Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 471
Filter
1.
Sci Rep ; 14(1): 11474, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769356

ABSTRACT

This study investigated the correlation of newly identified inflammatory and insulin resistance indices with cerebral amyloid angiopathy (CAA), and explored their potential to differentiate CAA from hypertensive arteriopathy (HA). We retrospectively analyzed 514 consecutive patients with cerebral small vessel disease (CSVD)-related haemorrhage, comparing the differences in novel inflammatory and insulin resistance indices between patients with CAA and HA. Univariate regression, LASSO and multivariate regression were used to screen variables and construct a classification diagnosis nomogram. Additionally, these biomarkers were explored in patients with mixed haemorrhagic CSVD. Inflammatory indices were higher in CAA patients, whereas insulin resistance indices were higher in HA patients. Further analysis identified neutrophil-to-lymphocyte ratio (NLR, OR 1.17, 95% CI 1.07-1.30, P < 0.001), and triglyceride-glucose index (TyG, OR = 0.56, 95% CI 0.36-0.83, P = 0.005) as independent factors for CAA. Therefore, we constructed a CAA prediction nomogram without haemorrhagic imaging markers. The nomogram yielded an area under the curve (AUC) of 0.811 (95% CI 0.764-0.865) in the training set and 0.830 (95% CI 0.718-0.887) in the test set, indicating an ability to identify high-risk CAA patients. These results show that CSVD patients can be phenotyped using novel inflammatory and insulin resistance indices, potentially allowing identification of high-risk CAA patients without haemorrhagic imaging markers.


Subject(s)
Biomarkers , Cerebral Amyloid Angiopathy , Inflammation , Insulin Resistance , Humans , Male , Female , Cerebral Amyloid Angiopathy/pathology , Aged , Retrospective Studies , Biomarkers/blood , Inflammation/pathology , Middle Aged , Neutrophils/metabolism , Cerebral Small Vessel Diseases/pathology , Cerebral Small Vessel Diseases/blood , Nomograms , Lymphocytes/metabolism , Triglycerides/blood
2.
J Clin Invest ; 134(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38747292

ABSTRACT

Cerebral small vessel disease (cSVD) encompasses a heterogeneous group of age-related small vessel pathologies that affect multiple regions. Disease manifestations range from lesions incidentally detected on neuroimaging (white matter hyperintensities, small deep infarcts, microbleeds, or enlarged perivascular spaces) to severe disability and cognitive impairment. cSVD accounts for approximately 25% of ischemic strokes and the vast majority of spontaneous intracerebral hemorrhage and is also the most important vascular contributor to dementia. Despite its high prevalence and potentially long therapeutic window, there are still no mechanism-based treatments. Here, we provide an overview of the recent advances in this field. We summarize recent data highlighting the remarkable continuum between monogenic and multifactorial cSVDs involving NOTCH3, HTRA1, and COL4A1/A2 genes. Taking a vessel-centric view, we discuss possible cause-and-effect relationships between risk factors, structural and functional vessel changes, and disease manifestations, underscoring some major knowledge gaps. Although endothelial dysfunction is rightly considered a central feature of cSVD, the contributions of smooth muscle cells, pericytes, and other perivascular cells warrant continued investigation.


Subject(s)
Cerebral Small Vessel Diseases , Collagen Type IV , Receptor, Notch3 , Humans , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/physiopathology , Cerebral Small Vessel Diseases/pathology , Receptor, Notch3/genetics , Receptor, Notch3/metabolism , Collagen Type IV/genetics , Collagen Type IV/metabolism , High-Temperature Requirement A Serine Peptidase 1/genetics , High-Temperature Requirement A Serine Peptidase 1/metabolism , Animals
3.
Exp Brain Res ; 242(6): 1387-1397, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563979

ABSTRACT

Cerebral small vessel disease (CSVD) is increasingly being recognized as a leading contributor to cognitive impairment in the elderly. However, there is a lack of effective preventative or therapeutic options for CSVD. In this exploratory study, we investigated the interplay between neuroinflammation and CSVD pathogenesis as well as the cognitive performance, focusing on NLRP3 signaling as a new therapeutic target. Spontaneously hypertensive stroke-prone (SHRSP) rats served as a CSVD model. We found that SHRSP rats showed decline in learning and memory abilities using morris water maze test. Activated NLRP3 signaling and an increased expression of the downstream pro-inflammatory factors, including IL (interleukin)-6 and tumor necrosis factor α were determined. We also observed a remarkable increase in the production of pyroptosis executive protein gasdermin D, and elevated astrocytic and microglial activation. In addition, we identify several neuropathological hallmarks of CSVD, including blood-brain barrier breakdown, white matter damage, and endothelial dysfunction. These results were in correlation with the activation of NLRP3 inflammasome. Thus, our findings reveal that the NLRP3-mediated inflammatory pathway could play a central role in the pathogenesis of CSVD, presenting a novel target for potential CSVD treatment.


