ABSTRACT
TRPM4 is a non-selective cation channel activated by intracellular Ca2+ but only permeable to monovalent cations, its activation regulates membrane potential and intracellular calcium. This channel participates in the migration and adhesion of non-excitable cells and forms an integral part of the focal adhesion complex. In neurons, TRPM4 expression starts before birth and its function at this stage is not clear, but it may function in processes such as neurite development. Here we investigate the role of TRPM4 in neuritogenesis. We found that neurons at DIV 0 express TRPM4, the inhibition of TRPM4 using 9-Ph reduces neurite number and slows the progression of neurite development, keeping neurons in stage 1. The genetic suppression of TRPM4 using an shRNA at later stages (DIV2) reduces neurite length. Conversely, at DIV 0, TRPM4 inhibition augments the Cch-induced Ca2 + i increase, altering the calcium homeostasis. Together, these results show that TRPM4 participates in progression of neurite development and suggest a critical role of the calcium modulation during this stage of neuronal development.
Subject(s)
Calcium , Cerebral Cortex , Neurites , Neurogenesis , TRPM Cation Channels , TRPM Cation Channels/metabolism , TRPM Cation Channels/antagonists & inhibitors , Animals , Neurites/metabolism , Neurites/drug effects , Calcium/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Neurons/metabolismABSTRACT
The cell-intrinsic mechanisms underlying the decision of a stem/progenitor cell to either proliferate or differentiate remain incompletely understood. Here, we identify the transmembrane protein Lrig1 as a physiological homeostatic regulator of FGF2-driven proliferation and self-renewal of neural progenitors at early-to-mid embryonic stages of cortical development. We show that Lrig1 is expressed in cortical progenitors (CPs), and its ablation caused expansion and increased proliferation of radial/apical progenitors and of neurogenic transit-amplifying Tbr2+ intermediate progenitors. Notably, our findings identify a previously unreported EGF-independent mechanism through which Lrig1 negatively regulates neural progenitor proliferation by modulating the FGF2-induced IL6/Jak2/Stat3 pathway, a molecular cascade that plays a pivotal role in the generation and maintenance of CPs. Consistently, Lrig1 knockout mice showed a significant increase in the density of pyramidal glutamatergic neurons placed in superficial layers 2 and 3 of the postnatal neocortex. Together, these results support a model in which Lrig1 regulates cortical neurogenesis by influencing the cycling activity of a set of progenitors that are temporally specified to produce upper layer glutamatergic neurons.
Subject(s)
Janus Kinase 2 , Membrane Glycoproteins , Mice, Knockout , Neural Stem Cells , Neurogenesis , Neurons , STAT3 Transcription Factor , Signal Transduction , Animals , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Janus Kinase 2/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Mice , Neurogenesis/genetics , Neurons/metabolism , Neurons/cytology , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Cell Proliferation , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Cell Differentiation , Fibroblast Growth Factors/metabolism , Nerve Tissue ProteinsABSTRACT
BACKGROUND: Blackcurrant (Ribes nigrum L.) is a berry rich in anthocyanins, bioactive compounds known for their antioxidant and neuroprotective properties that benefit human health. AIMS: This study aimed to investigate the effects of blackcurrant and its association with Donepezil on memory impairment, cholinergic neurotransmission, and antioxidant systems in a mouse model of amnesia induced by chronic administration of Scopolamine. METHODS: Adult male Swiss mice were given saline, blackcurrant (50 mg/kg, orally), and/or Donepezil (5 mg/kg, orally) and/or Scopolamine (1 mg/kg, intraperitoneally). RESULTS: Behavioral tests revealed that blackcurrant and/or Donepezil prevented the learning and memory deficits induced by Scopolamine. In the cerebral cortex and hippocampus, blackcurrant and/or Donepezil treatments prevented the increase in acetylcholinesterase and butyrylcholinesterase activities induced by Scopolamine. Scopolamine also disrupted the glutathione redox system and increased levels of reactive species; nevertheless, blackcurrant and/or Donepezil treatments were able to prevent oxidative stress. Furthermore, these treatments prevented the increase in gene expression and protein density of acetylcholinesterase and the decrease in gene expression of the choline acetyltransferase enzyme induced by Scopolamine. CONCLUSIONS: Findings suggest that blackcurrant and Donepezil, either alone or in combination, have anti-amnesic effects by modulating cholinergic system enzymes and improving the redox profile. Therefore, blackcurrant could be used as a natural supplement for the prevention and treatment of memory impairment in neurodegenerative diseases.
