Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Int J Mol Sci ; 24(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36675182

ABSTRACT

Chemokines are critically involved in controlling directed leukocyte migration. Spatiotemporal secretion together with local retention processes establish and maintain local chemokine gradients that guide directional cell migration. Extracellular matrix proteins, particularly glycosaminoglycans (GAGs), locally retain chemokines through electrochemical interactions. The two chemokines CCL19 and CCL21 guide CCR7-expressing leukocytes, such as antigen-bearing dendritic cells and T lymphocytes, to draining lymph nodes to initiate adaptive immune responses. CCL21-in contrast to CCL19-is characterized by a unique extended C-terminus composed of highly charged residues to facilitate interactions with GAGs. Notably, both chemokines can trigger common, but also ligand-biased signaling through the same receptor. The underlying molecular mechanism of ligand-biased CCR7 signaling is poorly understood. Using a series of naturally occurring chemokine variants in combination with newly designed site-specific chemokine mutants, we herein assessed CCR7 signaling, as well as GAG interactions. We demonstrate that the charged chemokine C-terminus does not fully confer CCL21-biased CCR7 signaling. Besides the positively charged C-terminus, CCL21 also possesses specific BBXB motifs comprising basic amino acids. We show that CCL21 variants where individual BBXB motifs are mutated retain their capability to trigger G-protein-dependent CCR7 signaling, but lose their ability to interact with heparin. Moreover, we show that heparin specifically interacts with CCL21, but not with CCL19, and thereby competes with ligand-binding to CCR7 and prevents signaling. Hence, we provide evidence that soluble heparin, but not the other GAGs, complexes with CCL21 to define CCR7 signaling in a ligand-dependent manner.


Subject(s)
Cell Movement , Chemokine CCL21 , Heparin , Leukocytes , Receptors, CCR7 , Cell Movement/immunology , Chemokine CCL21/immunology , Glycosaminoglycans , Heparin/pharmacology , Ligands , Receptors, CCR7/immunology , Leukocytes/drug effects , Leukocytes/immunology
2.
PLoS One ; 16(7): e0252805, 2021.
Article in English | MEDLINE | ID: mdl-34197491

ABSTRACT

Chemokines are small proteins that promote leukocyte migration during development, infection, and inflammation. We and others isolated the unique chemokine CCL21, a potent chemo-attractant for naïve T-cells, naïve B-cells, and immature dendritic cells. CCL21 has a 37 amino acid carboxy terminal extension that is distinct from the rest of the chemokine family, which is thought to anchor it to venule endothelium where the amino terminus can interact with its cognate receptor, CCR7. We and others have reported that venule endothelium expressing CCL21 plays a crucial role in attracting naïve immune cells to sites of antigen presentation. In this study we generated a series of monoclonal antibodies to the amino terminus of CCL21 in an attempt to generate an antibody that blocked the interaction of CCL21 with its receptor CCR7. We found one humanized clone that blocked naïve T-cell migration towards CCL21, while memory effector T-cells were less affected. Using this monoclonal antibody, we also demonstrated that CCL21 is expressed in the mucosal venule endothelium of the large majority of inflammatory bowel diseases (IBD), including Crohn's disease, ulcerative colitis, and also in celiac disease. This expression correlated with active IBD in 5 of 6 cases, whereas none of 6 normal bowel biopsies had CCL21 expression. This study raises the possibility that this monoclonal antibody could be used to diagnose initial or recurrent of IBD. Significantly, this antibody could also be used for therapeutic intervention in IBD by selectively interfering with recruitment of naïve immune effector cells to sites of antigen presentation, without harming overall memory immunity.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Chemokine CCL21/immunology , Inflammatory Bowel Diseases/diagnosis , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Chemokine CCL21/genetics , Chemokine CCL21/metabolism , Chemotaxis/drug effects , Endothelium/metabolism , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Mice , Mice, Inbred BALB C , Protein Binding , Receptors, CCR7/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism
3.
Eur J Immunol ; 51(2): 414-432, 2021 02.
Article in English | MEDLINE | ID: mdl-32712954

ABSTRACT

Establishment of immune tolerance is crucial to protect humans against asthma. Promyelocytic leukemia zinc finger (PLZF) is an emerging suppressor of inflammatory responses. CCL21-CCR7 signaling mediates tolerance development. However, whether PLZF and CCL21-CCR7 are required for the development of asthma tolerance is unknown. Here, we found that Zbtb16 (coding PLZF) and Ccl21 were upregulated in OVA-induced asthma tolerance (OT) lungs by RNA-seq. PLZF physically interacted with GATA3 and its expression was higher in GATA3+ Th2 cells and ILC2s in OT lungs. Zbtb16-knockdown in lymphocytes promoted the differentiation of CD3e+ CD4+ T cells, particularly those producing IL-4 and IL-5. Moreover, iNKT cells with high expression of PLZF were recruited into the lungs via draining lymph nodes during tolerance. Blockade of CCL21-CCR7 signaling in OT mice decreased the PLZF+  cell population, abolished CCR7-induced PLZF+ iNKT recruitment to the lungs, enhanced Th2responses and exacerbated lung pathology. In OT mice, respiratory syncytial virus (RSV) infection impeded PLZF+  cell and CCR7+ PLZF+ iNKT cellrecruitment to the lungs and increased airway resistance. Collectively, these results indicate that PLZF could interact with GATA3 and restrain differentiation of IL-4- and IL-5-producing T cells, iNKT cells with high PLZF expression are recruited to the lungs via CCL21-CCR7 signaling to facilitate the development of asthma tolerance.