Subject(s)
Cerebral Small Vessel Diseases , Disease Models, Animal , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Inbred SHR , Animals , Cerebral Small Vessel Diseases/metabolism , Cerebral Small Vessel Diseases/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats , Inflammasomes/metabolism , Male , Neuroinflammatory Diseases/metabolism , Microglia/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Signal Transduction/physiology
4.
Alzheimers Dement ; 20(5): 3687-3695, 2024 May.
Article in English | MEDLINE | ID: mdl-38574400

ABSTRACT

INTRODUCTION: Cerebral small vessel disease (SVD) and amyloid beta (Aß) pathology frequently co-exist. The impact of concurrent pathology on the pattern of hippocampal atrophy, a key substrate of memory impacted early and extensively in dementia, remains poorly understood. METHODS: In a unique cohort of mixed Alzheimer's disease and moderate-severe SVD, we examined whether total and regional neuroimaging measures of SVD, white matter hyperintensities (WMH), and Aß, as assessed by 18F-AV45 positron emission tomography, exert additive or synergistic effects on hippocampal volume and shape. RESULTS: Frontal WMH, occipital WMH, and Aß were independently associated with smaller hippocampal volume. Frontal WMH had a spatially distinct impact on hippocampal shape relative to Aß. In contrast, hippocampal shape alterations associated with occipital WMH spatially overlapped with Aß-vulnerable subregions. DISCUSSION: Hippocampal degeneration is differentially sensitive to SVD and Aß pathology. The pattern of hippocampal atrophy could serve as a disease-specific biomarker, and thus guide clinical diagnosis and individualized treatment strategies for mixed dementia.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cerebral Small Vessel Diseases , Hippocampus , Positron-Emission Tomography , Humans , Hippocampus/pathology , Hippocampus/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Cerebral Small Vessel Diseases/diagnostic imaging , Male , Aged , Female , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , White Matter/pathology , White Matter/diagnostic imaging , Atrophy/pathology , Magnetic Resonance Imaging , Aged, 80 and over , Neuroimaging , Cohort Studies
5.
Ann Clin Transl Neurol ; 11(5): 1148-1159, 2024 May.
Article in English | MEDLINE | ID: mdl-38433494

ABSTRACT

OBJECTIVE: Abnormalities in the gray matter structure of cerebral small vessel disease (CSVD) have been observed throughout the brain. However, whether cortico-cortical connections exist between regions of gray matter atrophy in patients with CSVD has not been fully elucidated. This question was tested by comparing the gray matter covariance networks in CSVD patients with and without cognitive impairment (CI). METHODS: We performed multivariate modeling of the gray matter volume measurements of 61 patients with CI (CSVD-CI), 85 patients without CI (CSVD-NC), and 108 healthy controls using source-based morphological analysis (SBM) to obtain gray matter structural covariance networks at the population level. Then, correlations between structural covariance networks and cognitive functions were analyzed in CSVD patients. Finally, a support vector machine (SVM) classifier was used with the gray matter covariance network as a classification feature to identify CI among the CSVD population. RESULTS: The results of the analysis of all the subjects showed that compared with healthy controls, the expression of the thalamic covariance network, cerebellum covariance network, and calcarine cortex covariance network was reduced in patients with CSVD. Moreover, CSVD-CI patients showed a significant reduction in the expression of the thalamic covariance network, encompassing the thalamus and the parahippocampal gyrus, relative to CSVD-NC patients, which persisted after excluding CSVD patients with thalamic lacunes. In patients with CSVD, cognitive functions were positively correlated with measures of the thalamic covariance network. More than 80% of CSVD patients with CI were correctly identified by the SVM classifier. INTERPRETATION: Our findings provide new evidence to explain the distribution state of gray matter reduction in CSVD patients, and the thalamic covariance network is the core region for early gray matter reduction during the development of CSVD disease, which is related to cognitive deficits. Reduced expression of thalamic covariance networks may provide a neuroimaging biomarker for the early identification of cognitive impairment in CSVD patients.


