Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.322
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731978

ABSTRACT

Alzheimer's disease (AD) is the main cause of dementia worldwide. Given that learning and memory are impaired in this pathology, NMDA receptors (NMDARs) appear as key players in the onset and progression of the disease. NMDARs are glutamate receptors, mainly located at the post-synapse, which regulate voltage-dependent influx of calcium into the neurons. They are heterotetramers, and there are different subunits that can be part of the receptors, which are usually composed of two obligatory GluN1 subunits plus either two NR2A or two NR2B subunits. NR2A are mostly located at the synapse, and their activation is involved in the expression of pro-survival genes. Conversely, NR2B are mainly extrasynaptic, and their activation has been related to cell death and neurodegeneration. Thus, activation of NR2A and/or inactivation of NR2B-containing NMDARS has been proposed as a therapeutic strategy to treat AD. Here, we wanted to investigate the main differences between both subunits signalling in neuronal primary cultures of the cortex and hippocampus. It has been observed that Aß induces a significant increase in calcium release and also in MAPK phosphorylation signalling in NR2B-containing NMDAR in cortical and hippocampal neurons. However, while NR2A-containing NMDAR decreases neuronal death and favours cell viability after Aß treatment, NR2B-containing NMDAR shows higher levels of cytotoxicity and low levels of neuronal survival. Finally, it has been detected that NMDAR has no effect on pTau axonal transport. The present results demonstrate a different role between GluNA and GluNB subunits in neurodegenerative diseases such as Alzheimer's.


Subject(s)
Alzheimer Disease , Neurons , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Neurons/metabolism , Hippocampus/metabolism , Amyloid beta-Peptides/metabolism , Calcium/metabolism , Humans , Mice , Phosphorylation , Cells, Cultured , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Rats
2.
Brain Behav ; 14(5): e3529, 2024 May.
Article in English | MEDLINE | ID: mdl-38747741

ABSTRACT

BACKGROUND AND AIMS: Stress ulcer (SU) is a common complication in patients with acute ischemic stroke. The relationship of infarction location and the incidence of SU was unclear. Herein, we aim to investigate the association between ischemic insular damage and the development of SU. METHODS: Data were retrieved from the SPARK study (Effect of Cardiac Function on Short-Term Functional Prognosis in Patients with Acute Ischemic Stroke). We included the patients who had experienced an ischemic stroke within 7 days. The diagnosis of SU was based on clinical manifestations, including hematemesis, bloody nasogastric tube aspirate, or hematochezia. Evaluation of ischemic insular damage was conducted through magnetic resonance imaging. Cyclo-oxygenase regression analysis and Kaplan-Meier survival curves were used to assess the relationship between ischemic insular damage and the occurrence of SU. RESULTS: Among the 1357 patients analyzed, 110 (8.1%) developed SUs during hospitalization, with 69 (6.7%) experiencing infarctions in the anterior circulation. After adjusting for potential confounders, patients with ischemic insular damage exhibited a 2.16-fold higher risk of developing SUs compared to those without insular damage (p = .0206). Notably, among patients with infarctions in the anterior circulation, those with insular damage had a 2.21-fold increased risk of SUs (p = .0387). Moreover, right insular damage was associated with a higher risk of SUs compared to left insular damage or no insular damage (p for trend = .0117). Kaplan-Meier curves demonstrated early separation among groups, persisting throughout the follow-up period (all p < .0001). CONCLUSIONS: This study identified a significant independent correlation between ischemic insular damage, particularly on the right side, and the development of SU during hospitalization, indicating the need to consider prophylactic acid-suppressive treatment for patients with ischemic insular damage.


Subject(s)
Ischemic Stroke , Humans , Male , Female , Ischemic Stroke/complications , Ischemic Stroke/epidemiology , Ischemic Stroke/diagnostic imaging , Aged , Middle Aged , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Magnetic Resonance Imaging , Brain Ischemia/diagnostic imaging , Brain Ischemia/epidemiology , Ulcer/pathology
3.
Aging (Albany NY) ; 16(8): 7357-7386, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38656892