Subject(s)
Asthma/immunology , Chemokine CCL21/immunology , Immune Tolerance/immunology , Lung/immunology , Natural Killer T-Cells/immunology , Promyelocytic Leukemia Zinc Finger Protein/immunology , Receptors, CCR7/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cell Line, Tumor , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred BALB C , Signal Transduction/immunology , Th2 Cells/immunology
4.
Cancer Immunol Res ; 8(9): 1122-1138, 2020 09.
Article in English | MEDLINE | ID: mdl-32665262

ABSTRACT

Inherent immune suppression represents a major challenge in the treatment of human cancer. The extracellular matrix molecule tenascin-C promotes cancer by multiple mechanisms, yet the roles of tenascin-C in tumor immunity are incompletely understood. Using a 4NQO-induced oral squamous cell carcinoma (OSCC) model with abundant and absent tenascin-C, we demonstrated that tenascin-C enforced an immune-suppressive lymphoid stroma via CCL21/CCR7 signaling, leading to increased metastatic tumors. Through TLR4, tenascin-C increased expression of CCR7 in CD11c+ myeloid cells. By inducing CCL21 in lymphatic endothelial cells via integrin α9ß1 and binding to CCL21, tenascin-C immobilized CD11c+ cells in the stroma. Inversion of the lymph node-to-tumor CCL21 gradient, recruitment of T regulatory cells, high expression of anti-inflammatory cytokines, and matrisomal components were hallmarks of the tenascin-C-instructed lymphoid stroma. Ablation of tenascin-C or CCR7 blockade inhibited the lymphoid immune-suppressive stromal properties, reducing tumor growth, progression, and metastasis. Thus, targeting CCR7 could be relevant in human head and neck tumors, as high tenascin-C expression and an immune-suppressive stroma correlate to poor patient survival.


Subject(s)
Mouth Neoplasms/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Tenascin/immunology , Animals , Chemokine CCL21/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mouth Neoplasms/pathology , Receptors, CCR7/immunology , Recombinant Proteins/pharmacology , T-Lymphocytes, Regulatory/immunology , Tenascin/pharmacology , Tumor Microenvironment/immunology
5.
J Neurooncol ; 147(3): 599-605, 2020 May.
Article in English | MEDLINE | ID: mdl-32274629

ABSTRACT

PURPOSE: Glioblastoma (GBM) is the most common and malignant primary adult brain tumor. Current care includes surgical resection, radiation, and chemotherapy. Recent clinical trials for GBM have demonstrated extended survival using interventions such as tumor vaccines or tumor-treating fields. However, prognosis generally remains poor, with expected survival of 20 months after randomization. Chemokine-based immunotherapy utilizing CCL21 locally recruits lymphocytes and dendritic cells to enhance host antitumor response. Here, we report a preliminary study utilizing CPZ-vault nanoparticles as a vehicle to package, protect, and steadily deliver therapy to optimize CCL21 therapy in a murine flank model of GBM. METHODS: GL261 cells were subcutaneously injected into the left flank of eight-week-old female C57BL/6 mice. Mice were treated with intratumoral injections of either: (1) CCL21-packaged vault nanoparticles (CPZ-CCL21), (2) free recombinant CCL21 chemokine empty vault nanoparticles, (3) empty vault nanoparticles, or 4) PBS. RESULTS: The results of this study showed that CCL21-packaged vault nanoparticle injections can decrease the tumor volume in vivo. Additionally, this study showed mice injected with CCL21-packaged vault nanoparticle had the smallest average tumor volume and remained the only treatment group with a negative percent change in tumor volume. CONCLUSIONS: This preliminary study establishes vault nanoparticles as a feasible vehicle to increase drug delivery and immune response in a flank murine model of GBM. Future animal studies involving an intracranial orthotopic tumor model are required to fully evaluate the potential for CCL21-packaged vault nanoparticles as a strategy to bypass the blood brain barrier, enhance intracranial immune activity, and improve intracranial tumor control and survival.


