Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Talanta ; 274: 126016, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38599118

ABSTRACT

The present study investigates the use of dextrins (maltodextrin, ß-cyclodextrin, and hydroxypropyl-ß-cyclodextrin) to improve the efficiency of the agarose-based gel electromembrane extraction technique for extracting chiral basic drugs (citalopram, hydroxyzine, and cetirizine). Additionally, it examines the enantioselectivity of the extraction process for these drugs. To achieve these, dextrins were incorporated into either the sample solution, the membrane, or the acceptor solution, and then the extraction procedure was performed. Enantiomers were separated and analyzed using a capillary electrophoresis device equipped with a UV detector. The results obtained under the optimal extraction conditions (sample solution pH: 4.0, acceptor solution pH: 2.0, gel membrane pH: 3.0, agarose concentration: 3 % w/v, stirring rate: 1000 rpm, gel thickness: 4.4 mm, extraction voltage: 62.3 V, and extraction time: 32.1 min) indicated that incorporating dextrins into either the sample solution, membrane or the acceptor solution enhances extraction efficiency by 17.3-23.1 %. The most significant increase was observed when hydroxypropyl-ß-cyclodextrin was added to the acceptor solution. The findings indicated that the inclusion of hydroxypropyl-ß-cyclodextrin in the sample solution resulted in an enantioselective extraction, yielding an enantiomeric excess of 6.42-7.14 %. The proposed method showed a linear range of 5.0-2000 ng/mL for enantiomers of model drugs. The limit of detection and limit of quantification for all enantiomers were found to be < 4.5 ng/mL and <15.0 ng/mL, respectively. Intra- and inter-day RSDs (n = 4) were less than 10.8 %, and the relative errors were less than 3.2 % for all the enantiomers. Finally, the developed method was successfully applied to determine concentrations of enantiomers in a urine sample with relative recoveries of 96.8-99.2 %, indicating good reliability of the developed method.


Subject(s)
Dextrins , Gels , Membranes, Artificial , Stereoisomerism , Dextrins/chemistry , Gels/chemistry , Electrophoresis, Capillary/methods , Hydroxyzine/analysis , Hydroxyzine/isolation & purification , Hydroxyzine/chemistry , Hydroxyzine/urine , beta-Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Cetirizine/chemistry , Cetirizine/urine , Cetirizine/analysis , Cetirizine/isolation & purification , Hydrogen-Ion Concentration , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/isolation & purification , Pharmaceutical Preparations/urine , Sepharose/chemistry
2.
Anal Chem ; 96(17): 6599-6608, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38640514

ABSTRACT

Antihistamines relieve allergic symptoms by inhibiting the action of histamine. Further understanding of antihistamine transmembrane mechanisms and optimizing the selectivity and real-time monitoring capabilities of drug sensors is necessary. In this study, a micrometer liquid/liquid (L/L) interfacial sensor has served as a biomimetic membrane to investigate the mechanism of interfacial transfer of five antihistamines, i.e., clemastine (CLE), cyproheptadine (CYP), epinastine (EPI), desloratadine (DSL), and cetirizine (CET), and realize the real-time determinations. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques have been used to uncover the electrochemical transfer behavior of the five antihistamines at the L/L interface. Additionally, finite element simulations (FEMs) have been employed to reveal the thermodynamics and kinetics of the process. Visualization of antihistamine partitioning in two phases at different pH values can be realized by ion partition diagrams (IPDs). The IPDs also reveal the transfer mechanism at the L/L interface and provide effective lipophilicity at different pH values. Real-time determinations of these antihistamines have been achieved through potentiostatic chronoamperometry (I-t), exhibiting good selectivity with the addition of nine common organic or inorganic compounds in living organisms and revealing the potential for in vivo pharmacokinetics. Besides providing a satisfactory surrogate for studying the transmembrane mechanism of antihistamines, this work also sheds light on micro- and nano L/L interfacial sensors for in vivo analysis of pharmacokinetics at a single-cell or single-organelle level.