ABSTRACT

BACKGROUND: Heart failure (HF) has been reported to affect cerebral cortex structure, but the underlying cause has not been determined. This study used Mendelian randomization (MR) to reveal the causal relationship between HF and structural changes in the cerebral cortex. METHODS: HF was defined as the exposure variable, and cerebral cortex structure was defined as the outcome variable. Inverse-variance weighted (IVW), MR-Egger regression and weighted median (WME) were performed for MR analysis; MR-PRESSO and Egger's intercept was used to test horizontal pleiotropy; and "leave-one-out" was used for sensitivity analysis. RESULTS: Fifty-two single nucleotide polymorphisms (SNPs) were defined as instrumental variables (IVs), and there was no horizontal pleiotropy in the IVs. According to the IVW analysis, the OR and 95% CI of cerebral cortex thickness were 0.9932 (0.9868-1.00) (P=0.0402), and the MR-Egger intercept was -15.6× 10-5 (P = 0.7974) and the Global test pval was 0.078. The P-value of the cerebral cortex surface was 0.2205, and the MR-Egger intercept was -34.69052 (P= 0.6984) and the Global Test pval was 0.045. HF had a causal effect on the surface area of the caudal middle frontal lobule (P=0.009), insula lobule (P=0.01), precuneus lobule (P=0.049) and superior parietal lobule (P=0.044). CONCLUSIONS: HF was potentially associated with changes in cortical thickness and in the surface area of the caudal middle frontal lobule, insula lobule, precuneus lobule and superior parietal lobule.


Subject(s)
Cerebral Cortex , Heart Failure , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Humans , Heart Failure/pathology , Heart Failure/genetics , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Magnetic Resonance Imaging , Male
4.
AJNR Am J Neuroradiol ; 45(5): 647-654, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38575319

ABSTRACT

BACKGROUND AND PURPOSE: There is a paucity of data on long-term neuroimaging findings from individuals who have developed the post-coronavirus 2019 (COVID-19) condition. Only 2 studies have investigated the correlations between cognitive assessment results and structural MR imaging in this population. This study aimed to elucidate the long-term cognitive outcomes of participants with the post-COVID-19 condition and to correlate these cognitive findings with structural MR imaging data in the post-COVID-19 condition. MATERIALS AND METHODS: A cohort of 53 participants with the post-COVID-19 condition underwent 3T brain MR imaging with T1 and FLAIR sequences obtained a median of 1.8 years after Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection. A comprehensive neuropsychological battery was used to assess several cognitive domains in the same individuals. Correlations between cognitive domains and whole-brain voxel-based morphometry were performed. Different ROIs from FreeSurfer were used to perform the same correlations with other neuroimaging features. RESULTS: According to the Frascati criteria, more than one-half of the participants had deficits in the attentional (55%, n = 29) and executive (59%, n = 31) domains, while 40% (n = 21) had impairment in the memory domain. Only 1 participant (1.89%) showed problems in the visuospatial and visuoconstructive domains. We observed that reduced cortical thickness in the left parahippocampal region (t(48) = 2.28, P = .03) and the right caudal-middle-frontal region (t(48) = 2.20, P = .03) was positively correlated with the memory domain. CONCLUSIONS: Our findings suggest that cognitive impairment in individuals with the post-COVID-19 condition is associated with long-term alterations in the structure of the brain. These macrostructural changes may provide insight into the nature of cognitive symptoms.


Subject(s)
COVID-19 , Cognitive Dysfunction , Magnetic Resonance Imaging , Humans , Male , COVID-19/complications , COVID-19/diagnostic imaging , COVID-19/psychology , Female , Middle Aged , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Magnetic Resonance Imaging/methods , Follow-Up Studies , Adult , Aged , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Post-Acute COVID-19 Syndrome , Neuropsychological Tests , Brain Cortical Thickness , SARS-CoV-2
5.
J Affect Disord ; 356: 356-362, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38621510

ABSTRACT

BACKGROUND: Patients with pulmonary arterial hypertension (PAH) often present with anxiety, depression and cognitive deterioration. Structural changes in the cerebral cortex in PAH patients have also been reported in observational studies. METHODS: PAH genome-wide association (GWAS) including 162,962 European individuals was used to assess genetically determined PAH. GWAS summary statistics were obtained for cognitive performance, depression, anxiety and alterations in cortical thickness (TH) or surface area (SA) of the brain cortex, respectively. Two-sample Mendelian randomization (MR) was performed. Finally, sensitivity analyses including Cochran's Q test, MR-Egger intercept test, leave-one-out analyses, and funnel plot was performed. RESULTS: PAH had no causal relationship with depression, anxiety, and cognitive performance. At the global level, PAH was not associated with SA or TH of the brain cortex; at the functional regional level, PAH increased TH of insula (P = 0.015), pars triangularis (P = 0.037) and pars opercularis (P = 0.010) without global weighted. After global weighted, PAH increased TH of insula (P = 0.004), pars triangularis (P = 0.032), pars opercularis (P = 0.007) and rostral middle frontal gyrus (P = 0.022) while reducing TH of inferior parietal (P = 0.004), superior parietal (P = 0.031) and lateral occipital gyrus (P = 0.033). No heterogeneity and pleiotropy were detected. LIMITATIONS: The enrolled patients were all European and the causal relationship between PAH and the structure of the cerebral cortex in other populations remains unknown. CONCLUSION: Causal relationship between PAH and the brain cortical structure was implied, thus providing novel insights into the PAH associated neuropsychiatric symptoms.