Subject(s)
Brain Neoplasms/immunology , Brain Neoplasms/pathology , Chemokine CCL21/administration & dosage , Drug Delivery Systems/methods , Glioblastoma/immunology , Glioblastoma/pathology , Immunotherapy/methods , Animals , Brain Neoplasms/therapy , Cell Line, Tumor , Chemokine CCL21/immunology , Female , Glioblastoma/therapy , Mice, Inbred C57BL , Nanoparticles
6.
Cancer Immunol Immunother ; 69(5): 813-824, 2020 May.
Article in English | MEDLINE | ID: mdl-32055920

ABSTRACT

Despite significant therapeutic improvements chronic lymphocytic leukemia (CLL) remains an incurable disease and there is a persistent pursuit of new treatment alternatives. Lurbinectedin, a selective inhibitor of active transcription of protein-coding genes, is currently in phase II/III clinical trials for solid tumors such as small-cell lung cancer (SCLC). In this study, we aimed to evaluate the activity of Lurbinectedin on circulating mononuclear cells from CLL patients and to determine whether Lurbinectedin could affect the cross-talk between B-CLL cells and the tumor microenvironment. We found that Lurbinectedin induced a dose- and time-dependent death in all cell types evaluated, with B cells, monocytes and monocytic myeloid derived suppressor cells (Mo-MDSC) being the most susceptible populations. At sub-apoptotic doses, Lurbinectedin decreased the expression of CCR7 in B-CLL cells and impaired their migration towards CCL19 and CCL21. Furthermore, low concentrations of Lurbinectedin stimulated the synthesis of pro-IL1ß in monocytes and nurse-like cells, without inducing the inflammasome activation. Altogether, these results indicate that Lurbinectedin might have antitumor activity in CLL due to its direct action on leukemic cells in combination with its effects on the tumor microenvironment. Our findings encourage further investigation of Lurbinectedin as a potential therapy for CLL.


Subject(s)
Carbolines/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Tumor Microenvironment/drug effects , Apoptosis/drug effects , Apoptosis/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Survival/drug effects , Cell Survival/immunology , Chemokine CCL19/immunology , Chemokine CCL19/metabolism , Chemokine CCL21/immunology , Chemokine CCL21/metabolism , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/immunology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Primary Cell Culture , Receptors, CCR7/immunology , Receptors, CCR7/metabolism , Tumor Cells, Cultured , Tumor Microenvironment/immunology
7.
Adv Exp Med Biol ; 1231: 67-78, 2020.
Article in English | MEDLINE | ID: mdl-32060847

ABSTRACT

CCL21 promotes immune activity in the tumor microenvironment (TME) by colocalizing dendritic cells (DC) and T cells programing ectopic lymph node architectural structures that correlate with cancer prognosis. Innovative strategies to deliver CCL21 in cancer patients will reactivate the downregulated immune activity in the TME. Immune escape mechanisms are upregulated in the TME that promote tumor immune evasion. CCL21 combined with inhibition of dominant pathways of immune evasion will aid in the development of effective immunotherapy for cancer.


Subject(s)
Chemokine CCL21/immunology , Neoplasms/immunology , Neoplasms/therapy , Tumor Microenvironment/immunology , Animals , Dendritic Cells/immunology , Humans , Immunotherapy , T-Lymphocytes/immunology , Tumor Escape/immunology
8.
Nature ; 577(7790): 416-420, 2020 01.
Article in English | MEDLINE | ID: mdl-31875850

ABSTRACT

Humoral immune responses to immunization and infection and susceptibilities to antibody-mediated autoimmunity are generally lower in males1-3. However, the mechanisms underlying such sexual dimorphism are not well understood. Here we show that there are intrinsic differences between the B cells that produce germinal centres in male and female mice. We find that antigen-activated male B cells do not position themselves as efficiently as female B cells in the centre of follicles in secondary lymphoid organs, in which germinal centres normally develop. Moreover, GPR174-an X-chromosome-encoded G-protein-coupled receptor-suppresses the formation of germinal centres in male, but not female, mice. This effect is intrinsic to B cells, and correlates with the GPR174-enhanced positioning of B cells towards the T-cell-B-cell border of follicles, and the distraction of male, but not female, B cells from S1PR2-driven follicle-centre localization. Biochemical fractionation of conditioned media that induce B-cell migration in a GPR174-dependent manner identifies CCL21 as a GPR174 ligand. In response to CCL21, GPR174 triggers a calcium flux and preferentially induces the migration of male B cells; GPR174 also becomes associated with more Gαi protein in male than in female B cells. Male B cells from orchidectomized mice exhibit impaired GPR174-mediated migration to CCL21, and testosterone treatment rescues this defect. Female B cells from testosterone-treated mice exhibit male-like GPR174-Gαi association and GPR174-mediated migration. Deleting GPR174 from male B cells causes more efficient positioning towards the follicular centre, the formation of more germinal centres and an increased susceptibility to B-cell-dependent experimental autoimmune encephalomyelitis. By identifying GPR174 as a receptor for CCL21 and demonstrating its sex-dependent control of B-cell positioning and participation in germinal centres, we have revealed a mechanism by which B-cell physiology is fine-tuned to impart sexual dimorphism to humoral immunity.