Subject(s)
Acetylcholinesterase , Antioxidants , Donepezil , Memory Disorders , Oxidative Stress , Plant Extracts , Ribes , Scopolamine , Animals , Male , Mice , Donepezil/pharmacology , Ribes/chemistry , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/prevention & control , Memory Disorders/metabolism , Acetylcholinesterase/metabolism , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Antioxidants/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Neuroprotective Agents/pharmacology , Disease Models, Animal , Piperidines/pharmacology , Indans/pharmacology , Butyrylcholinesterase/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Glutathione/metabolism , Amnesia/chemically induced , Amnesia/drug therapy , Amnesia/metabolism , Amnesia/prevention & control , Signal Transduction/drug effectsABSTRACT
Rasmussen's encephalitis (RE) stands as a rare neurological disorder marked by progressive cerebral hemiatrophy and epilepsy resistant to medical treatment. Despite extensive study, the primary cause of RE remains elusive, while its histopathological features encompass cortical inflammation, neuronal degeneration, and gliosis. The underlying molecular mechanisms driving disease progression remain largely unexplored. In this case study, we present a patient with RE who underwent hemispherotomy and has remained seizure-free for over six months, experiencing gradual motor improvement. Furthermore, we conducted molecular analysis on the excised brain tissue, unveiling a decrease in the expression of cell-cycle-associated genes coupled with elevated levels of BDNF and TNF-α proteins. These findings suggest the potential involvement of cell cycle regulators in the progression of RE.
Subject(s)
Encephalitis , Humans , Encephalitis/genetics , Encephalitis/pathology , Encephalitis/metabolism , Male , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Brain/pathology , Brain/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cerebral Cortex/pathology , Cerebral Cortex/metabolism , Female , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Cell Cycle/geneticsABSTRACT
Resistance exercise training (RET) is considered an excellent tool for preventing diseases with an inflammatory background. Its neuroprotective, antioxidant, and anti-inflammatory properties are responsible for positively modulating cholinergic and oxidative systems, promoting neurogenesis, and improving memory. However, the mechanisms behind these actions are largely unknown. In order to investigate the pathways related to these effects of exercise, we conducted a 12-week long-term exercise training protocol and used lipopolysaccharide (LPS) to induce damage to the cortex and hippocampus of male Wistar rats. The cholinergic system, oxidative stress, and histochemical parameters were analyzed in the cerebral cortex and hippocampus, and memory tests were also performed. It was observed that LPS: (1) caused memory loss in the novel object recognition (NOR) test; (2) increased the activity of acetylcholinesterase (AChE) and Iba1 protein density; (3) reduced the protein density of brain-derived neurotrophic factor (BDNF) and muscarinic acetylcholine receptor M1 (CHRM1); (4) elevated the levels of lipid peroxidation (TBARS) and reactive species (RS); and (5) caused inflammatory damage to the dentate gyrus. RET, on the other hand, was able to prevent all alterations induced by LPS, as well as increase per se the protein density of the alpha-7 nicotinic acetylcholine receptor (nAChRα7) and Nestin, and the levels of protein thiols (T-SH). Overall, our study elucidates some mechanisms that support resistance physical exercise as a valuable approach against LPS-induced neuroinflammation and memory loss.
Subject(s)
Lipopolysaccharides , Memory Disorders , Neuroinflammatory Diseases , Physical Conditioning, Animal , Rats, Wistar , Animals , Male , Lipopolysaccharides/toxicity , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/methods , Rats , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/chemically induced , Memory Disorders/chemically induced , Memory Disorders/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Oxidative Stress/drug effects , Oxidative Stress/physiology , Resistance Training/methods , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Lipid Peroxidation/drug effects , Acetylcholinesterase/metabolism , Receptor, Muscarinic M1/metabolismABSTRACT
The outstanding human cognitive capacities are computed in the cerebral cortex, a mammalian-specific brain region and the place of massive biological innovation. Long noncoding RNAs have emerged as gene regulatory elements with higher evolutionary turnover than mRNAs. The many long noncoding RNAs identified in neural tissues make them candidates for molecular sources of cerebral cortex evolution and disease. Here, we characterized the genomic and cellular shifts that occurred during the evolution of the long noncoding RNA repertoire expressed in the developing cerebral cortex and explored putative roles for these long noncoding RNAs in the evolution of the human brain. Using transcriptomics and comparative genomics, we comprehensively annotated the cortical transcriptomes of humans, rhesus macaques, mice, and chickens and classified human cortical long noncoding RNAs into evolutionary groups as a function of their predicted minimal ages. Long noncoding RNA evolutionary groups showed differences in expression levels, splicing efficiencies, transposable element contents, genomic distributions, and transcription factor binding to their promoters. Furthermore, older long noncoding RNAs showed preferential expression in germinative zones, outer radial glial cells, and cortical inhibitory (GABAergic) neurons. In comparison, younger long noncoding RNAs showed preferential expression in cortical excitatory (glutamatergic) neurons, were enriched in primate and human-specific gene co-expression modules, and were dysregulated in neurodevelopmental disorders. These results suggest different evolutionary routes for older and younger cortical long noncoding RNAs, highlighting old long noncoding RNAs as a possible source of molecular evolution of conserved developmental programs; conversely, we propose that the de novo expression of primate- and human-specific young long noncoding RNAs is a putative source of molecular evolution and dysfunction of cortical excitatory neurons, warranting further investigation.