Subject(s)
Anxiety , Cerebral Cortex , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Cerebral Cortex/pathology , Cerebral Cortex/diagnostic imaging , Anxiety/genetics , Depression/genetics , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Male , Female , Cognition/physiology , Magnetic Resonance Imaging , Adult , Middle Aged
6.
Alzheimers Res Ther ; 16(1): 85, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641653

ABSTRACT

BACKGROUND: Dementia with Lewy bodies (DLB) is characterized by insular atrophy, which occurs at the early stage of the disease. Damage to the insula has been associated with disorders reflecting impairments of the most fundamental components of the self, such as anosognosia, which is a frequently reported symptom in patients with Lewy bodies (LB). The purpose of this study was to investigate modifications of the self-concept (SC), another component of the self, and to identify neuroanatomical correlates, in prodromal to mild DLB. METHODS: Twenty patients with prodromal to mild DLB were selected to participate in this exploratory study along with 20 healthy control subjects matched in terms of age, gender, and level of education. The Twenty Statements Test (TST) was used to assess the SC. Behavioral performances were compared between LB patients and control subjects. Three-dimensional magnetic resonance images (MRI) were acquired for all participants and correlational analyses were performed using voxel-based morphometry (VBM) in whole brain and using a mask for the insula. RESULTS: The behavioral results on the TST showed significantly impaired performances in LB patients in comparison with control subjects (p < .0001). Correlational analyses using VBM revealed positive correlations between the TST and grey matter volume within insular cortex, right supplementary motor area, bilateral inferior temporal gyri, right inferior frontal gyrus, and left lingual gyrus, using a threshold of p = .001 uncorrected, including total intracranial volume (TIV), age, and MMSE as nuisance covariates. Additionally, correlational analysis using a mask for the insula revealed positive correlation with grey matter volume within bilateral insular cortex, using a threshold of p = .005. CONCLUSIONS: The behavioral results confirm the existence of SC impairments in LB patients from the prodromal stage of the disease, compared to matched healthy controls. As we expected, VBM analyses revealed involvement of the insula, among that of other brain regions, already known to be involved in other self-components. While this study is exploratory, our findings provide important insights regarding the involvement of the insula within the self, confirming the insula as a core region of the self-networks, including for high-order self-representations such as the SC.


Subject(s)
Lewy Body Disease , Humans , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/pathology , Insular Cortex , Brain/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Magnetic Resonance Imaging
8.
Neurobiol Dis ; 195: 106502, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608784

ABSTRACT

Synaptic changes are early manifestations of neuronal dysfunction in Huntington's disease (HD). However, the mechanisms by which mutant HTT protein impacts synaptogenesis and function are not well understood. Herein we explored HD pathogenesis in the BACHD mouse model by examining synaptogenesis and function in long term primary cortical cultures. At DIV14 (days in vitro), BACHD cortical neurons showed no difference from WT neurons in synaptogenesis as revealed by colocalization of a pre-synaptic (Synapsin I) and a post-synaptic (PSD95) marker. From DIV21 to DIV35, BACHD neurons showed progressively reduced colocalization of Synapsin I and PSD95 relative to WT neurons. The deficits were effectively rescued by treatment of BACHD neurons with BDNF. The recombinant apical domain of CCT1 (ApiCCT1) yielded a partial rescuing effect. BACHD neurons also showed culture age-related significant functional deficits as revealed by multielectrode arrays (MEAs). These deficits were prevented by BDNF, whereas ApiCCT1 showed a less potent effect. These findings are evidence that deficits in BACHD synapse and function can be replicated in vitro and that BDNF or a TRiC-inspired reagent can potentially be protective against these changes in BACHD neurons. Our findings support the use of cellular models to further explicate HD pathogenesis and potential treatments.


Subject(s)
Brain-Derived Neurotrophic Factor , Cerebral Cortex , Disease Models, Animal , Huntington Disease , Neurons , Synapses , Animals , Huntington Disease/metabolism , Huntington Disease/pathology , Brain-Derived Neurotrophic Factor/metabolism , Synapses/metabolism , Synapses/drug effects , Synapses/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Mice , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Mice, Transgenic , Cells, Cultured , Synapsins/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Mice, Inbred C57BL
9.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38679482