Subject(s)
Chemokine CCL21/immunology , Immunity, Humoral , Receptors, G-Protein-Coupled/immunology , Sex Characteristics , Animals , B-Lymphocytes/immunology , Cell Movement , Cells, Cultured , Chemokine CCL21/genetics , Disease Susceptibility , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Male , Mice , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/genetics
9.
Front Immunol ; 10: 2156, 2019.
Article in English | MEDLINE | ID: mdl-31572374

ABSTRACT

Chemokine receptors play important roles in the immune system and are linked to several human diseases. Targeting chemokine receptors have so far shown very little success owing to, to some extent, the promiscuity of the immune system and the high degree of biased signaling within it. CCR7 and its two endogenous ligands display biased signaling and here we investigate the differences between the two ligands, CCL21 and CCL19, with respect to their biased activation of CCR7. We use bystander bioluminescence resonance energy transfer (BRET) based signaling assays and Transwell migration assays to determine (A) how swapping of domains between the two ligands affect their signaling patterns and (B) how receptor mutagenesis impacts signaling. Using chimeric ligands we find that the chemokine core domains are central for determining signaling outcome as the lack of ß-arrestin-2 recruitment displayed by CCL21 is linked to its core domain and not N-terminus. Through a mutagenesis screen, we identify the extracellular domains of CCR7 to be important for both ligands and show that the two chemokines interact differentially with extracellular loop 2 (ECL-2). By using in silico modeling, we propose a link between ECL-2 interaction and CCR7 signal transduction. Our mutagenesis study also suggests a lysine in the top of TM3, K1303.26, to be important for G protein signaling, but not ß-arrestin-2 recruitment. Taken together, the bias in CCR7 between CCL19 and CCL21 relies on the chemokine core domains, where interactions with ECL-2 seem particularly important. Moreover, TM3 selectively regulates G protein signaling as found for other chemokine receptors.


Subject(s)
Chemokine CCL19/immunology , Chemokine CCL21/immunology , Receptors, CCR7/immunology , Signal Transduction/immunology , Amino Acid Sequence , Animals , Binding Sites/genetics , CHO Cells , Cell Line, Tumor , Chemokine CCL19/genetics , Chemokine CCL19/metabolism , Chemokine CCL21/genetics , Chemokine CCL21/metabolism , Cricetinae , Cricetulus , Humans , Ligands , Mice , Mutation , Protein Binding , Receptors, CCR7/genetics , Receptors, CCR7/metabolism , Sequence Homology, Amino Acid , Signal Transduction/genetics
10.
J Immunother Cancer ; 7(1): 256, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31533865

ABSTRACT

BACKGROUND: Programmed cell death 1 inhibitors have revolutionized therapy for cancer by their outstanding effectiveness. However, they may cause adverse effects, among which inflammatory myopathy is one of the most disabling. To elucidate its mechanism, we analysed muscle biopsies and compared them with other inflammatory myopathies. METHODS: Muscle biopsies from three patients with inflammatory myopathy after treatment with PD-1 inhibitors for cancer were subjected to immunohistochemical and ultrastructural analyses to localize CD8+ cytotoxic cells and markers of lymphoid follicles. For comparison, two cases of polymyositis and one of juvenile dermatomyositis were examined. RESULTS: Nearly identical pathological features were observed in the three cases. In the island-like foci of inflammation, muscle fibers were undergoing degeneration. CD8+ cytotoxic T cells, macrophages, CD4+ cells, and B cells were observed in the foci. CD8+ cells were seen outside and inside the basal lamina of non-necrotic muscle fibers. Lymphoid follicle-like structures with CD21+ follicular dendritic cells were present. The blood vessels in the foci showed features consistent with the high endothelial venules, on which their markers, PNAd and CCL21, were expressed. In polymyositis, blood vessels stained only faintly for PNAd and CCL21, while in juvenile dermatomyositis, in which tertiary lymphoid follicle-like structure was reported in the past, they stained positively. CONCLUSIONS: In inflammatory myopathy associated with PD-1 inhibitors, CD8+ cells appear to predominantly destruct muscle fibers. The presence of lymphoid follicle-like structures and expression of PNAd and CCL21 on the endothelial cells suggest the tertiary lymphoid organs are formed, and involved in the leakage of lymphocytes. Thus, in the three cases examined, formation of the tertiary lymphoid organs is likely to play an important role in genesis of the PD-1 myopathy.


