Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.027
Filter
1.
Sci Rep ; 14(1): 14553, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914792

ABSTRACT

Ischemic stroke (IS) is of increasing concern given the aging population and prevalence of unhealthy lifestyles, with older females exhibiting higher susceptibility. This study aimed to identify practical diagnostic markers, develop a diagnostic model for immunogenic cell death (ICD)-associated IS, and investigate alterations in the immune environment caused by hub genes. Differentially expressed genes associated with ICD in IS were identified based on weighted gene co-expression network analysis and the identification of significant modules. Subsequently, machine learning algorithms were employed to screened hub genes, which were further assessed using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis. A nomogram mode lwas then constructed for IS diagnosis, and its diagnostic value was assessed using a receiver operating characteristic curve. Finally, alterations in immune cell infiltration were assessed within patients with IS, and the pan-cancer expression patterns of hub genes were evaluated. Three hub genes associated with ICD (PDK4, CCL20, and FBL) were identified. The corresponding nomogram model for IS diagnosis could effectively identify older female patients with IS (area under the curve (AUC) = 0.9555). Overall, the three hub genes exhibit good diagnostic value (AUC > 0.8). CCL20 and FBL are significantly associated with the extent of immune cells infiltration. Moreover, a strong link exists between hub gene expression and pan-cancer prognosis. Cumulatively, these results indicate that ICD-related hub genes critically influence IS progression in older females, presenting novel diagnostic and therapeutic targets for personalized treatment.


Subject(s)
Chemokine CCL20 , Immunogenic Cell Death , Ischemic Stroke , Humans , Female , Ischemic Stroke/genetics , Ischemic Stroke/immunology , Ischemic Stroke/diagnosis , Aged , Chemokine CCL20/genetics , Chemokine CCL20/metabolism , Biomarkers , Nomograms , Gene Regulatory Networks , Machine Learning , Gene Expression Profiling , ROC Curve , Aged, 80 and over
2.
Cell Death Dis ; 15(6): 437, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902257

ABSTRACT

TNF receptor superfamily member 11a (TNFRSF11a, RANK) and its ligand TNF superfamily member 11 (TNFRSF11, RANKL) are overexpressed in many malignancies. However, the clinical importance of RANKL/RANK in colorectal cancer (CRC) is mainly unknown. We examined CRC samples and found that RANKL/RANK was elevated in CRC tissues compared with nearby normal tissues. A higher RANKL/RANK expression was associated with a worse survival rate. Furthermore, RANKL was mostly produced by regulatory T cells (Tregs), which were able to promote CRC advancement. Overexpression of RANK or addition of RANKL significantly increased the stemness and migration of CRC cells. Furthermore, RANKL/RANK signaling stimulated C-C motif chemokine ligand 20 (CCL20) production by CRC cells, leading to Treg recruitment and boosting tumor stemness and malignant progression. This recruitment process was accomplished by CCL20-CCR6 interaction, demonstrating a connection between CRC cells and immune cells. These findings suggest an important role of RANKL/RANK in CRC progression, offering a potential target for CRC prevention and therapy.


Subject(s)
Chemokine CCL20 , Colorectal Neoplasms , Neoplastic Stem Cells , RANK Ligand , Receptor Activator of Nuclear Factor-kappa B , Receptors, CCR6 , Signal Transduction , T-Lymphocytes, Regulatory , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Chemokine CCL20/metabolism , Chemokine CCL20/genetics , RANK Ligand/metabolism , Receptors, CCR6/metabolism , Receptors, CCR6/genetics , Receptor Activator of Nuclear Factor-kappa B/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Male , Mice , Female , Neoplasm Metastasis , Cell Line, Tumor , Middle Aged , Mice, Nude , Cell Movement
3.
Funct Integr Genomics ; 24(3): 112, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849609