ABSTRACT

Higher sensitivity to reward (SR) and weaker sensitivity to punishment (SP) construct the fundamental craving characteristics of methamphetamine abuse. However, few studies have appraised relationships between SR/SP (SR or SP) and cortical morphological alterations in methamphetamine abusers and whether hereditary factors take effects on SR/SP is unclear. Based on surface-based morphometric analysis, cortical discrepancy was investigated between 38 methamphetamine abusers and 37 healthy controls. Within methamphetamine abusers, correlation profiling was performed to discover associations among aberrant neuroimaging substrates, SR, SP, and craving. According to nine single nucleotide polymorphism sites of dopamine-related genes, we conducted univariate general linear model to find different effects of genotypes on cortical alterations and SR/SP/craving (SR, SP, or craving). Ultimately, mediation analyses were conducted among single nucleotide polymorphism sites, SR/SP/craving, and cortical morphological alterations to discover their association pathways. Compared to healthy controls, thinner cortices in inferior temporal gyrus, lateral orbitofrontal cortex, medial orbitofrontal cortex, inferior parietal lobule, and lateral occipital cortex in the left hemisphere were found in methamphetamine abusers (P < 0.05, family-wise error corrected). Cortical thickness in the inferior temporal gyrus was negatively correlated with SR scores. We found that rs1800497 A-containing genotypes had lower cortical thickness in the left inferior parietal lobule than the GG genotype. The rs5751876 had effects on SR scores. This study would provide convincing biomarkers for SR in methamphetamine abusers and offer potential genetic targets for personalizing relapse prevention.


Subject(s)
Amphetamine-Related Disorders , Cerebral Cortex , Magnetic Resonance Imaging , Methamphetamine , Polymorphism, Single Nucleotide , Reward , Humans , Male , Adult , Amphetamine-Related Disorders/genetics , Amphetamine-Related Disorders/diagnostic imaging , Amphetamine-Related Disorders/pathology , Methamphetamine/adverse effects , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Female , Young Adult , Substance Withdrawal Syndrome/genetics , Substance Withdrawal Syndrome/pathology , Substance Withdrawal Syndrome/psychology , Substance Withdrawal Syndrome/diagnostic imaging , Craving/physiology , Punishment
10.
Medicina (Kaunas) ; 60(4)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38674233

ABSTRACT

Background and Objectives: Magnetic resonance imaging is vital for diagnosing cognitive decline. Brodmann areas (BA), distinct regions of the cerebral cortex categorized by cytoarchitectural variances, provide insights into cognitive function. This study aims to compare cortical thickness measurements across brain areas identified by BA mapping. We assessed these measurements among patients with and without cognitive impairment, and across groups categorized by cognitive performance levels using the Montreal Cognitive Assessment (MoCA) test. Materials and Methods: In this cross-sectional study, we included 64 patients who were divided in two ways: in two groups with (CI) or without (NCI) impaired cognitive function and in three groups with normal (NC), moderate (MPG) and low (LPG) cognitive performance according to MoCA scores. Scans with a 3T MRI scanner were carried out, and cortical thickness data was acquired using Freesurfer 7.2.0 software. Results: By analyzing differences between the NCI and CI groups cortical thickness of BA3a in left hemisphere (U = 241.000, p = 0.016), BA4a in right hemisphere (U = 269.000, p = 0.048) and BA28 in left hemisphere (U = 584.000, p = 0.005) showed significant differences. In the LPG, MPG and NC cortical thickness in BA3a in left hemisphere (H (2) = 6.268, p = 0.044), in V2 in right hemisphere (H (2) = 6.339, p = 0.042), in BA28 in left hemisphere (H (2) = 23.195, p < 0.001) and in BA28 in right hemisphere (H (2) = 10.015, p = 0.007) showed significant differences. Conclusions: Our study found that cortical thickness in specific Brodmann Areas-BA3a and BA28 in the left hemisphere, and BA4a in the right-differ significantly between NCI and CI groups. Significant differences were also observed in BA3a (left), V2 (right), and BA28 (both hemispheres) across LPG, MPG, NC groups. Despite a small sample size, these findings suggest cortical thickness measurements can serve as effective biomarkers for cognitive impairment diagnosis, warranting further validation with a larger cohort.


Subject(s)
Cerebral Cortex , Cognitive Dysfunction , Magnetic Resonance Imaging , Humans , Male , Female , Cognitive Dysfunction/diagnosis , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Aged , Middle Aged , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Mental Status and Dementia Tests/statistics & numerical data , Brain Cortical Thickness
11.
Addict Behav ; 155: 108029, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38593597