Subject(s)
Cerebral Small Vessel Diseases , Cognitive Dysfunction , Gray Matter , Magnetic Resonance Imaging , Thalamus , Humans , Male , Female , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Cerebral Small Vessel Diseases/complications , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/pathology , Aged , Middle Aged , Gray Matter/diagnostic imaging , Gray Matter/pathology , Thalamus/diagnostic imaging , Thalamus/pathology , Nerve Net/diagnostic imaging , Nerve Net/pathology , Support Vector Machine
6.
Neurobiol Aging ; 137: 55-61, 2024 May.
Article in English | MEDLINE | ID: mdl-38422799

ABSTRACT

This study explored the associations between peripheral immunity with cerebral small vessel diseases. Older adults without dementia from the Alzheimer's Disease Neuroimaging Initiative were investigated. Peripheral blood was obtained, and magnetic resonance imaging was performed to measure cerebral microbleeds (CMB), lacunar infarctions (LI), and white matter hyperintensities (WMH). Multivariable-adjusted regression models, linear mixed-effects models, and the Spearman correlations were used to evaluate the associations. At baseline, individuals with greater neutrophils (odds ratio [OR] =1.10, 95% confidence interval [CI] 1.00-1.20, p=0.042) and monocytes (OR=1.12, 95% CI 1.02-1.22, p=0.016) had higher WMH volume. On the contrary, a higher lymphocyte-to-monocyte ratio (LMR) was related to lower WMH volume (OR=0.91, 95% CI 0.82-1.00, p=0.041). Longitudinally, higher neutrophils (ρ=0.084, p=0.049) and NLR (ρ=0.111, p=0.009) predicted accelerated progression of WMH volume, while a greater LMR (ρ=-0.101, p=0.018) was linked to slower growth of WMH volume. Nevertheless, associations between peripheral immunity with CMB or LI were not observed at baseline and follow-up. Our study found that peripheral immune indexes could serve as convenient noninvasive biomarkers of WMH.


Subject(s)
Cerebral Small Vessel Diseases , Dementia , White Matter , Humans , Aged , Longitudinal Studies , Cerebral Small Vessel Diseases/pathology , Magnetic Resonance Imaging , Neuroimaging , Dementia/pathology , White Matter/diagnostic imaging , White Matter/pathology
7.
J Neural Transm (Vienna) ; 131(4): 377-384, 2024 04.
Article in English | MEDLINE | ID: mdl-38363389

ABSTRACT

OBJECTIVES: Acute encephalopathy (AE) has been described as a severe complication of COVID-19. Inflammation has been suggested as a pathogenic mechanism, with high-dose glucocorticoids (GC) showing a beneficial effect. Here, we retrospectively analyzed the clinical and radiological features in a group of COVID-19 AE patients who received GC treatment (GT) and in a non-treated (NT) group. METHOD: Thirty-six patients with COVID-19 AE (mean age 72.6 ± 11 years; 86.11% men) were evaluated for GC treatment. Twelve patients (mean age 73.6 ± 4.5 years; 66.67% men) received GC, whereas 24 patients who showed signs of spontaneous remission were not treated with GC (mean age 70.1 ± 8.6 years; 95.83% men). Differences in clinical characteristics and correlations with imaging features were explored. RESULTS: The GT group showed signs of vulnerability, with a longer hospitalization (p = 0.009) and AE duration (p = 0.012) and a higher hypertensive arteriopathy (HTNA) score (p = 0.022), when compared to NT group. At hospital discharge, the two groups were comparable in terms of clinical outcome (modified Rankin scale; p = 0.666) or mortality (p = 0.607). In our whole group analyses, AE severity was positively correlated with periventricular white matter hyperintensities (p = 0.011), deep enlarged perivascular spaces (p = 0.039) and HTNA score (p = 0.014). CONCLUSION: This study suggests that, despite signs of radiological vulnerability and AE severity, patients treated by high-dose GC showed similar outcome at discharge, with respect to NT patients. Imaging features of cerebral small vessel disease correlated with AE severity, supporting the hypothesis that brain structural vulnerability can impact AE in COVID-19.


Subject(s)
COVID-19 , Cerebral Small Vessel Diseases , Male , Humans , Aged , Female , Glucocorticoids/therapeutic use , Retrospective Studies , Magnetic Resonance Imaging/methods , COVID-19/complications , Cerebral Small Vessel Diseases/pathology
8.
Sci Rep ; 14(1): 2741, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38302529

ABSTRACT

Diabetes is associated with cognitive decline, but the underlying mechanisms are complex and their relationship with Alzheimer's Disease biomarkers is not fully understood. We assessed the association of small vessel disease (SVD) and amyloid burden with cognitive functioning in 47 non-demented older adults with type-2 diabetes from the Israel Diabetes and Cognitive Decline Study (mean age 78Y, 64% females). FLAIR-MRI, Vizamyl amyloid-PET, and T1W-MRI quantified white matter hyperintensities as a measure of SVD, amyloid burden, and gray matter (GM) volume, respectively. Mean hemoglobin A1c levels and duration of type-2 diabetes were used as measures of diabetic control. Cholesterol level and blood pressure were used as measures of cardiovascular risk. A broad neuropsychological battery assessed cognition. Linear regression models revealed that both higher SVD and amyloid burden were associated with lower cognitive functioning. Additional adjustments for type-2 diabetes-related characteristics, GM volume, and cardiovascular risk did not alter the results. The association of amyloid with cognition remained unchanged after further adjustment for SVD, and the association of SVD with cognition remained unchanged after further adjustment for amyloid burden. Our findings suggest that SVD and amyloid pathology may independently contribute to lower cognitive functioning in non-demented older adults with type-2 diabetes, supporting a multimodal approach for diagnosing, preventing, and treating cognitive decline in this population.