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC), a globally common cancer, often presents late and shows high resistance to chemotherapy, resulting in suboptimal treatment efficacy. Components from traditional Chinese medicines have been recognized for their anti-cancer properties. OBJECTIVE: Exploring the mechanism of Schisandra chinensis lignans and acteoside in suppressing Epithelial-Mesenchymal Transition (EMT) in hepatoma cells through the Extracellular signal-Regulated Kinases (ERK)1/2 pathway and identifying biomarkers, molecular subtypes, and targets via multi-omics for precision oncology. METHODS: Proliferation was assessed using cell counting kit-8 (CCK-8) assays, with scratch and transwell assays for evaluating invasion and migration. Flow cytometry quantified apoptosis rates. Expression levels of CCL20, p-ERK1/2, c-Myc, Vimentin, and E-cadherin/N-cadherin were analyzed by real-time PCR and Western blot. Tumor volume was calculated with a specific formula, and growth. RESULTS: The Schisandra chinensis lignans and acteoside combination decreased CCL20 expression, inhibited hepatoma proliferation and migration, and enhanced apoptosis in a dose- and time-dependent manner. Molecular analysis revealed increased E-cadherin and decreased N-cadherin, p-ERK1/2, c-Myc, and Vimentin expression, indicating ERK1/2 pathway modulation. In vivo, treated nude mice showed significantly reduced tumor growth and volume. CONCLUSION: Schisandra chinensis lignans and acteoside potentially counteract CCL20-induced EMT, invasion, and migration in hepatocellular carcinoma cells via the ERK1/2 pathway, enhancing apoptosis. Multi-omics analysis further aids in pinpointing novel biomarkers for precision cancer therapy.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Cell Proliferation , Epithelial-Mesenchymal Transition , Glucosides , Lignans , Liver Neoplasms , MAP Kinase Signaling System , Phenols , Schisandra , Epithelial-Mesenchymal Transition/drug effects , Humans , Lignans/pharmacology , Schisandra/chemistry , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Animals , Mice , Cell Proliferation/drug effects , MAP Kinase Signaling System/drug effects , Phenols/pharmacology , Glucosides/pharmacology , Apoptosis/drug effects , Cell Movement/drug effects , Mice, Nude , Cell Line, Tumor , Chemokine CCL20/metabolism , Chemokine CCL20/genetics , Mice, Inbred BALB C , Hep G2 Cells , Multiomics , Polyphenols
4.
J Cell Mol Med ; 28(10): e18391, 2024 May.
Article in English | MEDLINE | ID: mdl-38809918

ABSTRACT

TH1L (also known as NELF-C/D) is a member of the Negative Elongation Factor (NELF) complex, which is a metazoan-specific factor that regulates RNA Polymerase II (RNAPII) pausing and transcription elongation. However, the function and molecular mechanisms of TH1L in cancer progression are still largely unknown. In this study, we found that TH1L was highly expressed in colorectal cancer (CRC) tissues and the faeces of CRC patients. Overexpression of TH1L significantly enhanced the proliferation and migration of CRC cells, while its knockdown markedly suppressed these processes. In mechanism, RNA sequencing revealed that CCL20 was upregulated in TH1L-overexpressed CRC cells, leading to activation of the NF-κB signalling pathway. Rescue assays showed that knockdown of CCL20 could impair the tumour-promoting effects of THIL in CRC cells. Taken together, these results suggest that TH1L may play a vital role via the CCL20/NF-κB signalling pathway in CRC proliferation and migration and may serve as a potential target for diagnosis and therapy of CRC.


Subject(s)
Cell Movement , Cell Proliferation , Chemokine CCL20 , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , NF-kappa B , Signal Transduction , Female , Humans , Male , Middle Aged , Cell Line, Tumor , Cell Movement/genetics , Chemokine CCL20/metabolism , Chemokine CCL20/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , NF-kappa B/metabolism
5.
J Cell Mol Med ; 28(10): e18445, 2024 May.
Article in English | MEDLINE | ID: mdl-38801403

ABSTRACT

Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS), a prevalent urological ailment, exerts a profound influence upon the well-being of the males. Autoimmunity driven by Th17 cells has been postulated as a potential factor in CP/CPPS pathogenesis. Nonetheless, elucidating the precise mechanisms governing Th17 cell recruitment to the prostate, triggering inflammation, remained an urgent inquiry. This study illuminated that CCL20 played a pivotal role in attracting Th17 cells to the prostate, thereby contributing to prostatitis development. Furthermore, it identified prostate stromal cells and immune cells as likely sources of CCL20. Additionally, this research unveiled that IL-17A, released by Th17 cells, could stimulate macrophages to produce CCL20 through the NF-κB/MAPK/PI3K pathway. The interplay between IL-17A and CCL20 establishes a positive feedback loop, which might serve as a critical mechanism underpinning the development of chronic prostatitis, thus adding complexity to its treatment challenges.


Subject(s)
Autoimmune Diseases , Chemokine CCL20 , Chemotaxis , Interleukin-17 , Prostatitis , Th17 Cells , Male , Prostatitis/immunology , Prostatitis/pathology , Prostatitis/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Chemokine CCL20/metabolism , Chemokine CCL20/genetics , Animals , Interleukin-17/metabolism , Interleukin-17/immunology , Mice , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Macrophages/metabolism , Macrophages/immunology , Disease Models, Animal , NF-kappa B/metabolism , Signal Transduction , Humans , Mice, Inbred C57BL , Prostate/pathology , Prostate/metabolism , Prostate/immunology , Phosphatidylinositol 3-Kinases/metabolism , Autoimmunity
6.
Cell Commun Signal ; 22(1): 224, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600588