Subject(s)
Cerebral Cortex , Macaca mulatta , Neurons , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Cerebral Cortex/metabolism , Animals , Mice , Neurons/metabolism , Chickens/genetics , Evolution, Molecular , TranscriptomeABSTRACT
BACKGROUND: The brain cortex is responsible for many higher-level cognitive functions. Disruptions during cortical development have long-lasting consequences on brain function and are associated with the etiology of brain disorders. We previously found that the protein tyrosine phosphatase receptor delta Ptprd, which is genetically associated with several human neurodevelopmental disorders, is essential to cortical brain development. Loss of Ptprd expression induced an aberrant increase of excitatory neurons in embryonic and neonatal mice by hyper-activating the pro-neurogenic receptors TrkB and PDGFRß in neural precursor cells. However, whether these alterations have long-lasting consequences in adulthood remains unknown. RESULTS: Here, we found that in Ptprd+/- or Ptprd-/- mice, the developmental increase of excitatory neurons persists through adulthood, affecting excitatory synaptic function in the medial prefrontal cortex. Likewise, heterozygosity or homozygosity for Ptprd also induced an increase of inhibitory cortical GABAergic neurons and impaired inhibitory synaptic transmission. Lastly, Ptprd+/- or Ptprd-/- mice displayed autistic-like behaviors and no learning and memory impairments or anxiety. CONCLUSIONS: These results indicate that loss of Ptprd has long-lasting effects on cortical neuron number and synaptic function that may aberrantly impact ASD-like behaviors.
Subject(s)
Autistic Disorder , Neurons , Receptor-Like Protein Tyrosine Phosphatases, Class 2 , Animals , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Mice , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Disease Models, Animal , Male , Cerebral Cortex/metabolism , Mice, Knockout , Synaptic Transmission/physiology , Mice, Inbred C57BL , FemaleABSTRACT
Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by haploinsufficiency of transcription factor 4 (TCF4). In this work, we focused on the cerebral cortex and investigated in detail the progenitor cell dynamics and the outcome of neurogenesis in a PTHS mouse model. Labeling and quantification of progenitors and newly generated neurons at various time points during embryonic development revealed alterations affecting the dynamic of cortical progenitors since the earliest stages of cortex formation in PTHS mice. Consequently, establishment of neuronal populations and layering of the cortex were found to be altered in heterozygotes subjects at birth. Interestingly, defective layering process of pyramidal neurons was partially rescued by reintroducing TCF4 expression using focal in utero electroporation in the cerebral cortex. Coincidentally with a defective dorsal neurogenesis, we found that ventral generation of interneurons was also defective in this model, which may lead to an excitation/inhibition imbalance in PTHS. Overall, sex-dependent differences were detected with more marked effects evidenced in males compared with females. All of this contributes to expand our understanding of PTHS, paralleling the advances of research in autism spectrum disorder and further validating the PTHS mouse model as an important tool to advance preclinical studies.