Subject(s)
Alzheimer Disease , Cerebral Small Vessel Diseases , Cognition Disorders , Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Vascular Diseases , Female , Humans , Aged , Male , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Cognition , Alzheimer Disease/pathology , Cognitive Dysfunction/pathology , Cognition Disorders/pathology , Amyloid/metabolism , Magnetic Resonance Imaging , Vascular Diseases/pathology , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Brain/metabolism
9.
Sci Rep ; 14(1): 3402, 2024 02 10.
Article in English | MEDLINE | ID: mdl-38336856

ABSTRACT

The impact of small vessel disease (SVD) on stroke outcome was investigated either separately for its single features in isolation or for SVD sum score measuring a qualitative (binary) assessment of SVD-lesions. We aimed to investigate which SVD feature independently impacts the most on stroke outcome and to compare the continuous versus binary SVD assessment that reflects pronouncement and presence correspondingly. Patients with a first-ever anterior circulation ischemic stroke were retrospectively investigated. We performed an ordered logistic regression analysis to predict stroke outcome (mRS 3 months, 0-6) using age, stroke severity, and pre-stroke disability as baseline input variables and adding SVD-features (lacunes, microbleeds, enlarged perivascular spaces, white matter hyperintensities) assessed either continuously (model 1) or binary (model 2). The data of 873 patients (age 67.9 ± 15.4, NIHSS 24 h 4.1 ± 4.8) was analyzed. In model 1 with continuous SVD-features, the number of microbleeds was the only independent predictor of stroke outcome in addition to clinical parameters (OR 1.21; 95% CI 1.07-1.37). In model 2 with the binary SVD assessment, only the presence of lacunes independently improved the prediction of stroke outcome (OR 1.48, 1.1-1.99). In a post hoc analysis, both the continuous number of microbleeds and the presence of lacunes were independent significant predictors. Thus, the number of microbleeds evaluated continuously and the presence of lacunes are associated with stroke outcome independent from age, stroke severity, pre-stroke disability and other SVD-features. Whereas the presence of lacunes is adequately represented in SVD sum score, the microbleeds assessment might require another cutoff and/or gradual scoring, when prediction of stroke outcome is needed.


Subject(s)
Cerebral Small Vessel Diseases , Stroke , Humans , Middle Aged , Aged , Aged, 80 and over , Retrospective Studies , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/pathology , Magnetic Resonance Imaging , Stroke/complications , Cerebral Hemorrhage/complications
10.
Neurology ; 102(5): e209148, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38382000

ABSTRACT

BACKGROUND AND OBJECTIVES: Patients with cerebral small vessel disease (SVD) show a heterogenous clinical course. The aim of the current study was to investigate the longitudinal course of cognitive and motor function in patients who developed parkinsonism, dementia, both, or none. METHODS: Participants were from the Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort study, a prospective cohort of patients with SVD. Parkinsonism and dementia were, respectively, diagnosed according to the UK Parkinson's Disease Society brain bank criteria and the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, criteria for major neurocognitive disorder. Linear and generalized linear mixed-effect analyses were used to study the longitudinal course of motor and cognitive tasks. RESULTS: After a median follow-up of 12.8 years (interquartile range 10.2-15.3), 132 of 501 (26.3%) participants developed parkinsonism, dementia, or both. Years before diagnosis of these disorders, participants showed distinct clinical trajectories from those who developed none: Participant who developed parkinsonism had an annual percentage of 22% (95% CI 18%-27%) increase in motor part of the Unified Parkinson's Disease Rating Scale score. This was significantly higher than the 16% (95% CI 14%-18%) of controls, mainly because of a steep increase in bradykinesia and posture and gait disturbances. When they developed dementia as well, the increase in Timed Up and Go Test time of 0.73 seconds per year (95% CI 0.58-0.87) was significantly higher than the 0.20 seconds per year increase (95% CI 0.16-0.23) of controls. All groups, including the participants who developed parkinsonism without dementia, showed a faster decline in executive function compared with controls: Annual decline in Z-score was -0.07 (95% CI -0.10 to -0.05), -0.09 (95% CI -0.11 to -0.08), and -0.11 (95% CI -0.14 to -0.08) for participants who developed, respectively, parkinsonism, dementia, and both parkinsonism and dementia. These declines were all significantly faster than the annual decline in Z-score of 0.07 (95% CI -0.10 to -0.05) of controls. DISCUSSION: A distinct pattern in deterioration of clinical markers is visible in patients with SVD, years before the diagnosis of parkinsonism and dementia. This knowledge aids early identification of patients with a high risk of developing these disorders.