ABSTRACT

BACKGROUND: Recent cannabis use (RCU) exerts adverse effects on the brain. However, the effect of RCU on structural covariance networks (SCNs) is still unclear. This retrospective cross-sectional study aimed to explore the effects of RCU on SCNs in young adults in terms of whole cerebral cortical thickness (CT) and cortical surface area (CSA). METHODS: A total of 117 participants taking tetrahydrocannabinol (RCU group) and 896 participants not using cannabis (control group) were included in this study. All participants underwent MRI scanning following urinalysis screening, after which FreeSurfer 5.3 was used to calculate the CT and CSA, and SCNs matrices were constructed by Brain Connectivity Toolbox. Subsequently, the global and nodal network measures of the SCNs were computed based on these matrices. A nonparametric permutation test was used to investigate the group differences by Matlab. RESULTS: Regarding global network measures of CT, young adults with RCU exhibited altered small-worldness (P = 0.020) and clustering coefficient (P = 0.031) compared to controls, whereas there were no significant group differences in terms of SCNs constructed with CSA. Additionally, SCNs based on CT and CSA displayed abnormal nodal degree, nodal efficiency, and nodal betweenness centrality in vital brain regions of the triple network, including the dorsolateral and ventrolateral prefrontal cortex, and anterior cingulate cortex. CONCLUSION: The effects of RCU on brain structure in young adults can be detected by SCNs, in which structural abnormalities in the triple network are dominant, indicating that RCU can be detrimental to brain function.


Subject(s)
Dronabinol , Magnetic Resonance Imaging , Humans , Male , Female , Young Adult , Cross-Sectional Studies , Retrospective Studies , Adult , Marijuana Use , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Nerve Net/diagnostic imaging , Adolescent , Brain Cortical Thickness
12.
J Stroke Cerebrovasc Dis ; 33(6): 106578, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636320

ABSTRACT

BACKGROUND: Notch1 signaling inhibiton with N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester] (DAPT) treatment could promote brain recovery and the intervention effect is different between striatum (STR) and cortex (CTX), which might be accounted for different changes of glial activities, but the in-depth mechanism is still unknown. The purpose of this study was to identify whether DAPT could modulate microglial subtype shifts and astroglial-endfeet aquaporin-4 (AQP4) mediated waste solute drainage. METHODS: Sprague-Dawley rats (n=10) were subjected to 90min of middle cerebral artery occlusion (MCAO) and were treated with DAPT (n=5) or act as control with no treatment (n=5). Two groups of rats underwent MRI scans at 24h and 4 week, and sacrificed at 4 week after stroke for immunofluorescence (IF). RESULTS: Compared with control rats, MRI data showed structural recovery in ipsilateral STR but not CTX. And IF showed decreased pro-inflammatory M1 microglia and increased anti-inflammatory M2 microglia in striatal lesion core and peri-lesions of STR, CTX. Meanwhile, IF showed decreased AQP4 polarity in ischemic brain tissue, however, AQP4 polarity in striatal peri-lesions of DAPT treated rats was higher than that in control rats but shows no difference in cortical peri-lesions between control and treated rats. CONCLUSIONS: The present study indicated that DAPT could promote protective microglia subtype shift and striatal astrocyte mediated waste solute drainage, that the later might be the major contributor of waste solute metabolism and one of the accounts for discrepant recovery of STR and CTX.


Subject(s)
Aquaporin 4 , Astrocytes , Dipeptides , Disease Models, Animal , Infarction, Middle Cerebral Artery , Microglia , Rats, Sprague-Dawley , Receptor, Notch1 , Recovery of Function , Signal Transduction , Animals , Aquaporin 4/metabolism , Receptor, Notch1/metabolism , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/physiopathology , Male , Astrocytes/metabolism , Astrocytes/drug effects , Astrocytes/pathology , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Dipeptides/pharmacology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Corpus Striatum/metabolism , Corpus Striatum/drug effects , Corpus Striatum/pathology , Time Factors , Neuroprotective Agents/pharmacology , Ischemic Stroke/metabolism , Ischemic Stroke/drug therapy , Ischemic Stroke/physiopathology , Ischemic Stroke/pathology
13.
PLoS One ; 19(4): e0301355, 2024.
Article in English | MEDLINE | ID: mdl-38683825

