has been the focus of many studies. Most of these investigations have centered on protoplasmic and pial astrocytes, while the clonal relationship of fibrous astrocytes or juxtavascular astrocytes has remained relatively unexplored. In this study, we sought to elucidate the morphological diversity and clonal distribution of astrocytes across adult cortical layers, with particular emphasis on their ontogenetic origins. Using the StarTrack lineage tracing tool, we explored the characteristics of adult astroglial clones derived from single and specific progenitors at various embryonic stages. Our results revealed a heterogeneous spatial distribution of astroglial clones, characterized by variations in location, clonal size, and rostro-caudal dispersion. While a considerable proportion of clones were confined within specific cortical layers, others displayed sibling cells crossing layer boundaries. Notably, we observed a correlation between clone location and developmental stage at earlier embryonic stages, although this relationship diminished in later stages. Fibrous astrocyte clones were exclusively confined to the corpus callosum. In contrast, protoplasmic or juxtavascular clones were located in either the upper or lower cortical layers, with certain clones displayed sibling cells distributed across both regions. Our findings underscore the developmental origins and spatial distribution of astroglial clones within cortical layers, providing new insights into the interplay between their morphology, clonal sizes, and progenitor heterogeneity.


Subject(s)
Astrocytes , Astrocytes/cytology , Astrocytes/physiology , Animals , Clone Cells , Cerebral Cortex/cytology , Cerebral Cortex/growth & development , Cerebral Cortex/embryology , Mice, Transgenic , Mice , Neural Stem Cells/cytology , Neural Stem Cells/physiology
5.
Nucleic Acids Res ; 52(8): 4167-4184, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38324473

ABSTRACT

Sam68 and SLM2 are paralog RNA binding proteins (RBPs) expressed in the cerebral cortex and display similar splicing activities. However, their relative functions during cortical development are unknown. We found that these RBPs exhibit an opposite expression pattern during development. Sam68 expression declines postnatally while SLM2 increases after birth, and this developmental pattern is reinforced by hierarchical control of Sam68 expression by SLM2. Analysis of Sam68:Slm2 double knockout (Sam68:Slm2dko) mice revealed hundreds of exons that respond to joint depletion of these proteins. Moreover, parallel analysis of single and double knockout cortices indicated that exons regulated mainly by SLM2 are characterized by a dynamic splicing pattern during development, whereas Sam68-dependent exons are spliced at relatively constant rates. Dynamic splicing of SLM2-sensitive exons is completely suppressed in the Sam68:Slm2dko developing cortex. Sam68:Slm2dko mice die perinatally with defects in neurogenesis and in neuronal differentiation, and develop a hydrocephalus, consistent with splicing alterations in genes related to these biological processes. Thus, our study reveals that developmental control of separate Sam68 and Slm2 paralog genes encoding homologous RBPs enables the orchestration of a dynamic splicing program needed for brain development and viability, while ensuring a robust redundant mechanism that supports proper cortical development.


Subject(s)
Cerebral Cortex , Mice, Knockout , RNA Splicing , RNA-Binding Proteins , Animals , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/embryology , Cerebral Cortex/growth & development , Mice , Exons/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Neurogenesis/genetics , Gene Expression Regulation, Developmental , Neurons/metabolism
6.
J Perinat Med ; 52(4): 423-428, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38296222

ABSTRACT

OBJECTIVES: To investigate midbrain growth, including corpus callusum (CC) and cerebellar vermis (CV) and cortical development in late fetal growth restricted (FGR) subclassified according to the umbilical vein blood flow (UVBF) values. METHODS: This was a prospective study on singleton fetuses late FGR with abnormal placental cerebral ratio (PCR). FGR fetuses were further subdivided into normal (≥fifth centile) and abnormal (