ABSTRACT

BACKGROUND: Activation of VDR pathway was a promising anti-tumor therapy strategy. However, numerous clinical studies have demonstrated the effect of activating VDR is limited, which indicates that VDR plays a complex role in vivos. METHODS: We analyzed the TCGA database to examine the association between VDR expression and immune cell infiltration in pancreatic adenocarcinoma (PAAD). Western blot, ELISA, ChIP, and dual-luciferase reporter assays were performed to determine the mechanism of VDR regulating CCL20. Migration assay and immunofluorescence were used to investigate the role of CCL20 in M2 macrophage polarization and recruitment. We employed multiplexed immunohistochemical staining and mouse models to validate the correlation of VDR on macrophages infiltration in PAAD. Flow cytometry analysis of M2/M1 ratio in subcutaneous graft tumors. RESULTS: VDR is extensively expressed in PAAD, and patients with elevated VDR levels exhibited a significantly reduced overall survival. VDR expression in PAAD tissues was associated with increased M2 macrophages infiltration. PAAD cells overexpressing VDR promote macrophages polarization towards M2 phenotype and recruitment in vitro and vivo. Mechanistically, VDR binds to the CCL20 promoter and up-regulates its transcription. The effects of polarization and recruitment on macrophages can be rescued by blocking CCL20. Finally, the relationship between VDR and M2 macrophages infiltration was evaluated using clinical cohort and subcutaneous graft tumors. A positive correlation was demonstrated between VDR/CCL20/CD163 in PAAD tissues and mouse models. CONCLUSION: High expression of VDR in PAAD promotes M2 macrophage polarization and recruitment through the secretion of CCL20, which activates tumor progression. This finding suggests that the combination of anti-macrophage therapy may improve the efficacy of VDR activation therapy in PAAD.


Subject(s)
Adenocarcinoma , Chemokine CCL20 , Pancreatic Neoplasms , Receptors, Calcitriol , Animals , Humans , Mice , Adenocarcinoma/pathology , Cell Line, Tumor , Chemokine CCL20/metabolism , Macrophages/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phenotype , Receptors, Calcitriol/metabolism , Tumor Microenvironment , Tumor-Associated Macrophages
7.
Br J Pharmacol ; 181(15): 2429-2442, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38532634

ABSTRACT

BACKGROUND AND PURPOSE: The interleukin (IL)-36 pathway is a critical player in the pathogenesis of pustular psoriasis. However, therapies targeting this pathway are limited or unaffordable (e.g. the anti-IL-36 receptor antibody). AMP-activated protein kinase (AMPK), a regulator of cellular energy and metabolism, is known to participate in inflammatory diseases. However, its role in IL-36-induced skin inflammation remains unclear. Therefore, we sought to investigate the role of AMPK signals in regulating IL-36-induced responses in the skin. EXPERIMENTAL APPROACH: IL-36-stimulated primary normal human epidermal keratinocytes (NHEKs) and IL-36-injected (intradermally) BALB/c mice served as the cell and animal models, respectively. Additionally, 5-aminoimidazole-4-carboxamide riboside (AICAR) and A769662 served as AMPK activators. KEY RESULTS: AICAR and A769662 significantly suppressed the IL-36-induced IL-8 (CXCL8) and CCL20 production from NHEKs. IL-36-induced IκBζ protein expression was prominently reduced and IKK/IκBα phosphorylation was attenuated by AICAR and A769662. Conversely, AMPKα knockdown increased IκBζ protein expression and IKK/IκBα phosphorylation in IL-36-treated NHEKs. Furthermore, AICAR and A769662 enhanced IL-36-induced-IκBζ protein degradation via the proteasome-dependent but not the lysosome-dependent pathway. Pretreatment of NHEKs with IL-36 slightly suppressed the AICAR- and A769662-triggered phosphorylation of AMPK and acetyl-CoA carboxylase. In the mouse model, topical application of AICAR significantly reduced ear swelling, redness, epidermal thickening, neutrophil infiltration and inflammatory and antimicrobial peptide gene expression. CONCLUSION AND IMPLICATIONS: AMPK activation suppresses IL-36-induced IL-8 and CCL20 release by regulating IκBζ expression in keratinocytes and reduces IL-36-induced skin inflammation in mice, suggesting that AMPK activation is a potential strategy for treating patients with IL-36-mediated inflammatory skin disorders.


Subject(s)
AMP-Activated Protein Kinases , Aminoimidazole Carboxamide , Mice, Inbred BALB C , Skin , Animals , AMP-Activated Protein Kinases/metabolism , Humans , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Skin/drug effects , Skin/pathology , Skin/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Ribonucleotides/pharmacology , Interleukin-1/metabolism , Mice , Interleukin-8/metabolism , Chemokine CCL20/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Cells, Cultured , Enzyme Activation/drug effects , Adaptor Proteins, Signal Transducing
8.
Phytomedicine ; 128: 155524, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552435