ABSTRACT

Diabetes mellitus (DM) is a severe metabolic disease that can have significant consequences for cognitive health. Bioflavonoids such as Trifolium alexandrinum (TA), quercetin (Q), and Biochanin-A (BCA) are known to exert a wide range of pharmacological functions including antihyperglycemic activity. This study aimed to investigate the neurotherapeutic effects of quercetin-loaded nanoparticles (Q-LNP) and BCA extracted from TA against diabetes-induced cerebral cortical damage through modulation of PI3K/Akt/GSK-3ß and AMPK signaling pathways. Adult male Wistar albino rats (N = 25) were randomly assigned to one of five groups: control, diabetics fed a high-fat diet (HFD) for 2 weeks and intraperitoneally (i.p.) injected with STZ (40 mg/kg), and diabetics treated with Q-LNP (50 mg/kg BW/day), BCA (10 mg/kg BW/day), or TA extract (200 mg/kg BW/day). Treatments were applied by oral gavage once daily for 35 days. Diabetic rats treated with Q-LNP, BCA, and TA extract showed improvement in cognitive performance, cortical oxidative metabolism, antioxidant parameters, and levels of glucose, insulin, triglyceride, and total cholesterol. In addition, these treatments improved neurochemical levels, including acetylcholine, dopamine, and serotonin levels as well acetylcholinesterase and monoamine oxidase activities. Furthermore, these treatments lowered proinflammatory cytokine production for TNF-α and NF-κB; downregulated the levels of IL-1ß, iNOS, APP, and PPAR-γ; and attenuated the expressions of PSEN2, BACE, IR, PI3K, FOXO 1, AKT, AMPK, GSK-3ß, and GFAP. The histopathological examinations of the cerebral cortical tissues confirmed the biochemical results. Overall, the present findings suggest the potential therapeutic effects of TA bioflavonoids in modulating diabetes-induced cerebral cortical damage.


Subject(s)
Cerebral Cortex , Diabetes Mellitus, Experimental , Glycogen Synthase Kinase 3 beta , Nanoparticles , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Quercetin , Trifolium , Animals , Male , Rats , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Glycogen Synthase Kinase 3 beta/metabolism , Nanoparticles/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Quercetin/pharmacology , Quercetin/therapeutic use , Quercetin/administration & dosage , Rats, Wistar , Signal Transduction/drug effects , Trifolium/chemistry
14.
Neurochem Int ; 176: 105742, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641028

ABSTRACT

Traumatic brain injury (TBI) remains a major health concern which causes long-term neurological disability particularly in war veterans, athletes and young adults. In spite of intense clinical and research investigations, there is no effective therapy to cease the pathogenesis of the disease. It is believed that axonal injury during TBI is potentiated by neuroinflammation and demyelination and/or failure to remyelination. This study highlights the use of naturally available cinnamein, also chemically known as benzyl cinnamate, in inhibiting neuroinflammation, promoting remyelination and combating the disease process of controlled cortical impact (CCI)-induced TBI in mice. Oral delivery of cinnamein through gavage brought down the activation of microglia and astrocytes to decrease the expression of inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) in hippocampus and cortex of TBI mice. Cinnamein treatment also stimulated remyelination in TBI mice as revealed by PLP and A2B5 double-labeling, luxol fast blue (LFB) staining and axonal double-labeling for neurofilament and MBP. Furthermore, oral cinnamein reduced the size of lesion cavity in the brain, improved locomotor functions and restored memory and learning in TBI mice. These results suggest a new neuroprotective property of cinnamein that may be valuable in the treatment of TBI.


Subject(s)
Brain Injuries, Traumatic , Disease Models, Animal , Animals , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Mice , Male , Mice, Inbred C57BL , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
15.
Neurobiol Aging ; 139: 82-89, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657394

ABSTRACT

Alterations in grey matter (GM) and white matter (WM) are associated with memory impairment across the neurocognitive aging spectrum and theorised to spread throughout brain networks. Functional and structural connectivity (FC,SC) may explain widespread atrophy. We tested the effect of SC and FC to the hippocampus on cortical thickness (CT) of connected areas. In 419 (223 F) participants (agemean=73 ±â€¯8) from the Alzheimer's Disease Neuroimaging Initiative, cortical regions associated with memory (Rey Auditory Verbal Learning Test) were identified using Lasso regression. Two structural equation models (SEM), for SC and resting-state FC, were fitted including CT areas, and SC and FC to the left and right hippocampus (LHIP,RHIP). LHIP (ß=-0.150,p=<.001) and RHIP (ß=-0.139,p=<.001) SC predicted left temporopolar/rhinal CT; RHIP SC predicted right temporopolar/rhinal CT (ß=-0.191,p=<.001). LHIP SC predicted right fusiform/parahippocampal (ß=-0.104,p=.011) and intraparietal sulcus/superior parietal CT (ß=0.101,p=.028). Increased RHIP FC predicted higher left inferior parietal CT (ß=0.132,p=.042) while increased LHIP FC predicted lower right fusiform/parahippocampal CT (ß=-0.97; p=.023). The hippocampi may be epicentres for cortical thinning through disrupted connectivity.