Subject(s)
Fetal Growth Retardation , Mesencephalon , Ultrasonography, Prenatal , Umbilical Veins , Humans , Female , Fetal Growth Retardation/diagnostic imaging , Fetal Growth Retardation/physiopathology , Pregnancy , Prospective Studies , Cross-Sectional Studies , Umbilical Veins/diagnostic imaging , Adult , Ultrasonography, Prenatal/methods , Mesencephalon/diagnostic imaging , Mesencephalon/blood supply , Mesencephalon/embryology , Fetal Development/physiology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/blood supply , Cerebral Cortex/embryology
7.
Proc Natl Acad Sci U S A ; 119(37): e2120079119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36067316

ABSTRACT

The extracellular protein Reelin, expressed by Cajal-Retzius (CR) cells at early stages of cortical development and at late stages by GABAergic interneurons, regulates radial migration and the "inside-out" pattern of positioning. Current models of Reelin functions in corticogenesis focus on early CR cell-derived Reelin in layer I. However, developmental disorders linked to Reelin deficits, such as schizophrenia and autism, are related to GABAergic interneuron-derived Reelin, although its role in migration has not been established. Here we selectively inactivated the Reln gene in CR cells or GABAergic interneurons. We show that CR cells have a major role in the inside-out order of migration, while CR and GABAergic cells sequentially cooperate to prevent invasion of cortical neurons into layer I. Furthermore, GABAergic cell-derived Reelin compensates some features of the reeler phenotype and is needed for the fine tuning of the layer-specific distribution of cortical neurons. In the hippocampus, the inactivation of Reelin in CR cells causes dramatic alterations in the dentate gyrus and mild defects in the hippocampus proper. These findings lead to a model in which both CR and GABAergic cell-derived Reelin cooperate to build the inside-out order of corticogenesis, which might provide a better understanding of the mechanisms involved in the pathogenesis of neuropsychiatric disorders linked to abnormal migration and Reelin deficits.


Subject(s)
Cerebral Cortex , Nerve Tissue Proteins , Neurons , Reelin Protein , Animals , Cell Movement , Cerebral Cortex/cytology , Cerebral Cortex/embryology , GABAergic Neurons/enzymology , Hippocampus/embryology , Hippocampus/enzymology , Interneurons/enzymology , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/enzymology , Reelin Protein/genetics , Reelin Protein/metabolism
8.
Proc Natl Acad Sci U S A ; 119(22): e2201355119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35613048

ABSTRACT

Area-specific axonal projections from the mammalian thalamus shape unique cellular organization in target areas in the adult neocortex. How these axons control neurogenesis and early neuronal fate specification is poorly understood. By using mutant mice lacking the majority of thalamocortical axons, we show that these axons are required for the production and specification of the proper number of layer 4 neurons in primary sensory areas by the neonatal stage. Part of these area-specific roles is played by the thalamus-derived molecule, VGF. Our work reveals that extrinsic cues from sensory thalamic projections have an early role in the formation of cortical cytoarchitecture by enhancing the production and specification of layer 4 neurons.


Subject(s)
Axons , Body Patterning , Cerebral Cortex , Neurogenesis , Thalamus , Animals , Axons/physiology , Cerebral Cortex/embryology , Cerebral Cortex/ultrastructure , Mice , Mice, Mutant Strains , Neural Pathways , Neurogenesis/genetics , Neurogenesis/physiology , Neurons/physiology , Thalamus/embryology , Thalamus/ultrastructure
9.
Science ; 376(6595): eabn6204, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35587969

ABSTRACT

In the forebrain, ventrally derived oligodendrocyte precursor cells (vOPCs) travel tangentially toward the cortex together with cortical interneurons. Here, we tested in the mouse whether these populations interact during embryogenesis while migrating. By coupling histological analysis of genetic models with live imaging, we show that although they are both attracted by the chemokine Cxcl12, vOPCs and cortical interneurons occupy mutually exclusive forebrain territories enriched in this chemokine. Moreover, first-wave vOPC depletion selectively disrupts the migration and distribution of cortical interneurons. At the cellular level, we found that by promoting unidirectional contact repulsion, first-wave vOPCs steered the migration of cortical interneurons away from the blood vessels to which they were both attracted, thereby allowing interneurons to reach their proper cortical territories.