Subject(s)
Cerebral Cortex , Disease Models, Animal , Hyperventilation , Intellectual Disability , Neurogenesis , Transcription Factor 4 , Animals , Transcription Factor 4/metabolism , Transcription Factor 4/genetics , Female , Male , Mice , Hyperventilation/metabolism , Hyperventilation/genetics , Hyperventilation/pathology , Intellectual Disability/genetics , Intellectual Disability/pathology , Intellectual Disability/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Facies , Sex Characteristics , Interneurons/metabolism , Interneurons/pathology , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , HaploinsufficiencyABSTRACT
Traumatic brain injury (TBI) remains a major health concern which causes long-term neurological disability particularly in war veterans, athletes and young adults. In spite of intense clinical and research investigations, there is no effective therapy to cease the pathogenesis of the disease. It is believed that axonal injury during TBI is potentiated by neuroinflammation and demyelination and/or failure to remyelination. This study highlights the use of naturally available cinnamein, also chemically known as benzyl cinnamate, in inhibiting neuroinflammation, promoting remyelination and combating the disease process of controlled cortical impact (CCI)-induced TBI in mice. Oral delivery of cinnamein through gavage brought down the activation of microglia and astrocytes to decrease the expression of inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) in hippocampus and cortex of TBI mice. Cinnamein treatment also stimulated remyelination in TBI mice as revealed by PLP and A2B5 double-labeling, luxol fast blue (LFB) staining and axonal double-labeling for neurofilament and MBP. Furthermore, oral cinnamein reduced the size of lesion cavity in the brain, improved locomotor functions and restored memory and learning in TBI mice. These results suggest a new neuroprotective property of cinnamein that may be valuable in the treatment of TBI.
Subject(s)
Brain Injuries, Traumatic , Disease Models, Animal , Animals , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Mice , Male , Mice, Inbred C57BL , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic useABSTRACT
Wnt signaling plays an important role in adult brain function, and its dysregulation has been implicated in the loss of neuronal homeostasis. Despite the existence of many studies on the participation of the Wnt pathway in adult neurons, its regulation in astrocytes has been scarcely explored. Several reports point to the presence of Wnt ligands in astrocytes and their possible impact on neuronal plasticity or neuronal death. We aimed to analyze the effect of the neurotransmitter glutamate and the inflammatory cytokine TNFα on the mRNA and protein levels of the canonical Wnt agonist Wnt7a and the antagonist Dkk1 in cultured astrocytes. Primary astrocyte cultures from rat cerebral cortices were exposed to glutamate or TNFα. Wnt7a and Dkk1 expression was analyzed by RT-qPCR and its protein abundance and distribution was assessed by immunofluorescence. We found high basal expression and protein levels of Wnt7a and Dkk1 in unstimulated astrocytes and overproduction of Dkk1 mRNA induced by the two stimuli. These results reveal the astrocytic source of the canonical Wnt ligands Wnt7a and Dkk1, whose levels are differentially regulated by glutamate and TNFα. Astrocytes are a significant source of Wnt ligands, the production of which can be differentially regulated under excitatory or proinflammatory conditions, thereby impacting neuronal function.
Subject(s)
Astrocytes , Glutamic Acid , Intercellular Signaling Peptides and Proteins , Proto-Oncogene Proteins , Tumor Necrosis Factor-alpha , Wnt Proteins , Astrocytes/metabolism , Astrocytes/drug effects , Animals , Intercellular Signaling Peptides and Proteins/metabolism , Glutamic Acid/metabolism , Wnt Proteins/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cells, Cultured , Rats , RNA, Messenger/metabolism , Rats, Wistar , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/cytologyABSTRACT
Melanoma, an infrequent yet significant variant of skin cancer, emerges as a primary cause of brain metastasis among various malignancies. Despite recognizing the involvement of inflammatory molecules, particularly chemokines, in shaping the metastatic microenvironment, the intricate cellular signaling mechanisms underlying cerebral metastasis remain elusive. In our pursuit to unravel the role of cytokines in melanoma metastasis, we devised a protocol utilizing mixed cerebral cortical cells and SK-MEL-28 melanoma cell lines. Contrary to expectations, we observed no discernible morphological change in melanoma cells exposed to a cerebral conditioned medium (CM). However, a substantial increase in both migration and proliferation was quantitatively noted. Profiling the chemokine secretion by melanoma in response to the cerebral CM unveiled the pivotal role of interferon gamma-induced protein 10 (CXCL10), inhibiting the secretion of interleukin 8 (CXCL8). Furthermore, through a transwell assay, we demonstrated that knockdown CXCL10 led to a significant decrease in the migration of the SK-MEL-28 cell line. In conclusion, our findings suggest that a cerebral CM induces melanoma cell migration, while modulating the secretion of CXCL10 and CXCL8 in the context of brain metastases. These insights advance our understanding of the underlying mechanisms in melanoma cerebral metastasis, paving the way for further exploration and targeted therapeutic interventions.