Subject(s)
Cognitive Aging , Hippocampus , Humans , Aged , Male , Female , Hippocampus/diagnostic imaging , Hippocampus/pathology , Cognitive Aging/physiology , Aged, 80 and over , Memory/physiology , Magnetic Resonance Imaging , White Matter/diagnostic imaging , White Matter/pathology , Cerebral Cortical Thinning/diagnostic imaging , Cerebral Cortical Thinning/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Atrophy , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Aging/pathology , Aging/physiology , Aging/psychology , Nerve Net/diagnostic imaging , Nerve Net/pathology , Nerve Net/physiopathology
16.
Sci Rep ; 14(1): 9920, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38689006

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting over 3% of those over 65. It's caused by reduced dopaminergic neurons and Lewy bodies, leading to motor and non-motor symptoms. The relationship between COMT gene polymorphisms and PD is complex and not fully elucidated. Some studies have reported associations between certain COMT gene variants and PD risk, while others have not found significant associations. This study investigates how COMT gene variations impact cortical thickness changes in PD patients over time, aiming to link genetic factors, especially COMT gene variations, with PD progression. This study analyzed data from 44 PD patients with complete 4-year imaging follow-up from the Parkinson Progression Marker Initiative (PPMI) database. Magnetic resonance imaging (MRI) scans were acquired using consistent methods across 9 different MRI scanners. COMT single-nucleotide polymorphisms (SNPs) were assessed based on whole genome sequencing data. Longitudinal image analysis was conducted using FreeSurfer's processing pipeline. Linear mixed-effect models were employed to examine the interaction effect of genetic variations and time on cortical thickness, while controlling for covariates and subject-specific variations. The rs165599 SNP stands out as a potential contributor to alterations in cortical thickness, showing a significant reduction in overall mean cortical thickness in both hemispheres in homozygotes (Left: P = 0.023, Right: P = 0.028). The supramarginal, precentral, and superior frontal regions demonstrated significant bilateral alterations linked to rs165599. Our findings suggest that the rs165599 variant leads to earlier manifestation of cortical thinning during the course of the disease. However, it does not result in more severe cortical thinning outcomes over time. There is a need for larger cohorts and control groups to validate these findings and consider genetic variant interactions and clinical features to elucidate the specific mechanisms underlying COMT-related neurodegenerative processes in PD.


Subject(s)
Catechol O-Methyltransferase , Magnetic Resonance Imaging , Parkinson Disease , Polymorphism, Single Nucleotide , Humans , Catechol O-Methyltransferase/genetics , Parkinson Disease/genetics , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Male , Female , Aged , Longitudinal Studies , Middle Aged , Cerebral Cortex/pathology , Cerebral Cortex/diagnostic imaging , Disease Progression , Brain Cortical Thickness , Genetic Predisposition to Disease
17.
Sci Rep ; 14(1): 9848, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684744

ABSTRACT

Pathological data showed focal inflammation and regions of diffuse neuronal loss in the cortex of people with multiple sclerosis (MS). In this work, we applied a novel model ("soma and neurite density imaging (SANDI)") to multishell diffusion-weighted MRI data acquired in healthy subjects and people with multiple sclerosis (pwMS), in order to investigate inflammation and degeneration-related changes in the cortical tissue of pwMS. We aimed to (i) establish whether SANDI is applicable in vivo clinical data; (ii) investigate inflammatory and degenerative changes using SANDI soma fraction (fsoma)-a marker of cellularity-in both cortical lesions and in the normal-appearing-cortex and (iii) correlate SANDI fsoma with clinical and biological measures in pwMS. We applied a simplified version of SANDI to a clinical scanners. We then provided evidence that pwMS exhibited an overall decrease in cortical SANDI fsoma compared to healthy subjects, suggesting global degenerative processes compatible with neuronal loss. On the other hand, we have found that progressive pwMS showed a higher SANDI fsoma in the outer part of the cortex compared to relapsing-remitting pwMS, possibly supporting current pathological knowledge of increased innate inflammatory cells in these regions. A similar finding was obtained in subpial lesions in relapsing-remitting patients, reflecting existing pathological data in these lesion types. A significant correlation was found between SANDI fsoma and serum neurofilament light chain-a biomarker of inflammatory axonal damage-suggesting a relationship between SANDI soma fraction and inflammatory processes in pwMS again. Overall, our data show that SANDI fsoma is a promising biomarker to monitor changes in cellularity compatible with neurodegeneration and neuroinflammation in the cortex of MS patients.


Subject(s)
Multiple Sclerosis , Humans , Female , Adult , Male , Middle Aged , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Diffusion Magnetic Resonance Imaging/methods , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Biomarkers , Neurites/pathology , Inflammation/pathology , Inflammation/diagnostic imaging
18.
Zhonghua Bing Li Xue Za Zhi ; 53(5): 419-424, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38678320

ABSTRACT

With rapid development of genetic testing techniques, neuroimaging and neuroelectrophysiological technologies, our understanding of malformations of cortical development continues to be deepened and updated. In particular, mutations in genes related to the mammalian target of rapamycin (mTOR) signaling pathway have been successively discovered in focal cortical dysplasia (FCD). At the same time, the classification consensus on FCD issued by the International League Against Epilepsy (ILAE) in 2011 has encountered problems and challenges in diagnostic practice. Therefore, in 2022, ILAE proposed an updated version of the FCD classification based on the progress in molecular genetics over the past decade. The main addition to the classification system is "white matter lesions, " and it is also suggested to integrate histopathological, neuroimaging, and molecular testing results for multi-level integrated diagnosis to achieve reliable, clinically relevant, and therapeutic targeted final diagnosis.