Subject(s)
Cerebral Small Vessel Diseases , Dementia , Parkinsonian Disorders , Humans , Cohort Studies , Prospective Studies , Postural Balance , Time and Motion Studies , Parkinsonian Disorders/complications , Dementia/diagnostic imaging , Dementia/etiology , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Cognition
11.
Eur J Epidemiol ; 39(4): 409-417, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38190014

ABSTRACT

To explore to which extent neurodegeneration and cerebral small vessel disease (SVD) could mediate the association between type-2 diabetes and higher dementia risk. The analytical sample consisted in 2228 participants, out of the Three-City study, aged 65 and older, free of dementia at baseline who underwent brain MRI. Diabetes was defined by medication intake or fasting or non-fasting elevated glucose levels. Dementia status was assessed every 2 to 3 years, during up to 12 years of follow-up. Brain parenchymal fraction (BPF) and white matter hyperintensities volume (WMHV) were selected as markers of neurodegeneration and cerebral SVD respectively. We performed a mediation analysis of the effect of baseline BPF and WMHV (mediators) on the association between diabetes and dementia risk using linear and Cox models adjusted for age, sex, education level, hypertension, hypercholesterolemia, BMI, smoking and alcohol drinking status, APOE-ε4 status, and study site. At baseline, 8.8% of the participants had diabetes. Diabetes (yes vs. no) was associated with higher WMHV (ßdiab = 0.193, 95% CI 0.040; 0.346) and lower BPF (ßdiab = -0.342, 95% CI -0.474; -0.210), as well as with an increased risk of dementia over 12 years of follow-up (HRdiab = 1.65, 95% CI 1.04; 2.60). The association between diabetes status and dementia risk was statistically mediated by higher WMHV (HRdiab=1.05, 95% CI 1.01; 1.11, mediated part = 10.8%) and lower BPF (HRdiab = 1.12, 95% CI 1.05; 1.20, mediated part = 22.9%). This study showed that both neurodegeneration and cerebral SVD statistically explained almost 30% of the association between diabetes and dementia.


Subject(s)
Cerebral Small Vessel Diseases , Dementia , Diabetes Mellitus, Type 2 , Magnetic Resonance Imaging , Mediation Analysis , Humans , Female , Male , Aged , Dementia/etiology , Dementia/epidemiology , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Diabetes Mellitus, Type 2/complications , Risk Factors , Brain/diagnostic imaging , Brain/pathology , Biomarkers/blood , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/epidemiology , Aged, 80 and over
12.
Sleep ; 47(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-37638817

ABSTRACT

STUDY OBJECTIVES: Mounting evidence indicated the correlation between sleep and cerebral small vessel disease (CSVD). However, little is known about the exact causality between poor sleep and white matter injury, a typical signature of CSVD, as well as the underlying mechanisms. METHODS: Spontaneously hypertensive rats (SHR) and control Wistar Kyoto rats were subjected to sleep fragmentation (SF) for 16 weeks. The effects of chronic sleep disruption on the deep white matter and cognitive performance were observed. RESULTS: SHR were validated as a rat model for CSVD. Fragmented sleep induced strain-dependent white matter abnormalities, characterized by reduced myelin integrity, impaired oligodendrocytes precursor cells (OPC) maturation and pro-inflammatory microglial polarization. Partially reversible phenotypes of OPC and microglia were observed in parallel following sleep recovery. CONCLUSIONS: Long-term SF-induced pathological effects on the deep white matter in a rat model of CSVD. The pro-inflammatory microglial activation and the block of OPC maturation may be involved in the mechanisms linking sleep to white matter injury.


Subject(s)
Cerebral Small Vessel Diseases , White Matter , Rats , Animals , Sleep Deprivation , Rats, Inbred SHR , Sleep , Rats, Inbred WKY , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/pathology
13.
J Neuroradiol ; 51(2): 155-167, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37844660

ABSTRACT

Cerebral small vessel disease (CSVD) is characterized by widespread functional changes in the brain, as evident from abnormal brain activations during cognitive tasks. However, the existing findings in this area are not yet conclusive. We systematically reviewed 25 studies reporting task-related fMRI in five cognitive domains in CSVD, namely executive function, working memory, processing speed, motor, and affective processing. The findings highlighted: (1) CSVD affects cognitive processes in a domain-specific manner; (2) Compensatory and regulatory effects were observed simultaneously in CSVD, which may reflect the interplay between the negative impact of brain lesion and the positive impact of cognitive reserve. Combined with behavioral and functional findings in CSVD, we proposed an integrated model to illustrate the relationship between altered activations and behavioral performance in different stages of CSVD: functional brain changes may precede and be more sensitive than behavioral impairments in the early pre-symptomatic stage; Meanwhile, compensatory and regulatory mechanisms often occur in the early stages of the disease, while dysfunction/decompensation and dysregulation often occur in the late stages. Overall, abnormal hyper-/hypo-activations are crucial for understanding the mechanisms of small vessel lesion-induced behavioral dysfunction, identifying potential neuromarker and developing interventions to mitigate the impact of CSVD on cognitive function.