Subject(s)
Cell Movement , Chemokine CXCL10 , Melanoma , Signal Transduction , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Humans , Culture Media, Conditioned/pharmacology , Melanoma/pathology , Melanoma/metabolism , Cell Line, Tumor , Interleukin-8/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Neoplasm Invasiveness , Cell Proliferation , Cerebral Cortex/metabolism , Cerebral Cortex/pathologyABSTRACT
Alzheimer's disease (AD) is the leading cause of dementia and is characterized by a progressive decline in cognitive abilities. A pathological hallmark of AD is a region-specific accumulation of the amyloid-beta protein (Aß). Here, we explored the association between regional Aß deposition, sociodemographic, and local biochemical factors. We quantified the Aß burden in postmortem cortical samples from parietal (PCx) and temporal (TCx) regions of 27 cognitively unimpaired (CU) and 15 AD donors, aged 78-100 + years. Histological images of Aß immunohistochemistry and local concentrations of pathological and inflammatory proteins were obtained at the "Aging, Dementia and TBI Study" open database. We used the area fraction fractionator stereological methodology to quantify the Aß burden in the gray and white matter within each cortical region. We found higher Aß burdens in the TCx of AD octogenarians compared to CU ones. We also found higher Aß loads in the PCx of AD nonagenarians than in AD octogenarians. Moreover, AD women exhibited increased Aß deposition compared to CU women. Interestingly, we observed a negative correlation between education years and Aß burden in the white matter of both cortices in CU samples. In AD brains, the Aß40, Aß42, and pTau181 isoforms of Aß and Tau proteins were positively correlated with the Aß burden. Additionally, in the TCx of AD donors, the proinflammatory cytokine TNFα showed a positive correlation with the Aß load. These novel findings contribute to understanding the interplay between sociodemographic characteristics, local inflammatory signaling, and the development of AD-related pathology in the cerebral cortex.
Subject(s)
Alzheimer Disease , Aged, 80 and over , Humans , Female , Alzheimer Disease/metabolism , Sociodemographic Factors , Cerebral Cortex/metabolism , Aging/metabolism , Amyloid beta-Peptides/metabolismABSTRACT
Carnosine is composed of ß-alanine and L-histidine and is considered to be an important neuroprotective agent with antioxidant, metal chelating, and antisenescence properties. However, children with serum carnosinase deficiency present increased circulating carnosine and severe neurological symptoms. We here investigated the in vitro effects of carnosine on redox and mitochondrial parameters in cultured cortical astrocytes from neonatal rats. Carnosine did not alter mitochondrial content or mitochondrial membrane potential. On the other hand, carnosine increased mitochondrial superoxide anion formation, levels of thiobarbituric acid reactive substances and oxidation of 2',7'-dichlorofluorescin diacetate (DCF-DA), indicating that carnosine per se acts as a pro-oxidant agent. Nonetheless, carnosine prevented DCF-DA oxidation induced by H2O2 in cultured cortical astrocytes. Since alterations on mitochondrial membrane potential are not likely to be involved in these effects of carnosine, the involvement of N-Methyl-D-aspartate (NMDA) receptors in the pro-oxidant actions of carnosine was investigated. MK-801, an antagonist of NMDA receptors, prevented DCF-DA oxidation induced by carnosine in cultured cortical astrocytes. Astrocyte reactivity induced by carnosine was also prevented by the coincubation with MK-801. The present study shows for the very first time the pro-oxidant effects of carnosine per se in astrocytes. The data raise awareness on the importance of a better understanding of the biological actions of carnosine, a nutraceutical otherwise widely reported as devoid of side effects.
Subject(s)
Astrocytes , Carnosine , Cerebral Cortex , Rats, Wistar , Reactive Oxygen Species , Animals , Carnosine/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Cells, Cultured , Reactive Oxygen Species/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Membrane Potential, Mitochondrial/drug effects , Animals, Newborn , Rats , Mitochondria/metabolism , Mitochondria/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Hydrogen Peroxide , Oxidation-Reduction/drug effectsABSTRACT
BACKGROUND: Early appearance of serotonin in the fetal brain and its effects on brain morphogenesis support its neurotrophic role. OBJECTIVE: To determine the presence of serotonergic cells and the expression of tryptophan-5-hydroxylase (TPH), 5-hydroxytryptamine (5-HT), serotonin transporter (SERT), 5-HT1A receptor and Pet-1 during the development of the cerebral cortex, both in situ and in tissue cultures. MATERIAL AND METHODS: A descriptive, observational study was carried out in pregnant Wistar rats. The presence of the plug was regarded as the beginning of gestation. On days 13, 16 and 17, cesarean sections were performed to obtain the fetuses, and the brains were then immediately dissected to identify the presence of serotonergic cells, TPH, 5-HT, SERT, 5-HT1A and Pet-1 in tissue cultures and in situ by immunostaining detected on a confocal microscope. RESULTS: Serotonergic cells and terminals were observed in the midbrain on day 17 of gestation, and in neopallium cocultures on days 13 and 16. TPH, 5-HT, SERT and Pet-1 immunopositive cells were also observed in the neopallium on day 12 of culture. CONCLUSIONS: The presence of serotonergic cells and other elements of the serotonergic system in the early cerebral cortex was confirmed, which may be transient and participate in cortical maturation processes during brain development.