Subject(s)
Cetirizine , Clemastine , Cyproheptadine , Imidazoles , Loratadine , Loratadine/analogs & derivatives , Loratadine/pharmacology , Loratadine/analysis , Loratadine/chemistry , Cyproheptadine/pharmacology , Cyproheptadine/analogs & derivatives , Cyproheptadine/analysis , Cetirizine/analysis , Cetirizine/pharmacology , Cetirizine/chemistry , Clemastine/analysis , Clemastine/pharmacology , Clemastine/metabolism , Histamine Antagonists/pharmacology , Histamine Antagonists/chemistry , Histamine Antagonists/analysis , Histamine Antagonists/metabolism , Electrochemical Techniques/methods , Biomimetics , Dibenzazepines/pharmacology , Dibenzazepines/chemistry
3.
Int J Biol Macromol ; 268(Pt 2): 131847, 2024 May.
Article in English | MEDLINE | ID: mdl-38677678

ABSTRACT

Combining the versatility of electrospinning with the biocompatibility of Polycaprolactone and Collagen, this study aims to create advanced 3D nano scaffolds for effective drug delivery. Ceramic materials like hydroxyapatite (nHAp) are incorporated as bioactive agents in the fibers. Electrospun PCL (Polycaprolactone)/collagen nanofibers and PVA (Poly-vinyl alcohol)/collagen are promising tissue-engineering substitutes with high biocompatibility, low cytotoxicity, and great tensile strength. Small pores in these nanofibers play a major role in drug delivery system. Owing to its short half-life, limited solubility, restricted bioavailability as well as re-crystallization concerns, the application of Cetirizine (CIT) has found little relevance. Electrospun nanofibers impregnated with CIT provide an excellent solution to combat these limitations, yield sustained drug release along with hampering drug re-crystallization. CIT-loaded polyvinyl alcohol (PVA)/collagen (Col) and CIT-loaded PVA/Col/nHAp nanofibers were characterized and further CIT anti-crystallization as well as release behaviors were investigated. FESEM and HRTEM were used to observe the morphology of the as-synthesized nanofibers. FTIR spectroscopy, water contact angle measurement and drug release studies verified the differences in performance of CIT-loaded PVA/Col and PVA/Col/nHAp nanofibers. The release trend of CIT through these as-synthesized nanoscaffolds was analyzed by various kinetic models and exhibited sustained release of CIT for up to 96 h.


Subject(s)
Cetirizine , Collagen , Drug Liberation , Nanofibers , Polyesters , Polyvinyl Alcohol , Tissue Scaffolds , Polyvinyl Alcohol/chemistry , Polyesters/chemistry , Nanofibers/chemistry , Cetirizine/chemistry , Cetirizine/pharmacokinetics , Cetirizine/administration & dosage , Collagen/chemistry , Tissue Scaffolds/chemistry , Kinetics , Tissue Engineering/methods , Drug Delivery Systems
4.
Pak J Pharm Sci ; 34(4(Supplementary)): 1639-1644, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34799342

ABSTRACT

Non insulin dependent diabetes mellitus (NIDDM) drugs such as glibenclamide and metformin is employed to heterogeneous disorder characterized by alteration in production of glucose due to impairment of both insulin secretion and insulin action. These patients might suffer with allergic rhinitis and in this case, there is a possibility to maintain patient on levocetirizine, an anti-allergic drug commonly used in rhinitis. The object of the present study is to detect possible interaction between glibenclamide or metformin with levocetirizine Current study was performed using UV spectroscopic technique sing simultaneous equation in pH simulated to gastric juice (pH 1), pH 4, pH 7.4 and in pH 9. All drugs followed Beer Lambert's Law. Results showed that glibenclamide and metformin can increase or decrease availability of levocetirizine and in the same way levocetirizine can alter availabilities of glibenclamide and metformin in different pH. Hence, drug interaction between glibenclamide or metformin with levocetirizne occurred. This may be due to his may be due to the charge transfer or binding capabilities of these drugs which resulted in significantly changed availability of NIDDIM as well as levocetirizine. Therefore, co-administration of these drugs should be avoided and furtherinvestigations at clinical and pre-clinical levels should be done.


Subject(s)
Cetirizine/pharmacokinetics , Glyburide/pharmacokinetics , Hypoglycemic Agents/chemistry , Metformin/pharmacokinetics , Cetirizine/chemistry , Drug Interactions , Glyburide/chemistry , Metformin/chemistry , Molecular Structure , Solutions , Spectrophotometry, Ultraviolet
5.
J Comput Aided Mol Des ; 34(10): 1045-1062, 2020 10.
Article in English | MEDLINE | ID: mdl-32572668