Subject(s)
Cell Movement , Cerebral Cortex , Interneurons , Neurogenesis , Oligodendrocyte Precursor Cells , Animals , Cell Movement/genetics , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Chemokine CXCL12/metabolism , Interneurons/physiology , Mice , Models, Genetic , Neurogenesis/genetics , Oligodendrocyte Precursor Cells/cytology , Oligodendrocyte Precursor Cells/physiology
10.
Science ; 375(6579): eabk2346, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35084970

ABSTRACT

The human cortex contains inhibitory interneurons derived from the medial ganglionic eminence (MGE), a germinal zone in the embryonic ventral forebrain. How this germinal zone generates sufficient interneurons for the human brain remains unclear. We found that the human MGE (hMGE) contains nests of proliferative neuroblasts with ultrastructural and transcriptomic features that distinguish them from other progenitors in the hMGE. When dissociated hMGE cells are transplanted into the neonatal mouse brain, they reform into nests containing proliferating neuroblasts that generate young neurons that migrate extensively into the mouse forebrain and mature into different subtypes of functional interneurons. Together, these results indicate that the nest organization and sustained proliferation of neuroblasts in the hMGE provide a mechanism for the extended production of interneurons for the human forebrain.


Subject(s)
Interneurons/physiology , Median Eminence/embryology , Neural Stem Cells/physiology , Neurogenesis , Prosencephalon/cytology , Animals , Animals, Newborn , Cell Movement , Cell Proliferation , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Cerebral Cortex/growth & development , GABAergic Neurons/cytology , GABAergic Neurons/physiology , Gene Expression Profiling , Gestational Age , Humans , Interneurons/cytology , Median Eminence/cytology , Median Eminence/growth & development , Mice , Neural Stem Cells/transplantation , Prosencephalon/embryology , Prosencephalon/growth & development , Transplantation, Heterologous
11.
Nat Commun ; 13(1): 27, 2022 01 14.
Article in English | MEDLINE | ID: mdl-35031607

ABSTRACT

Coordinated programs of gene expression drive brain development. It is unclear which transcriptional programs, in which cell-types, are affected in neuropsychiatric disorders such as schizophrenia. Here we integrate human genetics with transcriptomic data from differentiation of human embryonic stem cells into cortical excitatory neurons. We identify transcriptional programs expressed during early neurogenesis in vitro and in human foetal cortex that are down-regulated in DLG2-/- lines. Down-regulation impacted neuronal differentiation and maturation, impairing migration, morphology and action potential generation. Genetic variation in these programs is associated with neuropsychiatric disorders and cognitive function, with associated variants predominantly concentrated in loss-of-function intolerant genes. Neurogenic programs also overlap schizophrenia GWAS enrichment previously identified in mature excitatory neurons, suggesting that pathways active during prenatal cortical development may also be associated with mature neuronal dysfunction. Our data from human embryonic stem cells, when combined with analysis of available foetal cortical gene expression data, de novo rare variants and GWAS statistics for neuropsychiatric disorders and cognition, reveal a convergence on transcriptional programs regulating excitatory cortical neurogenesis.


Subject(s)
Cerebral Cortex/embryology , Gene Expression Regulation, Developmental , Guanylate Kinases/genetics , Neurogenesis , Tumor Suppressor Proteins/genetics , Animals , Cell Differentiation , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Female , Gene Knockdown Techniques , Genetic Predisposition to Disease , Guanylate Kinases/metabolism , Human Embryonic Stem Cells/metabolism , Humans , Mental Disorders/genetics , Neurogenesis/genetics , Neurogenesis/physiology , Neurons , Pregnancy , Schizophrenia/genetics , Transcriptome , Tumor Suppressor Proteins/metabolism
12.
Front Neural Circuits ; 16: 1065374, 2022.
Article in English | MEDLINE | ID: mdl-36589861