Subject(s)
Cerebral Small Vessel Diseases , Cognitive Dysfunction , Humans , Magnetic Resonance Imaging , Brain/pathology , Cognition , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology
14.
Alzheimers Dement ; 20(2): 858-868, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37800578

ABSTRACT

INTRODUCTION: We investigated whether retinal capillary perfusion is a biomarker of cerebral small vessel disease and impaired cognition among Black Americans, an understudied group at higher risk for dementia. METHODS: We enrolled 96 Black Americans without known cognitive impairment. Four retinal perfusion measures were derived using optical coherence tomography angiography. Neurocognitive assessment and brain magnetic resonance imaging (MRI) were performed. Multiple linear regression analyses were performed. RESULTS: Lower retinal capillary perfusion was correlated with worse Oral Symbol Digit Test (P < = 0.005) and Fluid Cognition Composite scores (P < = 0.02), but not with the Crystallized Cognition Composite score (P > = 0.41). Lower retinal perfusion was also correlated with higher free water and peak width of skeletonized mean diffusivity, and lower fractional anisotropy (all P < 0.05) on MRI (N = 35). DISCUSSION: Lower retinal capillary perfusion is associated with worse information processing, fluid cognition, and MRI biomarkers of cerebral small vessel disease, but is not related to crystallized cognition.


Subject(s)
Cerebral Small Vessel Diseases , Retinal Vessels , Humans , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Black or African American , Brain/diagnostic imaging , Brain/pathology , Cognition , Perfusion , Magnetic Resonance Imaging , Biomarkers , Cerebral Small Vessel Diseases/pathology
15.
Hum Brain Mapp ; 45(1): e26548, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38050769

ABSTRACT

White matter hyperintensities (WMHs) are well-established markers of cerebral small vessel disease, and are associated with an increased risk of stroke, dementia, and mortality. Although their prevalence increases with age, small and punctate WMHs have been reported with surprisingly high frequency even in young, neurologically asymptomatic adults. However, most automated methods to segment WMH published to date are not optimized for detecting small and sparse WMH. Here we present the SHIVA-WMH tool, a deep-learning (DL)-based automatic WMH segmentation tool that has been trained with manual segmentations of WMH in a wide range of WMH severity. We show that it is able to detect WMH with high efficiency in subjects with only small punctate WMH as well as in subjects with large WMHs (i.e., with confluency) in evaluation datasets from three distinct databases: magnetic resonance imaging-Share consisting of young university students, MICCAI 2017 WMH challenge dataset consisting of older patients from memory clinics, and UK Biobank with community-dwelling middle-aged and older adults. Across these three cohorts with a wide-ranging WMH load, our tool achieved voxel-level and individual lesion cluster-level Dice scores of 0.66 and 0.71, respectively, which were higher than for three reference tools tested: the lesion prediction algorithm implemented in the lesion segmentation toolbox (LPA: Schmidt), PGS tool, a DL-based algorithm and the current winner of the MICCAI 2017 WMH challenge (Park et al.), and HyperMapper tool (Mojiri Forooshani et al.), another DL-based method with high reported performance in subjects with mild WMH burden. Our tool is publicly and openly available to the research community to facilitate investigations of WMH across a wide range of severity in other cohorts, and to contribute to our understanding of the emergence and progression of WMH.


Subject(s)
Cerebral Small Vessel Diseases , Stroke , White Matter , Middle Aged , Humans , Aged , White Matter/diagnostic imaging , White Matter/pathology , Stroke/pathology , Algorithms , Magnetic Resonance Imaging/methods , Cerebral Small Vessel Diseases/pathology
16.
Alzheimers Dement ; 20(2): 1397-1405, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38009395

ABSTRACT

INTRODUCTION: Heart rate (HR) fragmentation indices quantify breakdown of HR regulation and are associated with atrial fibrillation and cognitive impairment. Their association with brain magnetic resonance imaging (MRI) markers of small vessel disease is unexplored. METHODS: In 606 stroke-free participants of the Multi-Ethnic Study of Atherosclerosis (mean age 67), HR fragmentation indices including percentage of inflection points (PIP) were derived from sleep study recordings. We examined PIP in relation to white matter hyperintensity (WMH) volume, total white matter fractional anisotropy (FA), and microbleeds from 3-Tesla brain MRI completed 7 years later. RESULTS: In adjusted analyses, higher PIP was associated with greater WMH volume (14% per standard deviation [SD], 95% confidence interval [CI]: 2, 27%, P = 0.02) and lower WM FA (-0.09 SD per SD, 95% CI: -0.16, -0.01, P = 0.03). DISCUSSION: HR fragmentation was associated with small vessel disease. HR fragmentation can be measured automatically from ambulatory electrocardiogram devices and may be useful as a biomarker of vascular brain injury.