ABSTRACT

BACKGROUND: Psoriasis is an immune-mediated chronic inflammatory skin disease. Current research suggests that the long-term persistence and recurrence of psoriasis are closely related to the feedback loop formed between keratinocytes and immune cells, especially in Th 17 or DC cells expressing CCR6. CCL20 is the ligand of CCR6. Therefore, drugs that block the expression of CCL20 or CCR6 may have a certain therapeutic effect on psoriasis. Glycyrrhetinic acid (GA) is the main active ingredient of the plant drug licorice and is often used to treat autoimmune diseases, including psoriasis. However, its mechanism of action is still unclear. METHODS: Psoriasis like skin lesion model was established by continuously applying imiquimod on the back skin of normal mice and CCR6-/- mice for 7 days. The therapeutic and preventive effects of glycyrrhetinic acid (GA) on the model were observed and compared. The severity of skin injury is estimated through clinical PASI scores and histopathological examination. qRT-PCR and multiple cytoline assay were explored to detect the expression levels of cytokines in animal dorsal skin lesions and keratinocyte line HaCaT cells, respectively. The dermis and epidermis of the mouse back were separated for the detection of CCL20 expression. Transcription factor assay was applied to screen, and luciferase activity assay to validate transcription factors regulated by GA. Technology of surface plasmon laser resonance with LC-MS (SPR-MS), molecular docking, and enzyme activity assay were used to identified the target proteins for GA. Finally, we synthesized different derivatives of 18beta-GA and compared their effects, as well as glycyrrhetinic acid (GL), on the skin lesion of imiquimod-induced mice to evaluate the active groups of 18beta-GA. RESULTS: 18ß-glycyrrhetinic acid (GA) improved IMQ-induced psoriatic lesions, and could specifically reduce the chemokine CCL20 level of the epidermis in lesion area, especially in therapeutic administration manner. The process was mainly regulated by transcription factor ATF2 in the keratinocytes. In addition, GUSB was identified as the primary target of 18ßGA. Our findings indicated that the subject on molecular target research of glycyrrhizin should be glycyrrhetinic acid (GA) instead of glycyrrhizic acid (GL), because GL showed little activity in vitro or in vivo. Apart from that, α, ß, -unsaturated carbonyl in C11/12 positions was crucial or unchangeable to its activity of 18ßGA, while proper modification of C3 or C30 position of 18ßGA may vastly increase its activity. CONCLUSION: Our research indicates that 18ßGA exerted its anti-psoriasis effect mainly by suppressing ATF2 and downstream molecule CCL20 predominately through α, ß, -unsaturated carbonyl at C11/12 position binding to GUSB in the keratinocytes, and then broke the feedback loop between keratinocytes and CCR6-expressing immune cells. GA has more advantages than GL in the external treatment of psoriasis. A highlight of this study is to investigate the influence of special active groups on the pharmacological action of a natural product, inspired by the molecular docking result.


Subject(s)
Chemokine CCL20 , Glycyrrhetinic Acid , Glycyrrhetinic Acid/analogs & derivatives , Psoriasis , Receptors, CCR6 , Signal Transduction , Animals , Glycyrrhetinic Acid/pharmacology , Chemokine CCL20/metabolism , Psoriasis/drug therapy , Humans , Mice , Signal Transduction/drug effects , Receptors, CCR6/metabolism , Activating Transcription Factor 2/metabolism , Disease Models, Animal , Keratinocytes/drug effects , HaCaT Cells , Imiquimod , Skin/drug effects , Skin/metabolism , Male , Mice, Inbred C57BL , Molecular Docking Simulation , Glycyrrhiza/chemistry
9.
J Pediatr Gastroenterol Nutr ; 78(2): 211-216, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38374573

ABSTRACT

BACKGROUND: Food protein-induced allergic proctocolitis (FPIAP) is a nonimmunoglobulin (IgE)-mediated food hypersensitivity and the exact mechanisms that cause FPIAP are unknown. Chemokines play crucial roles in the development of allergic diseases. OBJECTIVE: To examine serum levels of a group of chemokines in infants with FPIAP. METHODS: In 67 infants with FPIAP and 65 healthy infants, we measured serum levels of mucosa-associated epithelial chemokine (MEC/CCL28), thymus-expressed chemokine (TECK/CCL25), CX3CL1 and macrophage inflammatory protein (MIP)-3a/CCL20. RESULTS: Infants with FPIAP had a lower median value of MIP3a/CCL20 than healthy infants [0.7 (0-222) vs. 4 (0-249) pg/mL, respectively] (p < 0.001). Infants with MIP3a/CCL20 levels ≤0.95 pg/mL have 13.93 times more risk of developing FPIAP than infants with MIP3a/CCL20 levels >0.95 pg/mL. Serum MEC/CCL28, TECK/CCL25, and CX3CL1 levels were similar between the infants with FPIAP and the control group. CONCLUSION: MIP3a/CCL20 serum levels were reduced in infants with FPIAP compared with healthy controls. Whether this finding has a role in pathogenesis remains to be determined.