ANTECEDENTES: La aparición temprana de serotonina en el cerebro fetal y sus efectos en la morfogénesis cerebral apoyan su papel neurotrófico. OBJETIVO: Determinar la presencia de células serotoninérgicas y la expresión de triptófano-5-hidroxilasa (TPH), 5-hidroxitriptamina (5-HT), transportador de serotonina (SERT), receptor 5-HT1A y Pet-1 durante el desarrollo de la corteza cerebral, tanto in situ como en cultivo de tejidos. MATERIAL Y MÉTODOS: Se realizó estudio observacional descriptivo en ratas Wistar preñadas. La presencia del tapón se consideró el inicio de la gestación; en los días 13, 16 y 17 se practicaron cesáreas para obtener los fetos e inmediatamente se disecaron los cerebros para identificar células serotoninérgicas, TPH, 5-HT, SERT, 5-HT1A y Pet-1 en cultivo de tejido e in situ mediante inmunomarcaje detectado en un microscopio confocal. RESULTADOS: Células y terminales serotoninérgicas fueron observadas en el mesencéfalo el día 17 de gestación y en cocultivos de neopalio los días 13 y 16. También se observaron células inmunopositivas a TPH, 5-HT, SERT y Pet-1 en el neopalio en el día 12 del cultivo. CONCLUSIONES: Se confirmó la presencia de células serotoninérgicas y otros elementos del sistema serotoninérgico en la corteza cerebral temprana, la cual puede ser transitoria y participar en los procesos de maduración cortical durante el desarrollo cerebral.
Subject(s)
Neurons , Serotonin , Animals , Female , Pregnancy , Rats , Cerebral Cortex/metabolism , Fetus/metabolism , Neurons/metabolism , Rats, Wistar , Serotonin/metabolism , Serotonin/pharmacology , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/pharmacology , Models, AnimalABSTRACT
Development of the mammalian neocortex requires proper inside-out migration of developing cortical neurons from the germinal ventricular zone toward the cortical plate. The mechanics of this migration requires precise coordination of different cellular phenomena including cytoskeleton dynamics, membrane trafficking, and cell adhesion. The small GTPases play a central role in all these events. The small GTPase Rab21 regulates migration and neurite growth in developing neurons. Moreover, regulators and effectors of Rab21 have been implicated in brain pathologies with cortical malformations, suggesting a key function for the Rab21 signaling pathway in cortical development. Mechanistically, it has been posited that Rab21 influences cell migration by controlling the trafficking of endocytic vesicles containing adhesion molecules. However, direct evidence of the participation of Rab21 or its mechanism of action in the regulation of cortical migration is still incomplete. In this study, we demonstrate that Rab21 plays a critical role in the differentiation and migration of pyramidal neurons by regulating the levels of the amyloid precursor protein on the neuronal cell surface. Rab21 loss of function increased the levels of membrane-exposed APP, resulting in impaired cortical neuronal differentiation and migration. These findings further our understanding of the processes governing the development of the cerebral cortex and shed light onto the molecular mechanisms behind cortical development disorders derived from the malfunctioning of Rab21 signaling effectors.