Subject(s)
Cerebral Small Vessel Diseases , Stroke , White Matter , Humans , Aged , Heart Rate , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Stroke/pathology , White Matter/diagnostic imaging , White Matter/pathology , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology
17.
J Neurosci Methods ; 403: 110037, 2024 03.
Article in English | MEDLINE | ID: mdl-38154663

ABSTRACT

BACKGROUND: Growing interest surrounds perivascular spaces (PVS) as a clinical biomarker of brain dysfunction given their association with cerebrovascular risk factors and disease. Neuroimaging techniques allowing quick and reliable quantification are being developed, but, in practice, they require optimisation as their limits of validity are usually unspecified. NEW METHOD: We evaluate modifications and alternatives to a state-of-the-art (SOTA) PVS segmentation method that uses a vesselness filter to enhance PVS discrimination, followed by thresholding of its response, applied to brain magnetic resonance images (MRI) from patients with sporadic small vessel disease acquired at 3 T. RESULTS: The method is robust against inter-observer differences in threshold selection, but separate thresholds for each region of interest (i.e., basal ganglia, centrum semiovale, and midbrain) are required. Noise needs to be assessed prior to selecting these thresholds, as effect of noise and imaging artefacts can be mitigated with a careful optimisation of these thresholds. PVS segmentation from T1-weighted images alone, misses small PVS, therefore, underestimates PVS count, may overestimate individual PVS volume especially in the basal ganglia, and is susceptible to the inclusion of calcified vessels and mineral deposits. Visual analyses indicated the incomplete and fragmented detection of long and thin PVS as the primary cause of errors, with the Frangi filter coping better than the Jerman filter. COMPARISON WITH EXISTING METHODS: Limits of validity to a SOTA PVS segmentation method applied to 3 T MRI with confounding pathology are given. CONCLUSIONS: Evidence presented reinforces the STRIVE-2 recommendation of using T2-weighted images for PVS assessment wherever possible. The Frangi filter is recommended for PVS segmentation from MRI, offering robust output against variations in threshold selection and pathology presentation.


Subject(s)
Cerebral Small Vessel Diseases , Humans , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/pathology , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Neuroimaging , Basal Ganglia/diagnostic imaging
18.
Acta Neuropathol Commun ; 11(1): 204, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38115109

ABSTRACT

Vascular risk factors such as chronic hypertension are well-established major modifiable factors for the development of cerebral small vessel disease (cSVD). In the present study, our focus was the investigation of cSVD-related phenotypic changes in microglia in human disease and in the spontaneously hypertensive stroke-prone rat (SHRSP) model of cSVD. Our examination of cortical microglia in human post-mortem cSVD cortical tissue revealed distinct morphological microglial features specific to cSVD. We identified enlarged somata, an increase in the territory occupied by thickened microglial processes, and an expansion in the number of vascular-associated microglia. In parallel, we characterized microglia in a rodent model of hypertensive cSVD along different durations of arterial hypertension, i.e., early chronic and late chronic hypertension. Microglial somata were already enlarged in early hypertension. In contrast, at late-stage chronic hypertension, they further exhibited elongated branches, thickened processes, and a reduced ramification index, mirroring the findings in human cSVD. An unbiased multidimensional flow cytometric analysis revealed phenotypic heterogeneity among microglia cells within the hippocampus and cortex. At early-stage hypertension, hippocampal microglia exhibited upregulated CD11b/c, P2Y12R, CD200R, and CD86 surface expression. Detailed analysis of cell subpopulations revealed a unique microglial subset expressing CD11b/c, CD163, and CD86 exclusively in early hypertension. Notably, even at early-stage hypertension, microglia displayed a higher association with cerebral blood vessels. We identified several profound clusters of microglia expressing distinct marker profiles at late chronic hypertensive states. In summary, our findings demonstrate a higher vulnerability of the hippocampus, stage-specific microglial signatures based on morphological features, and cell surface protein expression in response to chronic arterial hypertension. These results indicate the diversity within microglia sub-populations and implicate the subtle involvement of microglia in cSVD pathogenesis.