Subject(s)
Malformations of Cortical Development , TOR Serine-Threonine Kinases , Humans , Malformations of Cortical Development/genetics , Malformations of Cortical Development/pathology , Malformations of Cortical Development/diagnostic imaging , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Drug Resistant Epilepsy/pathology , Drug Resistant Epilepsy/genetics , Mutation , Cerebral Cortex/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , White Matter/pathology , White Matter/diagnostic imaging , Neuroimaging/methods
19.
Brain Res ; 1834: 148891, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38554796

ABSTRACT

The traditional models of reading development describe how language processing and word decoding contribute to reading comprehension and how impairments in word decoding, a defining feature of dyslexia, affect reading comprehension outcomes. However, these models do not include word and sentence reading (contextual reading) fluency, both of which engage executive functions, with notably decreased performance in children with dyslexia. In the current study, we compared cortical thickness and sulcal depth (CT/SD) in the cingulo-opercular (CO) executive functions brain network in children with dyslexia and typical readers and examined associations with word vs. contextual reading fluency. Overall, CT was lower in insular regions and higher in parietal and caudal anterior cingulate cortex regions in children with dyslexia. Children with dyslexia showed positive correlations between word reading fluency and CT/SD in insular regions, whereas no significant correlations were observed in typical readers. For sentence reading fluency, negative correlations with CT/SD were found in insular regions in children with dyslexia, while positive correlations with SD were found in insular regions in typical readers. These results demonstrate the differential relations between word and sentence reading fluency and anatomical circuitry supporting executive functions in children with dyslexia vs. typical readers. It also suggests that word and sentence reading fluency, relate to morphology of executive function-related regions in children with dyslexia, whereas in typical readers, only sentence reading fluency relates to morphology of executive function regions. The results also highlight the role of the insula within the CO network in reading fluency. Here we suggest that word and sentence reading fluency are distinct components of reading that should each be included in the Simple View of Reading traditional model.


Subject(s)
Cerebral Cortex , Dyslexia , Magnetic Resonance Imaging , Reading , Humans , Child , Male , Female , Dyslexia/physiopathology , Dyslexia/diagnostic imaging , Dyslexia/pathology , Magnetic Resonance Imaging/methods , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Gyrus Cinguli/physiopathology , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/pathology , Executive Function/physiology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/pathology , Brain Mapping/methods
20.
J Interferon Cytokine Res ; 44(5): 198-207, 2024 May.
Article in English | MEDLINE | ID: mdl-38512222

ABSTRACT

Melanoma, an infrequent yet significant variant of skin cancer, emerges as a primary cause of brain metastasis among various malignancies. Despite recognizing the involvement of inflammatory molecules, particularly chemokines, in shaping the metastatic microenvironment, the intricate cellular signaling mechanisms underlying cerebral metastasis remain elusive. In our pursuit to unravel the role of cytokines in melanoma metastasis, we devised a protocol utilizing mixed cerebral cortical cells and SK-MEL-28 melanoma cell lines. Contrary to expectations, we observed no discernible morphological change in melanoma cells exposed to a cerebral conditioned medium (CM). However, a substantial increase in both migration and proliferation was quantitatively noted. Profiling the chemokine secretion by melanoma in response to the cerebral CM unveiled the pivotal role of interferon gamma-induced protein 10 (CXCL10), inhibiting the secretion of interleukin 8 (CXCL8). Furthermore, through a transwell assay, we demonstrated that knockdown CXCL10 led to a significant decrease in the migration of the SK-MEL-28 cell line. In conclusion, our findings suggest that a cerebral CM induces melanoma cell migration, while modulating the secretion of CXCL10 and CXCL8 in the context of brain metastases. These insights advance our understanding of the underlying mechanisms in melanoma cerebral metastasis, paving the way for further exploration and targeted therapeutic interventions.


Subject(s)
Cell Movement , Chemokine CXCL10 , Melanoma , Signal Transduction , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Humans , Culture Media, Conditioned/pharmacology , Melanoma/pathology , Melanoma/metabolism , Cell Line, Tumor , Interleukin-8/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Neoplasm Invasiveness , Cell Proliferation , Cerebral Cortex/metabolism , Cerebral Cortex/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...