Subject(s)
Chemokine CCL20 , Food Hypersensitivity , Proctocolitis , Humans , Infant , Food Hypersensitivity/complications , Macrophage Inflammatory Proteins , Mucous Membrane , Chemokine CCL20/blood , Chemokine CCL20/chemistry
10.
Environ Toxicol ; 39(5): 3211-3224, 2024 May.
Article in English | MEDLINE | ID: mdl-38356310

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterized by lung inflammation and high mortality rates. Lung cancer, specifically lung adenocarcinoma (LUAD), is a major cause of cancer-related deaths worldwide. Patients with LUAD, particularly those undergoing chemotherapy, are more likely to develop ARDS. ARDS inflicts major malfunctioning in the immune system. We suspected a certain shared pathogenic mechanism between these diseases. This study analyzed 503 LUAD patients from the TCGA-LUAD cohort as the training set, 85 LUAD cases from the GSE30219 cohort as the validation set, and 24 RNA-seq samples from ARDS mice model and control groups in the GSE2411 cohort. The differentially expressed genes (DEGs) of ARDS were analyzed using the limma package and screened by Cox and Lasso analysis. ssGSEA and xCell algorithms were utilized for immune landscaping. RT-qPCR analysis was used to determine the mRNA levels of key genes in both the LPS-induced ARDS model and human LUAD cell lines. We identified DEGs between ARDS and control groups, which were highly associated with cytokine production and leukocyte migration. A prognosis model for LUAD patients was developed based on the expressions of the key genes in the ARDS-derived DEGs, including FMO3, IL1R2, CCL20, CFTR, and GADD45G. A satisfactory efficacy was observed in both the training and validation cohorts. The model demonstrated increased effectiveness in predicting the intratumor immune profile and mutation status of LUAD. Moreover, we utilized LPS to induce the ARDS model, which resulted in elevated expressions of IL1R2 and CCL20. Additionally, CCL20 was upregulated in cancerous LUAD cell lines. We developed an ARDS-based model for stratifying LUAD prognosis. CCL20 was found to be elevated in both the ARDS model and LUAD, suggesting a shared underlying mechanism of these two diseases.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Animals , Mice , Humans , Lipopolysaccharides , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Cell Line , Chemokine CCL20
11.
J Invest Dermatol ; 144(7): 1557-1567.e11, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38272207

ABSTRACT

The migration of γδ T lymphocytes toward skin lesions and their concomitant pathogenic IL-17A production play a crucial role in the pathogenesis of psoriasis. However, the regulatory mechanisms of IL-17A production by γδ T cells and their migration remain to be fully explored. Intracellular GRP78 is a molecular chaperone that regulates endoplasmic reticulum stress, whereas secretory GRP78, as a member of the resolution-associated molecular patterns, exerts immunoregulatory effects. In this study, we reported that both the intracellular GRP78 in skin lesions and secretory GRP78 in the serum were significantly decreased in patients with psoriasis. A GRP78 knockdown exacerbated imiquimod-induced skin inflammation, whereas the application of recombinant GRP78 protein or BIP inducer X (a GRP78 inducer) attenuated the dermatitis. Mechanistically, the GRP78 knockdown in keratinocytes enhanced the production of chemokines, specifically CCL20, which regulates γδ T-cell migration. Moreover, recombinant GRP78 was found to directly bind to γδ T cells to suppress its migration ability and proinflammatory capacities by downregulating the CCR6 and IL-17A expression. Collectively, our results uncovered a pivotal role of GRP78 in the pathogenesis of psoriasis, which was mainly exerted by regulating the interaction between keratinocytes and γδ T cells, and might provide a promising target for psoriasis therapy.


Subject(s)
Down-Regulation , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins , Interleukin-17 , Keratinocytes , Psoriasis , Receptors, CCR6 , Endoplasmic Reticulum Chaperone BiP/metabolism , Humans , Keratinocytes/metabolism , Keratinocytes/immunology , Interleukin-17/metabolism , Psoriasis/immunology , Psoriasis/pathology , Psoriasis/metabolism , Receptors, CCR6/metabolism , Receptors, CCR6/genetics , Animals , Mice , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Cell Movement , Male , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/genetics , Imiquimod , Female , Skin/immunology , Skin/pathology , Skin/metabolism , Disease Models, Animal , Chemokine CCL20/metabolism , Chemokine CCL20/genetics
12.
FASEB J ; 38(2): e23407, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38197598

ABSTRACT

This study investigated the role of the axis involving chemokine receptor 6 (CCR6) and its ligand chemokine (C-C motif) ligand 20 (CCL20) in acute kidney disease (AKD) using an ischemia-reperfusion injury (IRI) model. The model was established by clamping the unilateral renal artery pedicle of C57BL/6 mice for 30 min, followed by evaluation of CCL20/CCR6 expression at 4 weeks post-IRI. In vitro studies were conducted to examine the effects of hypoxia and H2 O2 -induced oxidative stress on CCL20/CCR6 expression in kidney tissues of patients with AKD and chronic kidney disease (CKD). Tubular epithelial cell apoptosis was more severe in C57BL/6 mice than in CCL20 antibody-treated mice, and CCR6, NGAL mRNA, and IL-8 levels were higher under hypoxic conditions. CCL20 blockade ameliorated apoptotic damage in a dose-dependent manner under hypoxia and reactive oxygen species injury. CCR6 expression in IRI mice indicated that the disease severity was similar to that in patients with the AKD phenotype. Morphometry of CCL20/CCR6 expression revealed a higher likelihood of CCR6+ cell presence in CKD stage 3 patients than in stage 1-2 patients. Kidney tissues of patients with CKD frequently contained CCL20+ cells, which were positively correlated with interstitial inflammation. CCL20/CCR6 levels were increased in fibrotic kidneys at 4 and 8 weeks after 5/6 nephrectomy. These findings suggest that modulating the CCL20/CCR6 pathway is a potential therapeutic strategy for managing the progression of AKD to CKD.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Humans , Animals , Mice , Mice, Inbred C57BL , Ligands , Kidney , Epithelial Cells , Renal Artery , Hypoxia , Receptors, CCR6/genetics , Chemokine CCL20/genetics
13.
Exp Mol Med ; 56(2): 383-394, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297161