ABSTRACT

Background: Volatile anesthetics including sevoflurane and isoflurane enhance oscillations of cortical electroencephalogram (EEG), partly by their modulations on glutamate-mediated excitatory synaptic transmission. Expression of NMDA receptors is increased during neonatal development. However, how the development of NMDA receptors influences EEG under volatile anesthesia remains unclear. Methods: Expressions of NMDA receptor subtypes (NR1, NR2A, and NR2B) during neonatal development were measured by Western blotting. MAC (minimal alveolar concentration) of isoflurane and sevoflurane that inducing loss of righting reflex (LORR) and no response to tail-clamp (immobility) were measured to verify the effect of NR1 expression on anesthetic potency during neonatal development. Cortical electroencephalogram recording was used to examine the influence of NR1 expression on the power density of EEG. Results: The expressions of GluNR1, GluNR2A and GluNR2B receptors were gradually increased during neonatal development in cortex, hippocampus and thalamus of rats. Knockdown of NR1 enhanced the sedative potency of volatile anesthetics but not on immobility potency in postnatal day 14 (P14)-P17 rats. For cortical EEG, along with the increased concentration of volatile anesthetics, cortical slow-delta oscillations of P5 rats were inhibited, theta and alpha oscillations were not changed significantly; while these oscillations were enhanced until high anesthetic concentrations in P21 rats. Knockdown of NR1 in forebrain suppressed the enhancement of cortical EEG oscillations in P21 rats. Conclusion: The development of NMDA receptors may contribute to the enhancement of cortical EEG oscillations under volatile anesthetics.


Subject(s)
Anesthetics, Inhalation , Cerebral Cortex , Electroencephalography , Receptors, N-Methyl-D-Aspartate , Animals , Rats , Anesthetics, Inhalation/pharmacology , Electroencephalography/drug effects , Isoflurane/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Sevoflurane/pharmacology , Cerebral Cortex/drug effects , Cerebral Cortex/embryology
13.
J Neurochem ; 160(2): 185-202, 2022 01.
Article in English | MEDLINE | ID: mdl-34478582

ABSTRACT

Co-ordinating the dynamic behaviour of actin filaments (F-actin) and microtubules in filopodia is an important underlying process in neuritogenesis, but the molecular pathways involved are ill-defined. The drebrin/end-binding protein 3 (EB3) pathway is a candidate pathway for linking F-actin to microtubules in filopodia. Drebrin binds F-actin and, simultaneously, the microtubule-binding protein EB3 when bound to microtubule plus-ends. We assessed the effect on neuritogenesis of gain- or loss-of-function of proteins in the drebrin/EB3 pathway in rat embryonic cortical neurons in culture. Loss-of-function of drebrin by gene editing or pharmacological inhibition of drebrin binding to F-actin reduced the number of dynamic microtubules in the cell periphery and simultaneously delayed the initiation of neuritogenesis, whereas over-expression of drebrin induced supernumerary neurites. Similarly, loss of EB3 inhibited neuritogenesis, whereas loss of end-binding protein 1 (EB1), a related protein that does not bind to drebrin, did not affect neuritogenesis. Over-expression of EB3, but not EB1, induced supernumerary neurites. We discovered that EB3 is more proximally located at dynamic microtubule plus-ends than EB1 in growth cone filopodia allowing for continuous microtubule elongation as the drebrin/EB3 pathway zippers microtubules to F-actin in filopodia. Finally, we showed that preventing the entry of dynamic microtubules into filopodia using a pharmacological inhibitor of microtubule dynamics is associated with a loss of EB3, but not EB1, from microtubule plus-ends and a concurrent attenuation of neuritogenesis. Collectively, these findings support the idea that neuritogenesis depends on microtubule/F-actin zippering in filopodia orchestrated by the drebrin/EB3 pathway.