ABSTRACT

Cetirizine, a major metabolite of hydroxyzine, became a marketed second-generation H1 antihistamine that is orally active and has a rapid onset of action, long duration of effects and a very good safety record at recommended doses. The approved drug is a racemic mixture of (S)-cetirizine and (R)-cetirizine, the latter being the levorotary enantiomer that also exists in the market as a third-generation, non-sedating and highly selective antihistamine. Both enantiomers bind tightly to the human histamine H1 receptor (hH1R) and behave as inverse agonists but the affinity and residence time of (R)-cetirizine are greater than those of (S)-cetirizine. In blood plasma, cetirizine exists in the zwitterionic form and more than 90% of the circulating drug is bound to human serum albumin (HSA), which acts as an inactive reservoir. Independent X-ray crystallographic work has solved the structure of the hH1R:doxepin complex and has identified two drug-binding sites for cetirizine on equine serum albumin (ESA). Given this background, we decided to model a membrane-embedded hH1R in complex with either (R)- or (S)-cetirizine and also the complexes of both ESA and HSA with these two enantiomeric drugs to analyze possible differences in binding modes between enantiomers and also among targets. The ensuing molecular dynamics simulations in explicit solvent and additional computational chemistry calculations provided structural and energetic information about all of these complexes that is normally beyond current experimental possibilities. Overall, we found very good agreement between our binding energy estimates and extant biochemical and pharmacological evidence. A much higher degree of solvent exposure in the cetirizine-binding site(s) of HSA and ESA relative to the more occluded orthosteric binding site in hH1R is translated into larger positional fluctuations and considerably lower affinities for these two nonspecific targets. Whereas it is demonstrated that the two known pockets in ESA provide enough stability for cetirizine binding, only one such site does so in HSA due to a number of amino acid replacements. At the histamine-binding site in hH1R, the distinct interactions established between the phenyl and chlorophenyl moieties of the two enantiomers with the amino acids lining up the pocket and between their free carboxylates and Lys179 in the second extracellular loop account for the improved pharmacological profile of (R)-cetirizine.


Subject(s)
Cetirizine/chemistry , Cetirizine/metabolism , Histamine H1 Antagonists, Non-Sedating/metabolism , Receptors, Histamine/metabolism , Serum Albumin, Human/metabolism , Serum Albumin/metabolism , Animals , Binding Sites , Histamine H1 Antagonists, Non-Sedating/chemistry , Horses , Humans , Protein Binding , Stereoisomerism
6.
J Microencapsul ; 37(6): 413-430, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32421463

ABSTRACT

Aim: This work aimed to develop topical nanoemulsion gels of cetirizine, a second-generation antihistamine, to avoid its oral intake drawbacks and enhance skin permeation.Methods: Cetirizine nanoemulsions were formulated and characterised for their particle size, polydispersity index, zeta potential, drug release and drug permeation through rat skin. The optimised formulation, obtained using 23 full factorial design, was incorporated in carbopol and chitosan gels and evaluated clinically for urticaria treatment.Results: The optimised formulation had particle size of 32.015 ± 1.87 nm, polydispersity index of 0.29 ± 0.04, zeta potential of -19.31 ± 0.43 mV, cetirizine percent released of 98.50 ± 1.23% and permeability coefficient of 7.65 cm.h-1. Cetirizine nanoemulsion gels were more effective than their control gels in urticaria treatment with significant decrease in the degree of wheals and itching and higher recovery percent.Conclusion: Cetirizine nanoemulsion topical gels are expected to be a rational and effective tool for avoiding cetirizine oral side effects and targeting the affected skin.


Subject(s)
Cetirizine/administration & dosage , Drug Delivery Systems , Histamine H1 Antagonists, Non-Sedating/administration & dosage , Adolescent , Adult , Animals , Cetirizine/chemistry , Cetirizine/pharmacokinetics , Drug Compounding , Drug Liberation , Emulsions , Gels , Humans , Male , Nanostructures , Particle Size , Pruritus/drug therapy , Rats , Rats, Sprague-Dawley , Skin/metabolism , Young Adult
7.
J Pharm Biomed Anal ; 184: 113172, 2020 May 30.
Article in English | MEDLINE | ID: mdl-32109709

ABSTRACT

A high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was successfully developed for the simultaneous detection of gabapentin (GBP) and cetirizine (CTZ) in cell lysates. Multiple reaction monitoring (MRM) transitions were found for GBP, CTZ and deuterated internal standards of both, allowing a selective and sensitive detection. Limits of detection (LODs) of 0.04 ng/mL and 0.07 ng/mL were achieved for CTZ and GBP respectively, and a linear range could be confirmed to the highest tested concentration of 50 ng/mL. Furthermore, with a total runtime of 2.5 min, this method allows a high throughput analysis. The applicability of the method was demonstrated by using it for the quantification of CTZ and GBP in cell lysates to examine the effects of renal transporters on these two analytes.