Subject(s)
Cerebral Small Vessel Diseases , Hypertension , Rats , Humans , Mice , Animals , Microglia/metabolism , Hypertension/complications , Hypertension/pathology , Rats, Inbred SHR , Cerebral Small Vessel Diseases/pathology , Phenotype
19.
Stroke ; 54(11): 2853-2863, 2023 11.
Article in English | MEDLINE | ID: mdl-37814955

ABSTRACT

BACKGROUND: Proteins expressed by brain endothelial cells (BECs), the primary cell type of the blood-brain barrier, may serve as sensitive plasma biomarkers for neurological and neurovascular conditions, including cerebral small vessel disease. METHODS: Using data from the BLSA (Baltimore Longitudinal Study of Aging; n=886; 2009-2020), BEC-enriched proteins were identified among 7268 plasma proteins (measured with SomaScanv4.1) using an automated annotation algorithm that filtered endothelial cell transcripts followed by cross-referencing with BEC-specific transcripts reported in single-cell RNA-sequencing studies. To identify BEC-enriched proteins in plasma most relevant to the maintenance of neurological and neurovascular health, we selected proteins significantly associated with 3T magnetic resonance imaging-defined white matter lesion volumes. We then examined how these candidate BEC biomarkers related to white matter lesion volumes, cerebral microhemorrhages, and lacunar infarcts in the ARIC study (Atherosclerosis Risk in Communities; US multisite; 1990-2017). Finally, we determined whether these candidate BEC biomarkers, when measured during midlife, were related to dementia risk over a 25-year follow-up period. RESULTS: Of the 28 proteins identified as BEC-enriched, 4 were significantly associated with white matter lesion volumes (CDH5 [cadherin 5], CD93 [cluster of differentiation 93], ICAM2 [intracellular adhesion molecule 2], GP1BB [glycoprotein 1b platelet subunit beta]), while another approached significance (RSPO3 [R-Spondin 3]). A composite score based on 3 of these BEC proteins accounted for 11% of variation in white matter lesion volumes in BLSA participants. We replicated the associations between the BEC composite score, CDH5, and RSPO3 with white matter lesion volumes in ARIC, and further demonstrated that the BEC composite score and RSPO3 were associated with the presence of ≥1 cerebral microhemorrhages. We also showed that the BEC composite score, CDH5, and RSPO3 were associated with 25-year dementia risk. CONCLUSIONS: In addition to identifying BEC proteins in plasma that relate to cerebral small vessel disease and dementia risk, we developed a composite score of plasma BEC proteins that may be used to estimate blood-brain barrier integrity and risk for adverse neurovascular outcomes.


Subject(s)
Cerebral Small Vessel Diseases , Dementia , Humans , Endothelial Cells/pathology , Longitudinal Studies , Brain/pathology , Biomarkers/metabolism , Cerebral Small Vessel Diseases/pathology , Magnetic Resonance Imaging
20.
Int J Mol Sci ; 24(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37833984

ABSTRACT

Cerebral small vessel disease (CSVD) is a significant cause of cognitive impairment (CI), disability, and mortality. The insufficient effectiveness of antihypertensive therapy in curbing the disease justifies the search for potential targets for modifying therapy and indicators supporting its use. Using a laser-assisted optical rotational cell analyzer (LORRCA, Mechatronics, The Netherlands), the rheological properties and deformability of erythrocytes before and after incubation with 10 µmol/L of L-arginine, the nitric oxide (NO) donor, blood-brain barrier (BBB) permeability assessed by dynamic contrast-enhanced MRI, clinical, and MRI signs were studied in 73 patients with CSVD (48 women, mean age 60.1 ± 6.5 years). The control group consisted of 19 volunteers (14 women (73.7%), mean age 56.9 ± 6.4 years). The erythrocyte disaggregation rate (y-dis) after incubation with L-arginine showed better performance than other rheological characteristics in differentiating patients with reduced NO bioavailability/NO deficiency by its threshold values. Patients with y-dis > 113 s-1 had more severe CI, arterial hypertension, white matter lesions, and increased BBB permeability in grey matter and normal-appearing white matter (NAWM). A test to assess changes in the erythrocyte disaggregation rate after incubation with L-arginine can be used to identify patients with impaired NO bioavailability. L-arginine may be part of a therapeutic strategy for CSVD with CI.


Subject(s)
Brain Injuries , Cerebral Small Vessel Diseases , Cognitive Dysfunction , White Matter , Aged , Female , Humans , Middle Aged , Blood-Brain Barrier/pathology , Brain Injuries/pathology , Cerebral Small Vessel Diseases/pathology , Cognitive Dysfunction/pathology , Magnetic Resonance Imaging , Nitric Oxide , White Matter/pathology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...