Subject(s)
Cerebral Cortex/embryology , Cytoskeleton/metabolism , Microtubule-Associated Proteins/metabolism , Neurogenesis/physiology , Neurons/metabolism , Neuropeptides/metabolism , Animals , Cerebral Cortex/metabolism , Embryo, Mammalian , Rats , Signal Transduction/physiology
14.
J Neurosci ; 42(3): 362-376, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34819341

ABSTRACT

Multifaceted microglial functions in the developing brain, such as promoting the differentiation of neural progenitors and contributing to the positioning and survival of neurons, have been progressively revealed. Although previous studies have noted the relationship between vascular endothelial cells and microglia in the developing brain, little attention has been given to the importance of pericytes, the mural cells surrounding endothelial cells. In this study, we attempted to dissect the role of pericytes in microglial distribution and function in developing mouse brains. Our immunohistochemical analysis showed that approximately half of the microglia attached to capillaries in the cerebral walls. Notably, a magnified observation of the position of microglia, vascular endothelial cells and pericytes demonstrated that microglia were preferentially associated with pericytes that covered 79.8% of the total capillary surface area. Through in vivo pericyte depletion induced by the intraventricular administration of a neutralizing antibody against platelet-derived growth factor receptor (PDGFR)ß (clone APB5), we found that microglial density was markedly decreased compared with that in control antibody-treated brains because of their low proliferative capacity. Moreover, in vitro coculture of isolated CD11b+ microglia and NG2+PDGFRα- cells, which are mostly composed of pericytes, from parenchymal cells indicated that pericytes promote microglial proliferation via the production of soluble factors. Furthermore, pericyte depletion by APB5 treatment resulted in a failure of microglia to promote the differentiation of neural stem cells into intermediate progenitors. Taken together, our findings suggest that pericytes facilitate microglial homeostasis in the developing brains, thereby indirectly supporting microglial effects on neural progenitors.SIGNIFICANCE STATEMENT This study highlights the novel effect of pericytes on microglia in the developing mouse brain. Through multiple analyses using an in vivo pericyte depletion mouse model and an in vitro coculture study of isolated pericytes and microglia from parenchymal cells, we demonstrated that pericytes contribute to microglial proliferation and support microglia in efficiently promoting the differentiation of neural stem cells into intermediate progenitors. Our present data provide evidence that pericytes function not only in the maintenance of cerebral microcirculation and blood brain barrier (BBB) integrity but also in microglial homeostasis in the developing cerebral walls. These findings will expand our knowledge and help elucidate the mechanism of brain development both in healthy and disease conditions.


Subject(s)
Cerebral Cortex/cytology , Homeostasis/physiology , Microglia/cytology , Neural Stem Cells/cytology , Pericytes/cytology , Animals , Antibodies, Neutralizing , Blood-Brain Barrier/cytology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/embryology , Capillary Permeability/drug effects , Cell Line , Cell Proliferation/drug effects , Cerebral Cortex/drug effects , Cerebral Cortex/embryology , Clodronic Acid/pharmacology , Homeostasis/drug effects , Liposomes , Mice , Microglia/drug effects , Neural Stem Cells/drug effects , Pericytes/drug effects , Receptor, Platelet-Derived Growth Factor beta
15.
J Neurochem ; 160(2): 203-217, 2022 01.
Article in English | MEDLINE | ID: mdl-34862972

ABSTRACT

Neurons are the largest known cells, with complex and highly polarized morphologies and consist of a cell body (soma), several dendrites, and a single axon. The establishment of polarity necessitates initial axonal outgrowth in concomitance with the addition of new membrane to the axon's plasmalemma. Axolemmal expansion occurs by exocytosis of plasmalemmal precursor vesicles primarily at the neuronal growth cone membrane. The multiprotein exocyst complex drives spatial location and specificity of vesicle fusion at plasma membrane. However, the specific participation of its different proteins on neuronal differentiation has not been fully established. In the present work we analyzed the role of Sec3, a prominent exocyst complex protein on neuronal differentiation. Using mice hippocampal primary cultures, we determined that Sec3 is expressed in neurons at early stages prior to neuronal polarization. Furthermore, we determined that silencing of Sec3 in mice hippocampal neurons in culture precluded polarization. Moreover, using in utero electroporation experiments, we determined that Sec3 knockdown affected cortical neurons migration and morphology during neocortex formation. Our results demonstrate that the exocyst complex protein Sec3 plays an important role in axon formation in neuronal differentiation and the migration of neuronal progenitors during cortex development.