Subject(s)
Antineoplastic Agents, Immunological/adverse effects , Endothelial Cells/pathology , Myositis/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tertiary Lymphoid Structures/immunology , Aged , Antibodies, Monoclonal, Humanized/adverse effects , Biopsy , CD8-Positive T-Lymphocytes/immunology , Chemokine CCL21/immunology , Chemokine CCL21/metabolism , Endothelial Cells/immunology , Female , Humans , Male , Middle Aged , Muscle, Skeletal/cytology , Muscle, Skeletal/drug effects , Muscle, Skeletal/immunology , Muscle, Skeletal/pathology , Myositis/chemically induced , Myositis/pathology , Neoplasms/drug therapy , Neoplasms/immunology , Nivolumab/adverse effects , Programmed Cell Death 1 Receptor/immunology , Tertiary Lymphoid Structures/chemically induced , Tertiary Lymphoid Structures/pathology
11.
Immunol Rev ; 292(1): 9-23, 2019 11.
Article in English | MEDLINE | ID: mdl-31538349

ABSTRACT

Lymph nodes (LNs) are at the cross roads of immunity and tolerance. These tissues are compartmentalized into specialized niche areas by lymph node stromal cells (LN SCs). LN SCs shape the LN microenvironment and guide immunological cells into different zones through establishment of a CCL19 and CCL21 gradient. Following local immunological cues, LN SCs modulate activity to support immune cell priming, activation, and fate. This review will present our current understanding of LN SC subsets roles in regulating T cell tolerance. Three major types of LN SC subsets, namely fibroblastic reticular cells, lymphatic endothelial cells, and blood endothelial cells, are discussed. These subsets serve as scaffolds to support and regulate T cell homeostasis. They contribute to tolerance by presenting peripheral tissue antigens to both CD4 and CD8 T cells. The role of LN SCs in regulating T cell migration and tolerance induction is discussed. Looking forward, recent advances in bioengineered materials and approaches to leverage LN SCs to induce T cell tolerance are highlighted, as are current clinical practices that allow for manipulation of the LN microenvironment to induce tolerance. Increased understanding of LN architecture, how different LN SCs integrate immunological cues and shape immune responses, and approaches to induce T cell tolerance will help further combat autoimmune diseases and graft rejection.


Subject(s)
Cellular Microenvironment/immunology , Immune Tolerance/immunology , Lymph Nodes/immunology , Stromal Cells/immunology , T-Lymphocytes/immunology , Adaptive Immunity/immunology , Animals , Chemokine CCL19/immunology , Chemokine CCL19/metabolism , Chemokine CCL21/immunology , Chemokine CCL21/metabolism , Humans , Lymph Nodes/metabolism , Stromal Cells/metabolism , T-Lymphocytes/metabolism
12.
Mol Immunol ; 112: 399-405, 2019 08.
Article in English | MEDLINE | ID: mdl-31299495

ABSTRACT

The spleen is an important secondary lymph organ. Splenomegaly induced by anemia could affect the function of spleen in immune responses. We observe that anemia induced in mice with reduced peripheral T cell trafficking to the spleen T cell zones as well as CCL21 and CCL19 expression. In accordance with previous research, we found that the production of EPO in the mice kidney was sharply increased post anemia. In addition, mice were injected with different doses of EPO. Our results show that with the increased dosage of EPO, the chemokine expression in the spleen is lowered with a decrease in peripheral T cell homing to the spleen T cell zones. At last, our results show that the anemia mice model administrated with anti-EPO antibody had a higher expression of spleen CCL19 and CCL21 and an increased count of periphery T cells trafficking to spleen T cell zones at day 3 post induction. These data indicate that anemia could disturb T cell movement in the spleen, which might further affect T cell immune response, with partial involvement of EPO.


Subject(s)
Anemia/immunology , Cell Movement/immunology , Erythropoietin/immunology , Spleen/immunology , Splenomegaly/immunology , T-Lymphocytes/immunology , Animals , Chemokine CCL19/immunology , Chemokine CCL21/immunology , Mice , Mice, Inbred C57BL
13.
Front Immunol ; 9: 2196, 2018.
Article in English | MEDLINE | ID: mdl-30333825

ABSTRACT

The spatiotemporal regulation of immune responses in the lymph node (LN) depends on its sophisticated tissue architecture, consisting of several subcompartments supported by distinct fibroblastic stromal cells (FSCs). However, the intricate details of stromal structures and associated FSC subsets are not fully understood. Using several gene reporter mice, we sought to discover unrecognized stromal structures and FSCs in the LN. The four previously identified FSC subsets in the cortex are clearly distinguished by the expression pattern of reporters including PDGFRß, CCL21-ser, and CXCL12. Herein, we identified a unique FSC subset expressing both CCL21-ser and CXCL12 in the deep cortex periphery (DCP) that is characterized by preferential B cell localization. This subset was clearly different from CXCL12highLepRhigh FSCs in the medullary cord, which harbors plasma cells. B cell localization in the DCP was controlled chiefly by CCL21-ser and, to a lesser extent, CXCL12. Moreover, the optimal development of the DCP as well as medulla requires B cells. Together, our findings suggest the presence of a unique microenvironment in the cortex-medulla boundary and offer an advanced view of the multi-layered stromal framework constructed by distinct FSC subsets in the LN.