Subject(s)
GTP Phosphohydrolases , Neocortex , Animals , GTP Phosphohydrolases/metabolism , Cerebral Cortex/metabolism , Neurons/metabolism , Neocortex/metabolism , Cell Movement/physiology , Amyloid beta-Protein Precursor/metabolism , Mammals/metabolismABSTRACT
This study investigated the effects of subchronic administration of lead (Pb) acetate on thiobarbituric acid reactive substances (TBARS), total sulfhydryl content, protein carbonyl content, antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSHPx]), acetylcholinesterase (AChE), and Na+K+ATPase in the cerebral structures of rats. Male Wistar rats aged 60 days were treated with saline (control group) or Pb (treatment group), at various doses, by gavage, once a day for 35 days. The animals were sacrificed twelve hours after the last administration, and the cerebellum, hippocampus and cerebral cortex were removed. The results showed that Pb did not alter the evaluated oxidative stress parameters. Furthermore, Pb (64 and/or 128 mg/kg) altered SOD in the cerebellum, cerebral cortex and hippocampus. Pb (128 mg/kg) altered CAT in the cerebellum and cerebral cortex and GSHPx in the cerebral cortex. Also, Pb (64 mg/kg and 128 mg/kg) altered GSHPx in the cerebellum. Moreover, Pb (128 mg/kg) increased AChE in the hippocampus and decreased Na+K+ATPase in the cerebellum and hippocampus. In conclusion, subchronic exposure to Pb (occupational and environmental intoxication) altered antioxidant enzymes, AChE, and Na+K+ATPase, contributing to cerebral dysfunction.
Subject(s)
Acetylcholinesterase , Antioxidants , Rats , Male , Animals , Antioxidants/metabolism , Acetylcholinesterase/metabolism , Rats, Wistar , Protein Carbonylation , Lead/toxicity , Lead/metabolism , Oxidative Stress , Catalase/metabolism , Cerebral Cortex/metabolism , Superoxide Dismutase/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/pharmacology , Brain/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacologyABSTRACT
Microcephaly is the more severe brain malformation because of Zika virus infection. Increased vulnerability of neural stem and progenitor cells to Zika infection during prenatal neurodevelopment impairs the complete formation of cortical layers. Normal development of cerebellum is also affected. However, the follow-up of apparently healthy children born to Zika exposed mothers during pregnancy has revealed other neurological sequelae. This suggests Zika infection susceptibility remains in nervous tissue after neurogenesis end, when differentiated neuronal populations predominate. The neuronal nuclear protein (NeuN) is an exclusive marker of postmitotic neurons. Changes in NeuN expression are associated with neuronal degeneration. We have evaluated immunohistochemical expression of NeuN protein in cerebral cortex, hippocampus, and cerebellum of normal and Zika-infected neonatal Balb/c mice. The highest NeuN immunoreactivity was found mainly in neurons of all cortical layers, pyramidal layer of hippocampus, granular layer of dentate gyrus and in internal granular layer of cerebellum. Viral infection caused marked loss of NeuN immunostaining in all these brain areas. This suggests neurodegenerative effects of Zika virus infection during postmitotic neuron maturation and contribute to interpretation of neuropathogenic mechanisms of Zika.
Subject(s)
Zika Virus Infection , Zika Virus , Pregnancy , Female , Animals , Mice , Zika Virus Infection/metabolism , Zika Virus Infection/pathology , Brain/metabolism , Neurons/metabolism , Hippocampus/metabolism , Cerebral Cortex/metabolism , Zika Virus/metabolism , DNA-Binding Proteins/metabolism , Nerve Tissue Proteins/metabolismABSTRACT
Isolated sulfite oxidase (ISOD) and molybdenum cofactor (MoCD) deficiencies are genetic diseases biochemically characterized by the toxic accumulation of sulfite in the tissues of patients, including the brain. Neurological dysfunction and brain abnormalities are commonly observed soon after birth, and some patients also have neuropathological alterations in the prenatal period (in utero). Thus, we investigated the effects of sulfite on redox and mitochondrial homeostasis, as well as signaling proteins in the cerebral cortex of rat pups. One-day-old Wistar rats received an intracerebroventricular administration of sulfite (0.5 µmol/g) or vehicle and were euthanized 30 min after injection. Sulfite administration decreased glutathione levels and glutathione S-transferase activity, and increased heme oxygenase-1 content in vivo in the cerebral cortex. Sulfite also reduced the activities of succinate dehydrogenase, creatine kinase, and respiratory chain complexes II and II-III. Furthermore, sulfite increased the cortical content of ERK1/2 and p38. These findings suggest that redox imbalance and bioenergetic impairment induced by sulfite in the brain are pathomechanisms that may contribute to the neuropathology of newborns with ISOD and MoCD. Sulfite disturbs antioxidant defenses, bioenergetics, and signaling pathways in the cerebral cortex of neonatal rats. CII: complex II; CII-III: complex II-III; CK: creatine kinase; GST: glutathione S-transferase; HO-1: heme oxygenase-1; SDH: succinate dehydrogenase; SO32-: sulfite.