Subject(s)
Cerebral Cortex/embryology , Neurogenesis/physiology , Neurons , Vesicular Transport Proteins/metabolism , Animals , Cell Differentiation/physiology , Cell Movement/physiology , Cerebral Cortex/metabolism , Mice , Neurons/cytology , Neurons/metabolism
16.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34921112

ABSTRACT

We uncovered a transcription factor (TF) network that regulates cortical regional patterning in radial glial stem cells. Screening the expression of hundreds of TFs in the developing mouse cortex identified 38 TFs that are expressed in gradients in the ventricular zone (VZ). We tested whether their cortical expression was altered in mutant mice with known patterning defects (Emx2, Nr2f1, and Pax6), which enabled us to define a cortical regionalization TF network (CRTFN). To identify genomic programming underlying this network, we performed TF ChIP-seq and chromatin-looping conformation to identify enhancer-gene interactions. To map enhancers involved in regional patterning of cortical progenitors, we performed assays for epigenomic marks and DNA accessibility in VZ cells purified from wild-type and patterning mutant mice. This integrated approach has identified a CRTFN and VZ enhancers involved in cortical regional patterning in the mouse.


Subject(s)
Cerebral Cortex/embryology , Gene Regulatory Networks , Regulatory Elements, Transcriptional , Transcription Factors/metabolism , Animals , COUP Transcription Factor I/metabolism , Cerebral Cortex/metabolism , Epigenome , Homeodomain Proteins/metabolism , LIM-Homeodomain Proteins/metabolism , Mice , PAX6 Transcription Factor/metabolism , Pre-B-Cell Leukemia Transcription Factor 1/metabolism , Transcription Factors/genetics
17.
Brain Res ; 1773: 147700, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34678304

ABSTRACT

BACKGROUND: Proper development of the cerebral cortex relies on asymmetric divisions of neural precursor cells (NPCs) to produce a recurring NPC and a differentiated neuron. Asymmetric divisions are promoted by the differential localization of cell-fate determinants, such as mRNA, between daughter cells. Staufen 1 (Stau1) is an RNA-binding protein known to localize mRNA in mature hippocampal neurons. Its expression pattern and role in the developing mammalian cortex remains unknown. RESULTS: Both stau1 mRNA and Stau1 protein were found to be expressed in all cells of the developing murine cortex. Stau1 protein expression was characterized spatially and temporally throughout cortical development and found to be present in all stages investigated. We observed expression in the nucleus, cytoplasm and distal processes of both NPCs and newly born neurons and found it to shuttle between the nucleus and the cytoplasm. Upon shRNA-mediated knock-down of Stau1 in primary cultures of the developing cortex, we did not observe any phenotype in NPCs. They were able to both self-renew and generate neurons in the absence of Stau1 expression. CONCLUSIONS: We propose that Stau1 is either dispensable for the development of the cerebral cortex or that its paralogue, Stau2, is able to compensate for its loss.


Subject(s)
Cerebral Cortex/metabolism , Neural Stem Cells/metabolism , Neurogenesis/physiology , RNA-Binding Proteins/metabolism , Animals , Cell Nucleus/metabolism , Cerebral Cortex/embryology , Cytoplasm/metabolism , Mice , Neurons/metabolism , RNA-Binding Proteins/genetics
18.
J Neurosci ; 41(43): 8887-8903, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34518307