Subject(s)
B-Lymphocytes/immunology , Chemokine CCL21/immunology , Fibroblasts/immunology , Lymph Nodes/immunology , Receptor, Platelet-Derived Growth Factor beta/immunology , Animals , Chemokine CCL21/genetics , Fibroblasts/cytology , Lymph Nodes/cytology , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, Transgenic , Receptor, Platelet-Derived Growth Factor beta/genetics , Stromal Cells/cytology , Stromal Cells/immunology
14.
Front Immunol ; 9: 1571, 2018.
Article in English | MEDLINE | ID: mdl-30093900

ABSTRACT

T cells play a vital role in eliminating pathogenic infections. To activate, naïve T cells search lymph nodes (LNs) for dendritic cells (DCs). Positioning and movement of T cells in LNs is influenced by chemokines including CCL21 as well as multiple cell types and structures in the LNs. Previous studies have suggested that T cell positioning facilitates DC colocalization leading to T:DC interaction. Despite the influence chemical signals, cells, and structures can have on naïve T cell positioning, relatively few studies have used quantitative measures to directly compare T cell interactions with key cell types. Here, we use Pearson correlation coefficient (PCC) and normalized mutual information (NMI) to quantify the extent to which naïve T cells spatially associate with DCs, fibroblastic reticular cells (FRCs), and blood vessels in LNs. We measure spatial associations in physiologically relevant regions. We find that T cells are more spatially associated with FRCs than with their ultimate targets, DCs. We also investigated the role of a key motility chemokine receptor, CCR7, on T cell colocalization with DCs. We find that CCR7 deficiency does not decrease naïve T cell association with DCs, in fact, CCR7-/- T cells show slightly higher DC association compared with wild type T cells. By revealing these associations, we gain insights into factors that drive T cell localization, potentially affecting the timing of productive T:DC interactions and T cell activation.


Subject(s)
Dendritic Cells/immunology , Fibroblasts/immunology , Lymph Nodes/immunology , T-Lymphocytes/immunology , Animals , Cell Communication/immunology , Chemokine CCL21/immunology , Cytokines/immunology , Data Interpretation, Statistical , Dendritic Cells/cytology , Fibroblasts/cytology , Humans , Lymph Nodes/cytology , Lymphocyte Activation , Mice , Models, Animal , Receptors, CCR7/immunology , T-Lymphocytes/cytology
15.
PLoS One ; 13(4): e0193461, 2018.
Article in English | MEDLINE | ID: mdl-29617362

ABSTRACT

Chemotherapy or chemoradiotherapy conditioning regimens required for bone marrow transplantation (BMT) cause significant morbidity and mortality as a result of insufficient immune surveillance mechanisms leading to increased risks of infection and tumor recurrence. Such conditioning causes host stromal cell injury, impairing restoration of the central (thymus) and peripheral (spleen and lymph node) T cell compartments and slow immune reconstitution. The chemokine, CCL21, produced by host stromal cells, recruits T- and B-cells that provide lymphotoxin mediated instructive signals to stromal cells for lymphoid organogenesis. Moreover, T- and B-cell recruitment into these sites is required for optimal adaptive immune responses to pathogens and tumor antigens. Previously, we reported that CCL21 was markedly reduced in secondary lymphoid organs of transplanted animals. Here, we utilized adenoviral CCL21 gene transduced dendritic cells (DC/CCL21) given by footpad injections as a novel approach to restore CCL21 expression in secondary lymphoid organs post-transplant. CCL21 expression in secondary lymphoid organs reached levels of naïve controls and resulted in increased T cell trafficking to draining lymph nodes (LNs). An increase in both lymphoid tissue inducer cells and the B cell chemokine CXCL13 known to be important in LN formation was observed. Strikingly, only mice vaccinated with DC/CCL21 loaded with bacterial, viral or tumor antigens and not recipients of DC/control adenovirus loaded cells or no DCs had a marked increase in the systemic clearance of pathogens (bacteria; virus) and leukemia cells. Because DC/CCL21 vaccines have been tested in clinical trials for patients with lung cancer and melanoma, our studies provide the foundation for future trials of DC/CCL21 vaccination in patients receiving pre-transplant conditioning regimens.


Subject(s)
Bone Marrow Transplantation , Chemokine CCL21/genetics , Genetic Vectors/genetics , Transduction, Genetic , Adenoviridae/genetics , Animals , Bone Marrow Transplantation/methods , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/genetics , Cancer Vaccines/therapeutic use , Cell Line, Tumor , Chemokine CCL21/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Gene Expression , Genetic Vectors/therapeutic use , Humans , Lymph Nodes/immunology , Mice, Inbred C57BL , Vaccination
16.
Infect Immun ; 85(11)2017 11.
Article in English | MEDLINE | ID: mdl-28808159