Subject(s)
Cetirizine/chemistry , Chromatography, High Pressure Liquid/methods , Gabapentin/chemistry , Tandem Mass Spectrometry/methods , Limit of Detection , Reproducibility of Results
8.
Drug Dev Ind Pharm ; 46(3): 395-402, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31996053

ABSTRACT

Objective: The aim of this study was to develop medicated chewing gum (MCG) formulation for taste-masked levocetirizine dihydrochloride (LCZ) that can provide fast drug release into the salivary fluid.Methods: Taste-masked LCZ was first prepared by two methods: cyclodextrin complexation using Kleptose or Captisol and formation of drug resin complex using Kyron T-154 or Kyron T-314 to overcome poor LCZ palatability. MCGs were then prepared using the taste-masked drug, gum base (Artica-T, Chicle, or Health In Gum (HIG), plasticizer (glycerol or soy lecithin at 6 or 8% of the final gum weight). The developed MCGs were evaluated for physical properties, content uniformity, and drug release. Best release MCGs were evaluated thermally to investigate the plasticizer effectiveness and for ex vivo chew out study to confirm adequate drug release. Drug bioavailability was determined for selected formula compared to commercial tablets.Results: Based on taste-masking efficiency, drug/Kleptose complex (1:3 molar ratio) was chosen for incorporation into chewing gums. Physical properties and drug release showed that gum base type, plasticizer type, and level affected not only physical properties but also drug release from MCGs. Thermal study showed decreased glass transition temperature (Tg) with increased plasticizer level. Chew out study confirmed almost complete drug release after a few minutes of chewing. Pharmacokinetic results showed shorter tmax (0.585 vs. 1.375 h) and higher Cmax (0.113 vs. 0.0765 µg/mL) for MCGs than conventional tablets.Conclusion: Results provided evidence that MCGs could be a better alternative to conventional tablet formulations with improved bioavailability and enhanced palatability.


Subject(s)
Cetirizine/administration & dosage , Chewing Gum , Excipients/chemistry , Histamine H1 Antagonists, Non-Sedating/administration & dosage , Biological Availability , Cetirizine/chemistry , Cetirizine/pharmacokinetics , Chemistry, Pharmaceutical , Drug Liberation , Histamine H1 Antagonists, Non-Sedating/chemistry , Histamine H1 Antagonists, Non-Sedating/pharmacokinetics , Humans , Plasticizers/chemistry , Saliva/metabolism , Tablets , Taste , Vitrification , beta-Cyclodextrins/chemistry
9.
Mikrochim Acta ; 187(1): 55, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848716

ABSTRACT

An electrochromatographic capillary was modified with graphene oxide (GO), and the coating was characterized by scanning electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectra. By utilizing maltodextrin (MD) as the chiral selector, the basic chiral drugs nefopam (NEF), amlodipine (AML), citalopram hydrobromide (CIT), econazole (ECO), ketoconazole (KET) and cetirizine hydrochloride (CET) can be enantiomerically separated on this CEC. Compared with an uncoated silica capillary, the resolutions are markedly improved (AML: 0.32 → 1.45; ECO: 0.55 → 1.89; KET: 0.88 → 4.77; CET: 0.81 → 2.46; NEF: 1.46 → 2.83; CIT: 1.77 → 4.38). Molecular modeling was applied to demonstrate the mechanism of enantioseparation, which showed a good agreement with the experimental results. Graphical abstractSchematic representation of the preparation of graphene oxide-modified capillary (GO@capillary) for enantioseparation of drug enantiomers. The monolayered GO was used as the coating of the GO@capillary. Then the capillary was applied to construct capillary electrochromatography system with maltodextrin for separation of basic chiral drugs.


Subject(s)
Graphite/chemistry , Polysaccharides/chemistry , Amlodipine/chemistry , Amlodipine/isolation & purification , Capillary Electrochromatography , Cetirizine/chemistry , Cetirizine/isolation & purification , Citalopram/chemistry , Citalopram/isolation & purification , Econazole/chemistry , Econazole/isolation & purification , Ketoconazole/chemistry , Ketoconazole/isolation & purification , Molecular Docking Simulation , Molecular Structure , Nefopam/chemistry , Nefopam/isolation & purification , Particle Size , Surface Properties
10.
Biomed Chromatogr ; 33(12): e4672, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31386207

ABSTRACT

The combination of acebrophylline (ABP), levocetirizine (LCZ) and pranlukast (PRN) is used to treat allergic rhinitis, asthma, hay-fever and other conditions where patients experience difficulty in breathing. This study was carried out with the aim of developing and validating a reverse-phase high-performance liquid chromatographic bioanalytical method to simultaneously quantitate ABP, LCZ and PRN in rat plasma. The objective also includes determination of the pharmacokinetic interaction of these three drugs after administration via the oral route after individual and combination treatment in rat. Optimum resolution between the analytes was observed with a C18 Kinetex column (250 mm × 4.6 mm × 5 µm). The chromatography was performed in a gradient elution mode with a 1 mL/min flow rate. The calibration curves were linear over the concentration range of 100-1600 ng/mL. The intra- and inter-day precision and accuracy were found to be within acceptable limits as specified in US Food and Drug Administration guideline for bioanalytical method validation. The analytes were stable on the bench-top (8 h), after three freeze-thaw cycles, in the autosampler (8 h) and as a dry extract (-80°C for 48 h). The statistical results of the pharmacokinetic study in Sprague-Dawley rats showed a significant change in pharmacokinetic parameters for PRN upon co-administration of the three drugs.


Subject(s)
Ambroxol/analogs & derivatives , Cetirizine , Chromones , Theophylline/analogs & derivatives , Ambroxol/blood , Ambroxol/chemistry , Ambroxol/pharmacokinetics , Animals , Cetirizine/blood , Cetirizine/chemistry , Cetirizine/pharmacokinetics , Chromatography, High Pressure Liquid , Chromones/blood , Chromones/chemistry , Chromones/pharmacokinetics , Limit of Detection , Linear Models , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Theophylline/blood , Theophylline/chemistry , Theophylline/pharmacokinetics
11.
J Chromatogr A ; 1602: 48-55, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31147154

ABSTRACT

One of the major drawbacks of conventional molecularly imprinted polymers (MIPs) is the requirements of volatility porogenic solvent during polymerization. To overcome the default, MIP based on deep eutectic solvent (DES, a new type of green designer solvents) has been synthesized successfully. To improve the affinity of the MIP based on DES, in this work, a strategy of metallic pivot was suggested in the first time to prepare a highly selective MIP monolithic column. A cetirizine-imprinted polymer was prepared in a DES-based porogen system composed of choline chloride/ ethylene glycol (ChCl-EG) in the presence of Co(Ac)2 as metallic pivot. The resulting DES- Co2+-MIP monolith had 23.5 times higher imprinting factor than the Co2+-free MIP monolith. The characterization of polymers indicated that DES was one of the primary factor influencing the MIP morphology and pore structure. Compared with previous metal-mediated and ionic liquid-based imprinted polymers, the introduction of DES as a porogen in polymerization led to higher imprinting factor (approximately 2.9 - 17.1 times). In addition, the resulting DES-Co2+-MIP can be used as an adsorbent for extraction of cetirizine from ethanol solution with the recoveries of 97.8%. As a conclusion, the metallic pivot is a rather valuable strategy for the synthesis of DES-based MIP monolith with high selectivity.


Subject(s)
Chemistry Techniques, Analytical/methods , Metals/chemistry , Molecular Imprinting , Polymers/chemical synthesis , Solvents/chemistry , Cetirizine/chemistry , Cetirizine/isolation & purification , Ethanol/chemistry , Ethylene Glycol , Polymerization , Polymers/chemistry
12.
Sci Rep ; 9(1): 7906, 2019 05 27.
Article in English | MEDLINE | ID: mdl-31133718

ABSTRACT

Drug-target binding kinetics are suggested to be important parameters for the prediction of in vivo drug-efficacy. For G protein-coupled receptors (GPCRs), the binding kinetics of ligands are typically determined using association binding experiments in competition with radiolabelled probes, followed by analysis with the widely used competitive binding kinetics theory developed by Motulsky and Mahan. Despite this, the influence of the radioligand binding kinetics on the kinetic parameters derived for the ligands tested is often overlooked. To address this, binding rate constants for a series of histamine H1 receptor (H1R) antagonists were determined using radioligands with either slow (low koff) or fast (high koff) dissociation characteristics. A correlation was observed between the probe-specific datasets for the kinetic binding affinities, association rate constants and dissociation rate constants. However, the magnitude and accuracy of the binding rate constant-values was highly dependent on the used radioligand probe. Further analysis using recently developed fluorescent binding methods corroborates the finding that the Motulsky-Mahan methodology is limited by the employed assay conditions. The presented data suggest that kinetic parameters of GPCR ligands depend largely on the characteristics of the probe used and results should therefore be viewed within the experimental context and limitations of the applied methodology.


Subject(s)
Binding, Competitive , Histamine H1 Antagonists/pharmacokinetics , Molecular Probes/chemistry , Radioligand Assay/methods , Receptors, Histamine H1/metabolism , Cetirizine/chemistry , Cetirizine/pharmacokinetics , Datasets as Topic , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacokinetics , HEK293 Cells , Histamine H1 Antagonists/chemistry , Humans , Ligands , Molecular Probes/pharmacokinetics , Olopatadine Hydrochloride/chemistry , Olopatadine Hydrochloride/pharmacokinetics , Protein Binding , Pyrilamine/chemistry , Pyrilamine/pharmacokinetics , Tritium
13.
PLoS One ; 13(4): e0196049, 2018.
Article in English | MEDLINE | ID: mdl-29689061

ABSTRACT

A preformulation study of an oral lyophilisate with cetirizine dihydrochloride (CTZ) as active ingredient, mannitol and PVP K30 as bulking agents is presented. CTZ shown a humidity content of 0.150% and a spontaneous hygroscopicity of 0.200% (both determined by SeDeM diagram), demonstrating an adequate stability behavior in solid form. A design of experiments (DoE) performed with both mannitol and PVP K30, followed by a simple factorial design (32) has determined the optimum combination of excipients and CTZ, and showed that a higher proportion of PVP K30 was able to prevent metastable forms generated by mannitol.


Subject(s)
Cetirizine/chemistry , Mannitol/chemistry , Pyrrolidinones/chemistry , Administration, Oral , Calorimetry, Differential Scanning , Cetirizine/administration & dosage , Drug Compounding , Freeze Drying , Powders , Tablets , Wettability
14.
Pak J Pharm Sci ; 31(1): 137-141, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29348095

ABSTRACT

Sensitive, simple, reliable and rapid HPLC technique for the estimation of simvastatin (SMV) and cetirizine has been designed in this study. The chromatographic conditions were set using Shimadzu LC-10 AT VP pump, with UV detector (SPD-10 AV-VP). System integration was performed with CBM-102 (Bus Module). Partitioning of components was attained with pre-packed C-18 column of Purospher Star (5 µm, 250 x 4.6 mm) at ambient conditions. Injected volume of sample was 10 µl. Mobile phase was composed of 50:50 v/v ratio of Acetonitrile/water (pH 3.0 adjusted with ortho-phosphoric acid) having 2 ml/minutes rate of flow. Compounds were detected in UV region at 225 nm. Percent Recovery of simvastatin was observed in the range of 98-102%. All results were found in accept table range of specification. The projected method is consistent, specific, precise, and rapid, that can be employed to quantitate the SMV along with cetirizine HCl. It was estimated by 3 successive cycles of freeze and thaw stability. Results of FT samples were found within accept table limits the method was developed and validated in raw materials, bulk formulations and final drug products.


Subject(s)
Cetirizine/analysis , Simvastatin/analysis , Technology, Pharmaceutical/methods , Cetirizine/chemistry , Chromatography, High Pressure Liquid , Drug Stability , Limit of Detection , Molecular Structure , Reproducibility of Results , Simvastatin/chemistry , Tablets , Technology, Pharmaceutical/instrumentation
15.
Polim Med ; 48(1): 31-40, 2018.
Article in English | MEDLINE | ID: mdl-30657656