ABSTRACT

Precise control of neuronal migration is required for the laminar organization of the neocortex and critical for brain function. We previously reported that the acute disruption of the Stk25 gene (Stk25 conditional knock-out; cKO) during mouse embryogenesis causes anomalous neuronal migration in the neocortex, but paradoxically the Stk25 cKO did not have a cortical phenotype, suggesting some forms of compensation exist. In this study, we report that MST3, another member of the GCKIII subgroup of the Ste20-like kinase family, compensates for loss of Stk25 and vice versa with sex independent manner. MST3 overexpression rescued neuronal migration deficit and abnormal axonogenesis in Stk25 cKO brains. Mechanistically, STK25 leads to Rac1 activation and reduced RhoA levels in the developing brain, both of which are required to fully restore neuronal migration in the Stk25 cKO brain. Abnormal migration phenotypes are also rescued by overexpression of Bacurd1and Cul3, which target RhoA for degradation, and activate Rac1. This study reveals that MST3 upregulation is capable of rescuing acute Stk25 deficiency and resolves details of signaling downstream STK25 required for corticogenesis both common to and distinct from MST3 signaling.SIGNIFICANCE STATEMENT Proper neuronal migration during cortical development is required for normal neuronal function. Here, we show that STK25 and MST3 kinases regulate neuronal migration and polarization in a mutually compensatory manner. Furthermore, STK25 balances Rac1 activity and RhoA level through forming complexes with α-PIX and ß-PIX, GTPase regulatory enzymes, and Cullin3-Bacurd1/Kctd13, a pair of RhoA ubiquitination molecules in a kinase activity-independent manner. Our findings demonstrate the importance of overlapping and unique roles of STK25 and MST3 to regulate Rho GTPase activities in cortical development.


Subject(s)
Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Cells, Cultured , Female , Gene Knockdown Techniques , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Pregnancy , Protein Serine-Threonine Kinases/genetics , rho GTP-Binding Proteins/genetics
19.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34429357

ABSTRACT

The development of the cerebral cortex relies on the controlled division of neural stem and progenitor cells. The requirement for precise spatiotemporal control of proliferation and cell fate places a high demand on the cell division machinery, and defective cell division can cause microcephaly and other brain malformations. Cell-extrinsic and -intrinsic factors govern the capacity of cortical progenitors to produce large numbers of neurons and glia within a short developmental time window. In particular, ion channels shape the intrinsic biophysical properties of precursor cells and neurons and control their membrane potential throughout the cell cycle. We found that hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits are expressed in mouse, rat, and human neural progenitors. Loss of HCN channel function in rat neural stem cells impaired their proliferation by affecting the cell-cycle progression, causing G1 accumulation and dysregulation of genes associated with human microcephaly. Transgene-mediated, dominant-negative loss of HCN channel function in the embryonic mouse telencephalon resulted in pronounced microcephaly. Together, our findings suggest a role for HCN channel subunits as a part of a general mechanism influencing cortical development in mammals.


Subject(s)
Cell Proliferation/physiology , Cerebral Cortex/embryology , Channelopathies/etiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/physiology , Microcephaly/etiology , Neural Stem Cells/physiology , Neurogenesis/physiology , Animals , Cell Cycle , Cell Death , Cells, Cultured , Cerebral Cortex/cytology , Channelopathies/embryology , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/physiology , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Mice , Mice, Transgenic , Microcephaly/embryology , Neural Stem Cells/metabolism , Rats
20.
Cell ; 184(19): 5053-5069.e23, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34390642

ABSTRACT

Genetic perturbations of cortical development can lead to neurodevelopmental disease, including autism spectrum disorder (ASD). To identify genomic regions crucial to corticogenesis, we mapped the activity of gene-regulatory elements generating a single-cell atlas of gene expression and chromatin accessibility both independently and jointly. This revealed waves of gene regulation by key transcription factors (TFs) across a nearly continuous differentiation trajectory, distinguished the expression programs of glial lineages, and identified lineage-determining TFs that exhibited strong correlation between linked gene-regulatory elements and expression levels. These highly connected genes adopted an active chromatin state in early differentiating cells, consistent with lineage commitment. Base-pair-resolution neural network models identified strong cell-type-specific enrichment of noncoding mutations predicted to be disruptive in a cohort of ASD individuals and identified frequently disrupted TF binding sites. This approach illustrates how cell-type-specific mapping can provide insights into the programs governing human development and disease.


Subject(s)
Cerebral Cortex/embryology , Chromatin/metabolism , Gene Expression Regulation, Developmental , Single-Cell Analysis , Astrocytes/cytology , Cell Differentiation , Cell Lineage/genetics , Cluster Analysis , Deep Learning , Epigenesis, Genetic , Fuzzy Logic , Glutamates/metabolism , Humans , Mutation/genetics , Neurons/metabolism , Regulatory Sequences, Nucleic Acid/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...