ABSTRACT

The spleen is known as an important filter for blood-borne pathogens that are trapped by specialized macrophages in the marginal zone (MZ): the CD209+ MZ macrophages (MZMs) and the CD169+ marginal metallophilic macrophages (MMMs). Acute systemic infection strongly impacts MZ populations and the location of T and B lymphocytes. This phenomenon has been linked to reduced chemokine secretion by stromal cells. Brucella spp. are the causative agent of brucellosis, a widespread zoonotic disease. Here, we used Brucella melitensis infection as a model to investigate the impact of chronic stealth infection on splenic MZ macrophage populations. During the late phase of Brucella infection, we observed a loss of both MZMs and MMMs, with a durable disappearance of MZMs, leading to a reduction of the ability of the spleen to take up soluble antigens, beads, and unrelated bacteria. This effect appears to be selective as every other lymphoid and myeloid population analyzed increased during infection, which was also observed following Brucella abortus and Brucella suis infection. Comparison of wild-type and deficient mice suggested that MZ macrophage population loss is dependent on interferon gamma (IFN-γ) receptor but independent of T cells or tumor necrosis factor alpha receptor 1 (TNF-αR1) signaling pathways and is not correlated to an alteration of CCL19, CCL21, and CXCL13 chemokine mRNA expression. Our results suggest that MZ macrophage populations are particularly sensitive to persistent low-level IFN-γ-mediated inflammation and that Brucella infection could reduce the ability of the spleen to perform certain MZM- and MMM-dependent tasks, such as antigen delivery to lymphocytes and control of systemic infection.


Subject(s)
Brucellosis/immunology , Host-Pathogen Interactions , Interferon-gamma/immunology , Macrophages/immunology , Receptors, Interferon/immunology , Spleen/immunology , Animals , Anti-Bacterial Agents/pharmacology , B-Lymphocytes/immunology , B-Lymphocytes/microbiology , Brucella abortus/drug effects , Brucella abortus/immunology , Brucella abortus/pathogenicity , Brucella melitensis/drug effects , Brucella melitensis/immunology , Brucella melitensis/pathogenicity , Brucella suis/drug effects , Brucella suis/immunology , Brucella suis/pathogenicity , Brucellosis/drug therapy , Brucellosis/genetics , Brucellosis/microbiology , Chemokine CCL19/genetics , Chemokine CCL19/immunology , Chemokine CCL21/genetics , Chemokine CCL21/immunology , Chemokine CXCL13/genetics , Chemokine CXCL13/immunology , Chronic Disease , Gene Expression Regulation , Interferon-gamma/genetics , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/immunology , Receptors, Interferon/deficiency , Receptors, Interferon/genetics , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/immunology , Rifampin/pharmacology , Signal Transduction , Spleen/microbiology , Streptomycin/pharmacology , T-Lymphocytes/immunology , T-Lymphocytes/microbiology , Interferon gamma Receptor
17.
J Exp Med ; 214(7): 1925-1935, 2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28611158

ABSTRACT

The chemokine receptor CCR7 directs T cell relocation into and within lymphoid organs, including the migration of developing thymocytes into the thymic medulla. However, how three functional CCR7 ligands in mouse, CCL19, CCL21Ser, and CCL21Leu, divide their roles in immune organs is unclear. By producing mice specifically deficient in CCL21Ser, we show that CCL21Ser is essential for the accumulation of positively selected thymocytes in the thymic medulla. CCL21Ser-deficient mice were impaired in the medullary deletion of self-reactive thymocytes and developed autoimmune dacryoadenitis. T cell accumulation in the lymph nodes was also defective. These results indicate a nonredundant role of CCL21Ser in the establishment of self-tolerance in T cells in the thymic medulla, and reveal a functional inequality among CCR7 ligands in vivo.


Subject(s)
Central Tolerance/immunology , Chemokine CCL21/immunology , Self Tolerance/immunology , T-Lymphocytes/immunology , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Central Tolerance/genetics , Chemokine CCL21/genetics , Chemokine CCL21/metabolism , Dacryocystitis/genetics , Dacryocystitis/immunology , Dacryocystitis/metabolism , Flow Cytometry , Gene Expression/immunology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Mice, Transgenic , Microscopy, Confocal , Receptors, CCR7/immunology , Receptors, CCR7/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Self Tolerance/genetics , T-Lymphocytes/metabolism , Thymocytes/immunology , Thymocytes/metabolism , Thymus Gland/immunology , Thymus Gland/metabolism
18.
Clin Cancer Res ; 23(16): 4556-4568, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28468947