Subject(s)
Cerebral Cortex , Energy Metabolism , Molybdenum Cofactors , Sulfite Oxidase , Sulfites , Animals , Rats , Animals, Newborn , Oxidation-Reduction , Sulfites/adverse effects , Sulfite Oxidase/metabolism , Molybdenum Cofactors/metabolism , Rats, Wistar , Homeostasis , Mitochondria/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Antioxidants/metabolismABSTRACT
The blackberry (Rubus sp.) is a popular fruit that has a high concentration of phenolic compounds. Pharmacological investigations have demonstrated the important biological activities of the blackberry extract, such as neuroprotective actions. This study aimed to evaluate the effects of blackberry extract on memory and neurochemical parameters in rats subjected to scopolamine (SCO)-induced amnesia. Male rats were divided into five groups: I, control (saline); II, SCO; III, SCO + Rubus sp. (100 mg/kg); IV, SCO + Rubus sp. (200 mg/kg); and V, SCO + donepezil (5 mg/kg). Blackberry extract and donepezil were orally administered for 10 days. On day 11, group I received saline, and groups II, III, IV, and V received SCO (1 mg/kg) intraperitoneally after object recognition behavioral training. Twenty-four hours after the training session, animals were subjected to an object recognition test. Finally, the animals were euthanized, and the cerebral cortex, hippocampus, and cerebellum were collected to evaluate the oxidative stress and acetylcholinesterase (AChE) activity. Rubus sp. extract prevented memory impairment induced by SCO in a manner similar to that of donepezil. Additionally, Rubus sp. extract and donepezil prevented the increase in AChE activity induced by SCO in all the evaluated brain structures. SCO induced oxidative damage in the cerebral cortex, hippocampus, and cerebellum, which was prevented by Rubus sp. and donepezil. Our results suggest that the antioxidant and anticholinesterase activities of Rubus sp. are associated with memory improvement; hence, it can potentially be used for the treatment of neurodegenerative diseases.
Subject(s)
Rubus , Rats , Male , Animals , Rubus/metabolism , Acetylcholinesterase/metabolism , Donepezil/pharmacology , Donepezil/therapeutic use , Amnesia/chemically induced , Amnesia/drug therapy , Amnesia/prevention & control , Memory Disorders/drug therapy , Memory Disorders/chemically induced , Scopolamine/pharmacology , Hippocampus/metabolism , Cerebral Cortex/metabolism , Oxidative Stress , Antioxidants/pharmacology , Cerebellum/metabolism , Maze LearningABSTRACT
Depression is a debilitating disorder in humans that significantly affects quality of life. As such, alternative therapies are highly sought after by patients seeking treatment for depression. Experimentally, the chronic administration of corticosterone (CORT) in rodents has been reported to promote depressive-like behaviors. Herein, animals received saline or CORT for 21 days and, during the last 7 days, they were treated with the crude hydroalcoholic extract (CHE) of Myrcia pubipetala Miq (50, 100 or 150 mg/Kg), or vehicle (distilled water), by oral route. After 24 h, animals were subjected to the open field (OFT) and forced swimming tests (FST), and then sacrificed for the removal of the hippocampus and cerebral cortex for biochemical analysis. Results showed enhanced catalase (CAT) and superoxide dismutase (SOD) activities, as well as an elevated formation of thiobarbituric acid reactive substances (TBARS), in the cerebral cortex of CORT-treated mice. The chronic administration of the CHE (100 and 150 mg/Kg) reduced TBARS and the increased total sulfhydryl content, and also reversed the increase in TBARS induced by CORT. In the hippocampus, CORT increased CAT and SOD activities and reduced glutathione peroxidase (GSH-Px) (C) activity, while Myrcia pubipetala Miq. CHE (100 and 150 mg/Kg) increased GSH-Px activity when administered alone and reversed decreased GSH-Px (100 and 150 mg/Kg) activity when given during CORT administration. Neither CORT administration nor CHE treatment significantly altered the immobility time of the animals in FST and no changes were observed in the locomotor activity of the animals in the OFT. Findings indicate that the CHE of Myrcia pubipetala Miq. exerts antioxidant effects in the cerebral cortex and hippocampus of mice induced to depression by CORT. Since phenolic compounds are reported to have antioxidant effects in this species, the effects of the CHE may be, at least in part, mediated by the presence of these compounds in Myrcia extract.