ABSTRACT

M2-like tumor-associated macrophages (TAMs) are risk factors for cancer progression and metastasis. However, the mechanisms underlying their polarization are still not fully understood. Although cathepsin D (Cat D) has been reported as a procarcinogenic factor, little is known about the functional role of Cat D in the tumor microenvironment (TME). This study aimed to explore the effect and molecular mechanisms of Cat D in the TME. Cat D knockout (KO) altered the cytokine secretion pattern and induced TAM reprogramming from the M2 to M1 subtype, thereby preventing epithelial-mesenchymal transition and tumor metastasis. Mechanistically, we identified transforming growth factor beta-induced protein (TGFBI) as a Cat D target protein that is specifically associated with TAM polarization. Elevated TGFBI expression in Cat D KO cancer cells resulted in a decline in M2-like TAM polarization. Our RNA-sequencing results indicated that the cancer cell-secreted chemokine CCL20 is a major secretory chemokine for Cat D-TGFBI-mediated TAM polarization. In contrast, Cat D overexpression accelerated TAM polarization into M2-like cells by suppressing TGFBI expression. In addition, the double Cat D and TGFBI KO rescued the inhibitory effects of Cat D KO on tumor metastasis by controlling TAM and T-cell activation. These findings indicated that Cat D contributes to cancer metastasis through TGFBI-mediated TAM reprogramming. Cat D deletion inhibits M2-like TAM polarization through TGFBI-mediated CCL20 expression, reprogramming the immunosuppressive TME. Our results open a potential new avenue for therapy focused on eliminating tumor metastasis.


Subject(s)
Cathepsin D , Cell Polarity , Chemokine CCL20 , Neoplasm Metastasis , Transforming Growth Factor beta , Tumor-Associated Macrophages , Biological Transport , Cathepsin D/genetics , Cathepsin D/metabolism , Signal Transduction , Female , Animals , Mice , Mice, SCID , Transforming Growth Factor beta/metabolism
14.
Exp Neurol ; 370: 114561, 2023 12.
Article in English | MEDLINE | ID: mdl-37802382

ABSTRACT

Intraventricular hemorrhage (IVH) commonly occurs as an extension of intracerebral hemorrhage (ICH) into the brain ventricular system, leading to worse outcomes without effective management. Using a mouse model of IVH, we found that impaired neurogenesis is evident in the subventricular zone (SVZ), along with persistent microglia activation, leukocyte infiltration and cell death. Pharmacological depletion of microglia using PLX3397, an inhibitor of colony stimulating factor 1 receptor (CSF1R), promotes neurogenesis, and alleviated delayed functional impairments in IVH mice. Meanwhile, an elevated level of microglia-derived CC chemokine ligand 20 (CCL20) is observed in the SVZ following IVH, which can induce the upregulation of pro-inflammatory factors in microglia and impair the proliferation and survival of neural stem cells (NSCs) in vitro. Blocking CCL20 in microglia leads to downregulation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/the nuclear factor-κB (NF-κB) signaling pathway, which may contribute to CCL20-dependent pro-inflammatory responses and neural injury. These findings demonstrate a detrimental role of microglia in the neurogenesis and neurorepair after IVH in which CCL20 likely plays a role.


Subject(s)
Chemokines, CC , Microglia , Humans , Microglia/metabolism , Chemokines, CC/metabolism , Ligands , Cerebral Hemorrhage/metabolism , Neurogenesis/physiology , Chemokine CCL20/metabolism
15.
Int J Mol Sci ; 24(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686029

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases, ranging from liver steatosis to metabolic dysfunction-associated steatohepatitis (MASH), increasing the risk of developing cirrhosis and hepatocellular carcinoma (HCC). Fibrosis within MASLD is critical for disease development; therefore, the identification of fibrosis-driving factors is indispensable. We analyzed the expression of interleukin 32 (IL-32) and chemokine CC ligand 20 (CCL20), which are known to be linked with inflammation and fibrosis, and for their expression in MASLD and hepatoma cells. RT-PCR, ELISA and Western blotting analyses were performed in both human liver samples and an in vitro steatosis model. IL-32 and CCL20 mRNA expression was increased in tissues of patients with NASH compared to normal liver tissue. Stratification for patatin-like phospholipase domain-containing protein 3 (PNPLA3) status revealed significance for IL-32 only in patients with I148M (rs738409, CG/GG) carrier status. Furthermore, a positive correlation was observed between IL-32 expression and steatosis grade, and between IL-32 as well as CCL20 expression and fibrosis grade. Treatment with the saturated fatty acid palmitic acid (PA) induced mRNA and protein expression of IL-32 and CCL20 in hepatoma cells. This induction was mitigated by the substitution of PA with monounsaturated oleic acid (OA), suggesting the involvement of oxidative stress. Consequently, analysis of stress-induced signaling pathways showed the activation of Erk1/2 and p38 MAPK, which led to an enhanced expression of IL-32 and CCL20. In conclusion, cellular stress in liver epithelial cells induced by PA enhances the expression of IL-32 and CCL20, both known to trigger inflammation and fibrosis.