ABSTRACT

Purpose: A phase I study was conducted to determine safety, clinical efficacy, and antitumor immune responses in patients with advanced non-small cell lung carcinoma (NSCLC) following intratumoral administration of autologous dendritic cells (DC) transduced with an adenoviral (Ad) vector expressing the CCL21 gene (Ad-CCL21-DC). We evaluated safety and tumor antigen-specific immune responses following in situ vaccination (ClinicalTrials.gov: NCT01574222).Experimental Design: Sixteen stage IIIB/IV NSCLC subjects received two vaccinations (1 × 106, 5 × 106, 1 × 107, or 3 × 107 DCs/injection) by CT- or bronchoscopic-guided intratumoral injections (days 0 and 7). Immune responses were assessed by tumor antigen-specific peripheral blood lymphocyte induction of IFNγ in ELISPOT assays. Tumor biopsies were evaluated for CD8+ T cells by IHC and for PD-L1 expression by IHC and real-time PCR (RT-PCR).Results: Twenty-five percent (4/16) of patients had stable disease at day 56. Median survival was 3.9 months. ELISPOT assays revealed 6 of 16 patients had systemic responses against tumor-associated antigens (TAA). Tumor CD8+ T-cell infiltration was induced in 54% of subjects (7/13; 3.4-fold average increase in the number of CD8+ T cells per mm2). Patients with increased CD8+ T cells following vaccination showed significantly increased PD-L1 mRNA expression.Conclusions: Intratumoral vaccination with Ad-CCL21-DC resulted in (i) induction of systemic tumor antigen-specific immune responses; (ii) enhanced tumor CD8+ T-cell infiltration; and (iii) increased tumor PD-L1 expression. Future studies will evaluate the role of combination therapies with PD-1/PD-L1 checkpoint inhibition combined with DC-CCL21 in situ vaccination. Clin Cancer Res; 23(16); 4556-68. ©2017 AACR.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Chemokine CCL21/immunology , Dendritic Cells/immunology , Immunotherapy, Adoptive/methods , Lung Neoplasms/therapy , Adult , Aged , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Chemokine CCL21/genetics , Cohort Studies , Dendritic Cells/metabolism , Dendritic Cells/transplantation , Dyspnea/etiology , Female , Humans , Immunotherapy, Adoptive/adverse effects , Injections, Intralesional , Interferon-gamma/immunology , Interferon-gamma/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Male , Middle Aged , Muscle Weakness/etiology , Pain/etiology
19.
JCI Insight ; 2(7): e88533, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28405607

ABSTRACT

HIV vaginal transmission accounts for the majority of newly acquired heterosexual infections. However, the mechanism by which HIV spreads from the initial site of viral entry at the mucosal surface of the female genital tract to establish a systemic infection of lymphoid and peripheral tissues is not known. Once the virus exits the mucosa it rapidly spreads to all tissues, leading to CD4+ T cell depletion and the establishment of a viral reservoir that cannot be eliminated with current treatments. Understanding the molecular and cellular requirements for viral dissemination from the genital tract is therefore of great importance, as it could reveal new strategies to lengthen the window of opportunity to target the virus at its entry site in the mucosa where it is the most vulnerable and thus prevent systemic infection. Using HIV vaginal infection of humanized mice as a model of heterosexual transmission, we demonstrate that blocking the ability of leukocytes to respond to chemoattractants prevented HIV from leaving the female genital tract. Furthermore, blocking lymphocyte egress from lymph nodes prevented viremia and infection of the gut. Leukocyte trafficking therefore plays a major role in viral dissemination, and targeting the chemoattractant molecules involved can prevent the establishment of a systemic infection.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV Infections/transmission , HIV-1/pathogenicity , Receptors, CCR7/immunology , Receptors, Lysosphingolipid/immunology , Vagina/virology , Animals , CD4-Positive T-Lymphocytes/immunology , Cell Movement , Chemokine CCL19/immunology , Chemokine CCL21/immunology , Disease Models, Animal , Female , Humans , Leukocytes/immunology , Mice , Mice, Inbred NOD , Mice, SCID , Sphingosine-1-Phosphate Receptors , Vagina/immunology
20.
Cancer Res ; 77(5): 1083-1096, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28082403

ABSTRACT

Cancer cells tend to metastasize first to tumor-draining lymph nodes, but the mechanisms mediating cancer cell invasion into the lymphatic vasculature remain little understood. Here, we show that in the human breast tumor microenvironment (TME), the presence of increased numbers of RORγt+ group 3 innate lymphoid cells (ILC3) correlates with an increased likelihood of lymph node metastasis. In a preclinical mouse model of breast cancer, CCL21-mediated recruitment of ILC3 to tumors stimulated the production of the CXCL13 by TME stromal cells, which in turn promoted ILC3-stromal interactions and production of the cancer cell motile factor RANKL. Depleting ILC3 or neutralizing CCL21, CXCL13, or RANKL was sufficient to decrease lymph node metastasis. Our findings establish a role for RORγt+ILC3 in promoting lymphatic metastasis by modulating the local chemokine milieu of cancer cells in the TME. Cancer Res; 77(5); 1083-96. ©2017 AACR.


Subject(s)
Breast Neoplasms/immunology , Breast Neoplasms/pathology , Lymphocytes/immunology , Lymphocytes/pathology , Orphan Nuclear Receptors/immunology , Animals , Cell Line, Tumor , Chemokine CCL21/immunology , Chemokine CXCL13/immunology , Female , Humans , Immunity, Innate , Lymphatic Metastasis , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Transgenic , Neoplasm Metastasis , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...