ABSTRACT

BACKGROUND: Levocetirizine, active R (-) enantiomer of cetirizine, is an orally active and selective H1 receptor antagonist used medically as an anti-allergic. Allergic rhinitis is a symptomatic disorder of the nose induced by inflammation mediated by immunoglobulin E (IgE) in the membrane lining the nose after allergen exposure. OBJECTIVES: The purpose of the present study was to prepare rapidly disintegrating tablets of levocetirizine after its complexation with ß-cyclodextrin (ß-CD). MATERIAL AND METHODS: Levocetirizine-ß-CD complex tablets were prepared by direct compression technique using 3 synthetic superdisintegrants in different proportions. Development of the formulation in the present study was mainly based on the concentration of superdisintegrants and the properties of the drug. Nine batches of tablets were formulated and evaluated for various parameters: drug content, weight variation, water absorption ratio, wetting time, in vitro disintegration, hardness, friability, thickness uniformity, and in vitro dissolution. RESULTS: A Fourier-transform infrared spectroscopy (FTIR) study showed that there were no significant interactions between the drug and the excipients. The prepared tablets were good in appearance and showed acceptable results for hardness and friability. The in vitro disintegrating time of the formulated tablet batches was found to be 15-35 s percentage and the drug content of tablets in all formulations was found to be between 90-102%, which complied with the limits established in the United States Pharmacopeia. CONCLUSIONS: Complexation of levocetirizine with ß-CD significantly improves the solubility of the drug. The disintegration time of the tablets was decreased with an increase in superdisintegrant amount. The tablets (batch CPX5) had a minimum disintegration time of 20 s and 99.99% of the drug was released within 10 min.


Subject(s)
Cetirizine , Chemistry, Pharmaceutical , Administration, Oral , Cetirizine/chemistry , Hardness , Solubility , Tablets
16.
Carbohydr Polym ; 173: 600-609, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28732904

ABSTRACT

To develop a functional nanosized mucosal drug delivery system, a series of amphiphilic cetirizine-chitosan polymer (CTZ-CSs) were constructed. CTZ-CSs could self-assemble into nanoparticles (NPs) which gradually evolved from irregular aggregates to spherical particles with an increasing substitution degree (DS) in CTZ group. The average particle size of CTZ-CSs-NPs with nano ZS90 Zetasizer varied from 153.92nm to 184.48nm and their zeta potential varied between +19.14mV and +22.93mV. Biocompatibility assay exhibited CTZ-CS-NPs had few adverse effects within a certain concentration range. Cetirizine dihydrochloride(CedH):CTZ-CS-NPs displayed burst and sustained drug release profiles in the presence of lysozyme. CedH showed a burst release during the first 6h, after which the release rate slowed down significantly. The release of CedH totally sustained for 72h. Ex vivo mucosal adhesion indicated CedH:CTZ-CS-NPs were able to prolong the residence time in the entire small intestine mucosa.


Subject(s)
Cetirizine/chemistry , Chitosan/chemistry , Drug Carriers , Intestinal Mucosa/drug effects , Nanoparticles , Adhesives , Animals , Cell Line , Drug Liberation , Mice , Particle Size , Rats
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 181: 239-248, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28371723

ABSTRACT

Levocetirizine dihydrochloride is known to interact with some anti-inflammatory drugs. We report here a comprehensive integrated theoretical and experimental study for the in vitro drug interaction between levocetirizine dihydrochloride (LEV) and diclofenac sodium (DIC). The interaction of the two drugs was confirmed by the molecular ion peak obtained from the mass spectrum of the product. Moreover, FTIR and 1HNMR spectra of the individual drugs and their interaction product were inspected to allocate the possible sites of interaction. In addition, quantum mechanical DFT calculations were performed to search for the interaction sites and to verify the types of interactions deduced from the spectroscopic studies such as charge-transfer and non-bonding π-π interactions. It was found that the studied drugs interact with each other in aqueous solution via four types of interactions, namely, ion-pair formation, three weak hydrogen bonds, non-bonding π-π interactions and charge-transfer from DIC to LEV.


Subject(s)
Cetirizine/chemistry , Diclofenac/chemistry , Cetirizine/analysis , Diclofenac/analysis , Hydrogen Bonding , Models, Molecular , Spectrum Analysis
18.
Acta Pharm ; 67(1): 113-124, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28231047

ABSTRACT

Taste of a pharmaceutical formulation is an important parameter for the effectiveness of pharmacotherapy. Cetirizine dihydrochloride (CET) is a second-generation antihistamine that is commonly administered in allergy treatment. CET is characterized by extremely bitter taste and it is a great challenge to successfully mask its taste; therefore the goal of this work was to formulate and characterize the microparticles obtained by the spray drying method with CET and poly(butyl methacrylate-co-(2-dimethylaminoethyl) methacrylate-co-methyl methacrylate 1:2:1 copolymer (Eudragit E PO) as a barrier coating. Assessment of taste masking by the electronic tongue has revealed that designed formulations created an effective taste masking barrier. Taste masking effect was also confirmed by the in vivo model and the in vitro release profile of CET. Obtained data have shown that microparticles with a drug/polymer ratio (0.5:1) are promising CET carriers with efficient taste masking potential and might be further used in designing orodispersible dosage forms with CET.


Subject(s)
Cetirizine/administration & dosage , Excipients/administration & dosage , Histamine H1 Antagonists, Non-Sedating/administration & dosage , Perceptual Masking , Polymethacrylic Acids/administration & dosage , Taste Perception/drug effects , Taste/drug effects , Administration, Oral , Aerosols , Cetirizine/chemistry , Desiccation , Drug Compounding , Electronic Nose , Excipients/chemistry , Histamine H1 Antagonists, Non-Sedating/chemistry , Humans , Kinetics , Particle Size , Polymethacrylic Acids/chemistry , Sensory Thresholds , Solubility , Technology, Pharmaceutical/instrumentation , Technology, Pharmaceutical/methods
19.
AAPS PharmSciTech ; 18(6): 1972-1986, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27921260

ABSTRACT

Development of palatable formulations for pediatric and geriatric patients involves various challenges. However, an innovative development with beneficial characteristics of marketed formulations in a single formulation platform was attempted. The goal of this research was to develop solid oral flexible tablets (OFTs) as a platform for pediatrics and geriatrics as oral delivery is the most convenient and widely used mode of drug administration. For this purpose, a flexible tablet formulation using cetirizine hydrochloride as model stability labile class 1 and 3 drug as per the Biopharmaceutical Classification System was developed. Betadex, Eudragit E100, and polacrilex resin were evaluated as taste masking agents. Development work focused on excipient selection, formulation processing, characterization methods, stability, and palatability testing. Formulation with a cetirizine-to-polacrilex ratio of 1:2 to 1:3 showed robust physical strength with friability of 0.1% (w/w), rapid in vitro dispersion within 30 s in 2-6 ml of water, and 0.2% of total organic and elemental impurities. Polacrilex resin formulation shows immediate drug release within 30 min in gastric media, better taste masking, and acceptable stability. Hence, it is concluded that ion exchange resins can be appropriately used to develop taste-masked, rapidly dispersible, and stable tablet formulations with tailored drug release suitable for pediatrics and geriatrics. Flexible formulations can be consumed as swallowable, orally disintegrating, chewable, and as dispersible tablets. Flexibility in dose administration would improve compliance in pediatrics and geriatrics. This drug development approach using ion exchange resins can be a platform for formulating solid oral flexible drug products with low to medium doses.


Subject(s)
Cetirizine/administration & dosage , Cetirizine/chemistry , Drug Compounding/methods , Taste/drug effects , Acrylates/administration & dosage , Acrylates/chemistry , Acrylates/metabolism , Administration, Oral , Adult , Age Factors , Anti-Allergic Agents/administration & dosage , Anti-Allergic Agents/chemistry , Anti-Allergic Agents/metabolism , Cetirizine/metabolism , Child , Drug Liberation , Excipients , Humans , Ion Exchange Resins , Male , Polymers/administration & dosage , Polymers/chemistry , Polymers/metabolism , Solubility , Tablets , Taste/physiology
20.
Molecules ; 21(12)2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27941625

ABSTRACT

The research into the separation of drug enantiomers is closely related to the safety and efficiency of the drugs. The aim of this study was to develop a simple and validated HPLC method to analyze cetirizine enantiomers. In the case of liquid dosage forms, besides the active substance in large amounts there are usually also inactive ingredients such as methyl- and propylparaben. Unfortunately, these compounds can interfere with the analyte, inter alia during chiral separation of the analyte enantiomers. The proposed innovative two-step liquid-liquid extraction procedure allowed for the determination of cetirizine enantiomers (along with M and P parabens) also in liquid dosage forms. The main focus of this study was the chromatographic activity of cetirizine dihydrochloride on the proteinate-based chiral stationary phase. The chromatographic separation of cetirizine enantiomers was performed on an immobilized human serum albumin (HSA) column for the first time. Measurements were performed at a wavelength of 227 nm. Under optimal conditions, baseline separation of two enantiomers was obtained with 1.43 enantioseparation factor (α) and 1.82 resolution (Rs). Finally, the proposed method was successfully applied to the selected pharmaceutical formulations.


Subject(s)
Cetirizine/isolation & purification , Liquid-Liquid Extraction/methods , Parabens/isolation & purification , Serum Albumin/chemistry , Cetirizine/chemistry , Chromatography, High Pressure Liquid , Humans , Parabens/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...