Subject(s)
Fatty Liver , Hepatocytes , Metabolic Diseases , Humans , Carcinoma, Hepatocellular/genetics , Chemokine CCL20/genetics , Chemokines , Hepatocytes/metabolism , Ligands , Liver Cirrhosis/genetics , Liver Neoplasms/genetics , Palmitic Acid , Up-Regulation , Fats, Unsaturated/metabolism
16.
J Cardiovasc Pharmacol ; 82(6): 458-469, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37721971

ABSTRACT

ABSTRACT: Damage to the abdominal aortic wall and the local inflammatory response are key factors resulting in abdominal aortic aneurysm (AAA) formation. During this process, macrophage polarization plays a key role. However, in AAA, the regulatory mechanism of macrophages is still unclear, and further research is needed. In this study, we found that the transcription factor TCF3 was expressed at low levels in AAA. We overexpressed TCF3 and found that TCF3 could inhibit MMP and inflammatory factor expression and promote M2 macrophage polarization, thereby inhibiting the progression of AAA. Knocking down TCF3 could promote M1 polarization and MMP and inflammatory factor expression. In addition, we found that TCF3 increased miR-143-5p expression through transcriptional activation of miR-143-5p , which further inhibited expression of the downstream chemokine CCL20 and promoted M2 macrophage polarization. Our research indicates that TCF3-mediated macrophage polarization plays a key regulatory role in AAA, complementing the role and mechanism of macrophages in the occurrence and development of AAA and providing a scientific basis for AAA treatment.


Subject(s)
Aortic Aneurysm, Abdominal , MicroRNAs , Humans , Transcription Factors/metabolism , Chemokine CCL20/genetics , Chemokine CCL20/metabolism , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/metabolism , Macrophages/metabolism , Inflammation/genetics , Inflammation/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism
17.
J Int Med Res ; 51(8): 3000605231171762, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37571985

ABSTRACT

OBJECTIVES: CCL20 is a chemotactic factor that is involved in immune cell recruitment and cancer progression. However, the role of CCL20 in the prognosis of breast cancer remains unclear. This study analyzed correlations between CCL20 expression and immune infiltration, clinicopathological parameters, and prognosis in breast cancer patients. METHODS: Correlations between CCL20 expression and clinicopathological parameters, prognosis, and immune infiltration in breast cancer were determined using the TIMER, UALCAN, and PrognoScan databases. Furthermore, gene-gene and protein-protein interactions were determined using GeneMANIA and STING network construction, respectively. RESULTS: CCL20 expression was significantly upregulated in breast cancer and had significant associations with clinicopathological features, including race, sex, age, menopause status, cancer stage, cancer subclass, and nodal metastasis; moreover, patients with higher CCL20 expression exhibited poor prognosis. Meanwhile, CCL20 expression was significantly correlated with the infiltration of immune cells in breast cancer, including monocytes, neutrophils, tumor-associated macrophages, Th1 cells, regulatory T cells, and exhausted T cells. Moreover, the network of CCL20 expression showed the majority genes and proteins were associated with immune reactions. CONCLUSIONS: CCL20 is a prognosis-related biomarker in breast cancer on the basis of its correlation with immune infiltration levels and has potential to also be a therapeutic target.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/genetics , Databases, Factual , Monocytes , Neutrophils , Prognosis , Biomarkers, Tumor/genetics , Chemokine CCL20/genetics
18.
Gastric Cancer ; 26(6): 904-917, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37572185

ABSTRACT

BACKGROUND: Peroxisome proliferator-activated receptor delta (PPARδ) promotes inflammation and carcinogenesis in many organs, but the underlying mechanisms remains elusive. In stomachs, PPARδ significantly increases chemokine Ccl20 expression in gastric epithelial cells while inducing gastric adenocarcinoma (GAC). CCR6 is the sole receptor of CCL20. Here, we examine the role of PPARδ-mediated Ccl20/Ccr6 signaling in GAC carcinogenesis and investigate the underlying mechanisms. METHODS: The effects of PPARδ inhibition by its specific antagonist GSK3787 on GAC were examined in the mice with villin-promoter-driven PPARδ overexpression (PpardTG). RNAscope Duplex Assays were used to measure Ccl20 and Ccr6 levels in stomachs and spleens. Subsets of stomach-infiltrating immune cells were measured via flow cytometry or immunostaining in PpardTG mice fed GSK3787 or control diet. A panel of 13 optimized proinflammatory chemokines in mouse sera were quantified by an enzyme-linked immunosorbent assay. RESULTS: GSK3787 significantly suppressed GAC carcinogenesis in PpardTG mice. PPARδ increased Ccl20 level to chemoattract Ccr6+ immunosuppressive cells, including tumor-associated macrophages, myeloid-derived suppressor cells and T regulatory cells, but decreased CD8+ T cells in gastric tissues. GSK3787 suppressed PPARδ-induced gastric immunosuppression by inhibiting Ccl20/Ccr6 axis. Furthermore, Ccl20 protein levels increased in sera of PpardTG mice starting at the age preceding gastric tumor development and further increased with GAC progression as the mice aged. GSK3787 decreased the PPARδ-upregulated Ccl20 levels in sera of the mice. CONCLUSIONS: PPARδ dysregulation of Ccl20/Ccr6 axis promotes GAC carcinogenesis by remodeling gastric tumor microenvironment. CCL20 might be a potential biomarker for the early detection and progression of GAC.


Subject(s)
Adenocarcinoma , PPAR delta , Stomach Neoplasms , Humans , Animals , Mice , Chemokine CCL20/genetics , Chemokine CCL20/metabolism , PPAR delta/genetics , CD8-Positive T-Lymphocytes , Tumor Microenvironment , Carcinogenesis , Receptors, CCR6/genetics , Receptors, CCR6/metabolism
19.
Front Immunol ; 14: 1216376, 2023.
Article in English | MEDLINE | ID: mdl-37398643

ABSTRACT

The outcome of pancreatic ductal adenocarcinoma (PDAC) remains poor due to few therapeutic options available and challenges with precision therapy to target each tumour's specific characteristics. In this study, a biologically meaningful patient stratification-prognostic model with therapeutic suggestion value based on tumor senescence was developed and validated in multiple independent cohorts. Further mechanistic investigation based on single-cell transcriptomic data and in vitro experiments revealed that complement derived from non-senescent tumor cells stimulates M1 differentiation and antigen presentation, while senescent tumor cells secrete CCL20 to favor immunosuppressive M2 polarization. Also, senescent phenotype depends on proteasome function, suggesting that high-risk, high-senescence patients may benefit from proteasome inhibitors, which reverse senescence-mediated resistance to conventional chemotherapy and improve outcome. In conclusion, the current study identified senescence as a tumor-specific, hazardous factor associated with immunosuppression in PDAC. Mechanistically, senescence abrogates complement-induced M1 activation and antigen presentation, and upregulates CCL20 to favor M2 polarization. The senescence-related risk model is prognostic and therapeutic-suggestive. In light of the reliance of senescent cells on proteasomal functions, proteasome inhibitors are promising agents for high-risk patients with senescent PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Proteasome Endopeptidase Complex , Proteasome Inhibitors/therapeutic use , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/pathology , Immunosuppression Therapy , Chemokine CCL20 , Pancreatic Neoplasms
20.
Monoclon Antib Immunodiagn Immunother ; 42(4): 117-124, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37428612

ABSTRACT

CC chemokine receptor 6 (CCR6) is a member of the G-protein-coupled receptor family that is highly expressed in B lymphocytes, effector and memory T cells, regulatory T cells, and immature dendritic cells. CCR6 has been revealed to have important functions in many pathological conditions, such as cancer, intestinal bowel disease, psoriasis, and autoimmune diseases. The only CCR6 chemokine ligand, CC motif chemokine ligand 20 (CCL20), is also involved in pathogenesis by interacting with CCR6. The CCL20/CCR6 axis is drawing attention as an attractive therapeutic target for various diseases. In this study, we developed novel monoclonal antibodies (mAbs) against human CCR6 (hCCR6) using the peptide immunization method, which are applicable to flow cytometry and immunohistochemistry. The established anti-hCCR6 mAb, clone C6Mab-19 (mouse IgG1, kappa), reacted with hCCR6-overexpressed Chinese hamster ovary-K1 (CHO/hCCR6), human liver carcinoma (HepG2), and human differentiated hepatoma (HuH-7) cells in flow cytometry. The dissociation constant (KD) of C6Mab-19 was determined as 3.0 × 10-10 M for CHO/hCCR6, 6.9 × 10-10 M for HepG2, and 1.8 × 10-10 M for HuH-7. Thus, C6Mab-19 could bind to exogenously and endogenously expressed hCCR6 with extremely high affinity. Furthermore, C6Mab-19 could stain formalin-fixed paraffin-embedded lymph node tissues from a patient with non-Hodgkin lymphoma by immunohistochemistry. Therefore, C6Mab-19 is suitable for detecting hCCR6-expressing cells and tissues and could be useful for pathological analysis and diagnosis.


Subject(s)
Antibodies, Monoclonal , Chemokine CCL20 , Humans , Animals , Mice , Cricetinae , Chemokine CCL20/metabolism , Receptors, CCR6/metabolism , Flow Cytometry , CHO Cells , Ligands , Cricetulus , Chemokines, CC/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL