Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.526
Filter
1.
J Immunother Cancer ; 12(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38724465

ABSTRACT

BACKGROUND: CD276 (B7-H3), a pivotal immune checkpoint, facilitates tumorigenicity, invasiveness, and metastasis by escaping immune surveillance in a variety of tumors; however, the underlying mechanisms facilitating immune escape in esophageal squamous cell carcinoma (ESCC) remain enigmatic. METHODS: We investigated the expression of CD276 in ESCC tissues from patients by using immunohistochemistry (IHC) assays. In vivo, we established a 4-nitroquinoline 1-oxide (4NQO)-induced CD276 knockout (CD276wKO) and K14cre; CD276 conditional knockout (CD276cKO) mouse model of ESCC to study the functional role of CD276 in ESCC. Furthermore, we used the 4NQO-induced mouse model to evaluate the effects of anti-CXCL1 antibodies, anti-Ly6G antibodies, anti-NK1.1 antibodies, and GSK484 inhibitors on tumor growth. Moreover, IHC, flow cytometry, and immunofluorescence techniques were employed to measure immune cell proportions in ESCC. In addition, we conducted single-cell RNA sequencing analysis to examine the alterations in tumor microenvironment following CD276 depletion. RESULTS: In this study, we elucidate that CD276 is markedly upregulated in ESCC, correlating with poor prognosis. In vivo, our results indicate that depletion of CD276 inhibits tumorigenesis and progression of ESCC. Furthermore, conditional knockout of CD276 in epithelial cells engenders a significant downregulation of CXCL1, consequently reducing the formation of neutrophil extracellular trap networks (NETs) via the CXCL1-CXCR2 signaling axis, while simultaneously augmenting natural killer (NK) cells. In addition, overexpression of CD276 promotes tumorigenesis via increasing NETs' formation and reducing NK cells in vivo. CONCLUSIONS: This study successfully elucidates the functional role of CD276 in ESCC. Our comprehensive analysis uncovers the significant role of CD276 in modulating immune surveillance mechanisms in ESCC, thereby suggesting that targeting CD276 might serve as a potential therapeutic approach for ESCC treatment.


Subject(s)
B7 Antigens , Chemokine CXCL1 , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Receptors, Interleukin-8B , Animals , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Mice , Humans , Receptors, Interleukin-8B/metabolism , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , B7 Antigens/metabolism , Chemokine CXCL1/metabolism , Extracellular Traps/metabolism , Tumor Escape , Female , Male , Mice, Knockout , Tumor Microenvironment
2.
Sci Rep ; 14(1): 11062, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745005

ABSTRACT

To evaluate gene expression associated with unfavorable vaginal bleeding in users of the Etonogestrel (ENG) contraceptive implant. Prospective study involving 100 women who intended to use the ENG implant. Exclusion criteria included abnormal uterine bleeding, inability to attend a 1-year follow-up, and implant removal for reasons unrelated to vaginal bleeding or loss of follow-up. We obtained endometrial biopsies before implant placement and assessed the expression of 20 selected genes. Users maintained a uterine bleeding diary for 12 months post-implant placement. For statistical analysis, we categorized women into those with or without favorable vaginal bleeding at 3 and 12 months. Women with lower CXCL1 expression had a 6.8-fold increased risk of unfavorable vaginal bleeding at 3 months (OR 6.8, 95% CI 2.21-20.79, p < 0.001), while those with higher BCL6 and BMP6 expression had 6- and 5.1-fold increased risks, respectively. By the 12-month follow-up, women with lower CXCL1 expression had a 5.37-fold increased risk of unfavorable vaginal bleeding (OR 5.37, 95% CI 1.63-17.73, p = 0.006). Women with CXCL1 expression < 0.0675, BCL6 > 0.65, and BMP6 > 3.4 had a higher likelihood of experiencing unfavorable vaginal bleeding at 3 months, and CXCL1 < 0.158 at 12 months. Users of ENG contraceptive implants with elevated BCL6 and BMP6 expression exhibited a higher risk of breakthrough bleeding at the 3-month follow-up. Conversely, reduced CXCL1 expression was associated with an elevated risk of bleeding at both the 3 and 12-month follow-ups.


Subject(s)
Contraceptive Agents, Female , Desogestrel , Uterine Hemorrhage , Humans , Female , Desogestrel/administration & dosage , Desogestrel/adverse effects , Adult , Prospective Studies , Uterine Hemorrhage/genetics , Contraceptive Agents, Female/adverse effects , Contraceptive Agents, Female/administration & dosage , Endometrium/metabolism , Endometrium/drug effects , Endometrium/pathology , Drug Implants , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Young Adult
3.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673949

ABSTRACT

Chemokines play a key role in cancer processes, with CXCL1 being a well-studied example. Due to the lack of a complete summary of CXCL1's role in cancer in the literature, in this study, we examine the significance of CXCL1 in various cancers such as bladder, glioblastoma, hemangioendothelioma, leukemias, Kaposi's sarcoma, lung, osteosarcoma, renal, and skin cancers (malignant melanoma, basal cell carcinoma, and squamous cell carcinoma), along with thyroid cancer. We focus on understanding how CXCL1 is involved in the cancer processes of these specific types of tumors. We look at how CXCL1 affects cancer cells, including their proliferation, migration, EMT, and metastasis. We also explore how CXCL1 influences other cells connected to tumors, like promoting angiogenesis, recruiting neutrophils, and affecting immune cell functions. Additionally, we discuss the clinical aspects by exploring how CXCL1 levels relate to cancer staging, lymph node metastasis, patient outcomes, chemoresistance, and radioresistance.


Subject(s)
Chemokine CXCL1 , Neoplasms , Humans , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Animals , Epithelial-Mesenchymal Transition/genetics , Clinical Relevance
4.
PLoS One ; 19(4): e0298418, 2024.
Article in English | MEDLINE | ID: mdl-38625857

ABSTRACT

The chemokines of the immune system act as first responders by operating as chemoattractants, directing immune cells to specific locations of inflamed tissues. This promiscuous network is comprised of 50 ligands and 18 receptors where the ligands may interact with the receptors in various oligomeric states i.e., monomers, homodimers, and heterodimers. Chemokine receptors are G-protein coupled receptors (GPCRs) present in the membrane of immune cells. The migration of immune cells occurs in response to a concentration gradient of the ligands. Chemotaxis of neutrophils is directed by CXC-ligand (CXCL) activation of the membrane bound CXC chemokine receptor 2 (CXCR2). CXCR2 plays an important role in human health and is linked to disorders such as autoimmune disorders, inflammation, and cancer. Yet, despite their important role, little is known about the biophysical characteristics controlling ligand:ligand and ligand:receptor interaction essential for biological activity. In this work, we study the homodimers of three of the CXCR2 cognate ligands, CXCL1, CXCL5, and CXCL8. The ligands share high structural integrity but a low sequence identity. We show that the sequence diversity has evolved different binding affinities and stabilities for the CXC-ligands resulting in diverse agonist/antagonist behavior. Furthermore, CXC-ligands fold through a three-state mechanism, populating a folded monomeric state before associating into an active dimer.


Subject(s)
Interleukin-8 , Receptors, Interleukin-8B , Humans , Receptors, Interleukin-8B/genetics , Ligands , Interleukin-8/metabolism , Chemokines/metabolism , Chemokine CXCL1 , Chemotactic Factors/metabolism , Chemotaxis
5.
Front Immunol ; 15: 1367019, 2024.
Article in English | MEDLINE | ID: mdl-38686389

ABSTRACT

Background: Although hyperuricemia is not always associated with acute gouty arthritis, uric acid is a significant risk factor for gout. Therefore, we investigated the specific mechanism of uric acid activity. Methods: Using the gout-associated transcriptome dataset GSE160170, we conducted differential expression analysis to identify differentially expressed genes (DEGs). Moreover, we discovered highly linked gene modules using weighted gene coexpression network analysis (WGCNA) and evaluated their intersection. Subsequently, we screened for relevant biomarkers using the cytoHubba and Mcode algorithms in the STRING database, investigated their connection to immune cells and constructed a competitive endogenous RNA (ceRNA) network to identify upstream miRNAs and lncRNAs. We also collected PBMCs from acute gouty arthritis patients and healthy individuals and constructed a THP-1 cell gout inflammatory model, RT-qPCR and western blotting (WB) were used to detect the expression of C-X-C motif ligand 8 (CXCL8), C-X-C motif ligand 2 (CXCL2), and C-X-C motif ligand 1 (CXCL1). Finally, we predicted relevant drug targets through hub genes, hoping to find better treatments. Results: According to differential expression analysis, there were 76 upregulated and 28 downregulated mRNAs in GSE160170. Additionally, WGCNA showed that the turquoise module was most strongly correlated with primary gout; 86 hub genes were eventually obtained upon intersection. IL1ß, IL6, CXCL8, CXCL1, and CXCL2 are the principal hub genes of the protein-protein interaction (PPI) network. Using RT-qPCR and WB, we found that there were significant differences in the expression levels of CXCL8, CXCL1, and CXCL2 between the gouty group and the healthy group, and we also predicted 10 chemicals related to these proteins. Conclusion: In this study, we screened and validated essential genes using a variety of bioinformatics tools to generate novel ideas for the diagnosis and treatment of gout.


Subject(s)
Biomarkers , Gene Expression Profiling , Gene Regulatory Networks , Gout , Humans , Gout/genetics , Chemokine CXCL1/genetics , Chemokine CXCL2/genetics , Chemokine CXCL2/metabolism , Computational Biology/methods , Transcriptome , THP-1 Cells , Interleukin-8/genetics , MicroRNAs/genetics , Uric Acid , Protein Interaction Maps , Gene Expression Regulation , Databases, Genetic , Arthritis, Gouty/genetics
6.
J Exp Clin Cancer Res ; 43(1): 121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654356

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and chemotherapy still serves as the cornerstone treatment functioning by inducing cytotoxic cell death. Notably, emerging evidence suggests that dying cell-released signals may induce cancer progression and metastasis by modulating the surrounding microenvironment. However, the underlying molecular mechanisms and targeting strategies are yet to be explored. METHODS: Apoptotic TNBC cells induced by paclitaxel or adriamycin treatment were sorted and their released extracellular vesicles (EV-dead) were isolated from the cell supernatants. Chemokine array analysis was conducted to identify the crucial molecules in EV-dead. Zebrafish and mouse xenograft models were used to investigate the effect of EV-dead on TNBC progression in vivo. RESULTS: It was demonstrated that EV-dead were phagocytized by macrophages and induced TNBC metastasis by promoting the infiltration of immunosuppressive PD-L1+ TAMs. Chemokine array identified CXCL1 as a crucial component in EV-dead to activate TAM/PD-L1 signaling. CXCL1 knockdown in EV-dead or macrophage depletion significantly inhibited EV-dead-induced TNBC growth and metastasis. Mechanistic investigations revealed that CXCL1EV-dead enhanced TAM/PD-L1 signaling by transcriptionally activating EED-mediated PD-L1 promoter activity. More importantly, TPCA-1 (2-[(aminocarbonyl) amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide) was screened as a promising inhibitor targeting CXCL1 signals in EVs to enhance paclitaxel chemosensitivity and limit TNBC metastasis without noticeable toxicities. CONCLUSIONS: Our results highlight CXCL1EV-dead as a novel dying cell-released signal and provide TPCA-1 as a targeting candidate to improve TNBC prognosis.


Subject(s)
B7-H1 Antigen , Chemokine CXCL1 , Extracellular Vesicles , Signal Transduction , Triple Negative Breast Neoplasms , Tumor-Associated Macrophages , Animals , Female , Humans , Mice , B7-H1 Antigen/metabolism , Cell Line, Tumor , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Extracellular Vesicles/metabolism , Neoplasm Metastasis , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Zebrafish , Tumor-Associated Macrophages/metabolism
7.
Zhen Ci Yan Jiu ; 49(4): 331-340, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38649200

ABSTRACT

OBJECTIVES: To observe whether acupuncture up-regulates chemokine CXC ligand 1 (CXCL1) in the brain to play an analgesic role through CXCL1/chemokine CXC receptor 2 (CXCR2) signaling in adjuvant induced arthritis (AIA) rats, so as to reveal its neuro-immunological mechanism underlying improvement of AIA. METHODS: BALB/c mice with relatively stable thermal pain reaction were subjected to planta injection of complete Freund adjuvant (CFA) for establishing AIA model, followed by dividing the AIA mice into simple AF750 (fluorochrome) and AF750+CXCL1 groups (n=2 in each group). AF750 labeled CXCL1 recombinant protein was then injected into the mouse's tail vein to induce elevation of CXCL1 level in blood for simulating the effect of acupuncture stimulation which has been demonstrated by our past study. In vivo small animal imaging technology was used to observe the AF750 and AF750+CXCL1-labelled target regions. After thermal pain screening, the Wistar rats with stable pain reaction were subjected to AIA modeling by injecting CFA into the rat's right planta, then were randomized into model and manual acupuncture groups (n=12 in each group). Other 12 rats that received planta injection of saline were used as the control group. Manual acupuncture (uniform reinforcing and reducing manipulations) was applied to bilateral "Zusanli" (ST36) for 4×2 min, with an interval of 5 min between every 2 min, once daily for 7 days. The thermal pain threshold was assessed by detecting the paw withdrawal latency (PWL) using a thermal pain detector. The contents of CXCL1 in the primary somatosensory cortex (S1), medial prefrontal cortex, nucleus accumbens, amygdala, periaqueductal gray and rostroventromedial medulla regions were assayed by using ELISA, and the expression levels of CXCL1, CXCR2 and mu-opioid receptor (MOR) mRNA in the S1 region were detected using real time-quantitative polymerase chain reaction. The immune-fluorescence positive cellular rate of CXCL1 and CXCR2 in S1 region was observed after immunofluorescence stain. The immunofluorescence double-stain of CXCR2 and astrocyte marker glial fibrillary acidic protein (GFAP) or neuron marker NeuN or MOR was used to determine whether there is a co-expression between them. RESULTS: In AIA mice, results of in vivo experiments showed no obvious enrichment signal of AF750 or AF750+CXCL1 in any organ of the body, while in vitro experiments showed that there was a stronger fluorescence signal of CXCL1 recombinant protein in the brain. In rats, compared with the control group, the PWL from day 0 to day 7 was significantly decreased (P<0.01) and the expression of CXCR2 mRNA in the S1 region significantly increased in the model group (P<0.05), while in comparison with the model group, the PWL from day 2 to day 7, CXCL1 content, CXCR2 mRNA expression and CXCR2 content, and MOR mRNA expression in the S1 region were significantly increased in the manual acupuncture group (P<0.05, P<0.01). Immunofluorescence stain showed that CXCR2 co-stained with NeuN and MOR in the S1 region, indicating that CXCR2 exists in neurons and MOR-positive neurons but not in GFAP positive astrocytes. CONCLUSIONS: Acupuncture can increase the content of CXCL1 in S1 region, up-regulate CXCR2 on neurons in the S1 region and improve MOR expression in S1 region of AIA rats, which may contribute to its effect in alleviating inflammatory pain.


Subject(s)
Acupuncture Therapy , Arthritis, Experimental , Chemokine CXCL1 , Receptors, Interleukin-8B , Somatosensory Cortex , Animals , Humans , Male , Mice , Rats , Acupuncture Points , Arthritis, Experimental/therapy , Arthritis, Experimental/metabolism , Arthritis, Experimental/genetics , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Inflammation/therapy , Inflammation/metabolism , Inflammation/genetics , Mice, Inbred BALB C , Pain/metabolism , Pain/genetics , Pain Management , Rats, Wistar , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Signal Transduction , Somatosensory Cortex/metabolism
8.
Mol Immunol ; 169: 50-65, 2024 May.
Article in English | MEDLINE | ID: mdl-38493581

ABSTRACT

Macrophages play a crucial role in the inflammatory response following sciatic nerve injury. Studies have demonstrated that C-X-C motif chemokine (CXCL) 1 recruit macrophages by binding to C-X-C chemokine receptor (CXCR) 2 and participates in the inflammatory response of various diseases. Based on these findings, we aimed to explore the role of the CXCL1-CXCR2 axis in the repair process after peripheral nerve injury. Initially, we simulated sciatic nerve injury and observed an increased expression of CXCL1 and CXCR2 in the nerves of the injury group. Both in vivo and in vitro experiments confirmed that the heightened CXCL1 expression occurs in Schwann cells and is secreted, while the elevated CXCR2 is expressed by recruited macrophages. In addition, in vitro experiments demonstrated that the binding of CXCL1 to CXCR2 can activate the NLRP3 inflammasome and promote the production of interleukin-1 beta (IL-1ß) in macrophages. However, after mice were subjected to sciatic nerve injury, the number of macrophages and the expression of inflammatory factors in the sciatic nerve were reduced following treatment with the CXCR2 inhibitor SB225002. Simultaneously, we evaluated the sciatic nerve function index, the expression of p75 neurotrophic factor receptor (p75NTR), and myelin proteins, and all of these results were improved with the use of SB225002. Thus, our results suggest that after sciatic nerve injury, the CXCL1-CXCR2 axis mediates the inflammatory response by promoting the recruitment and activation of macrophages, which is detrimental to the repair of the injured nerves. In contrast, treatment with SB225002 promotes the repair of injured sciatic nerves.


Subject(s)
Chemokine CXCL1 , Peripheral Nerve Injuries , Receptors, Interleukin-8B , Animals , Mice , Chemokine CXCL1/metabolism , Macrophages/metabolism , Phenylurea Compounds/pharmacology , Sciatic Nerve
9.
Biochem Pharmacol ; 222: 116120, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461905

ABSTRACT

The role of the Immunoglobulin Superfamily (IgSF) as adhesion molecules in orchestrating inflammation is pivotal, yet its specific involvement in gastric cancer (GC) remains unknown. We analyzed IgSF components and discerned conspicuously elevated VCAM1 expression in GC, correlating with a poor prognosis. Remarkably, VCAM1 enhances GC cell proliferation and migration by activating AKT-mTOR signaling. Moreover, lactate in the tumor microenvironment (TME) promotes dynamic lactylation of H3K18 (H3K18la), leading to transcriptional activation of VCAM1 in GC cells. Furthermore, VCAM1 actively mediates intercellular communication in the TME. AKT-mTOR-mediated CXCL1 expression is increased by VCAM1, facilitating the recruitment of human GC-derived mesenchymal stem cells (hGC-MSCs), thereby fostering immunesuppression and accelerating cancer progression. In summary, H3K18 lactylation upregulated VCAM1 transcription, which activated AKT-mTOR signaling, and promoted tumor cell proliferation, EMT Transition and tumor metastasis. VCAM1 upregulated CXCL1 expression by AKT-mTOR pathway, so as to facilitate hGC-MSCs and M2 macrophage recruitment and infiltration. These findings provide novel therapeutic targets for GC.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Movement , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition , Tumor Microenvironment , Chemokine CXCL1/metabolism
10.
C R Biol ; 346(S2): 85-88, 2024 03 29.
Article in French | MEDLINE | ID: mdl-38465640

ABSTRACT

As an eminent scientist, fully aware of his social responsibilities, François Gros has been consulted on several occasions on how to make better use of science in the service of society. One of the first reports asked of him was by President Giscard d'Estaing on the social and industrial consequences of the rise of biology (1979). A few years later, at the request of President François Mitterrand, he chaired the National Conference on Research and Technology (1981-1982), which led to substantial changes in the way French public research was organised.


Éminent scientifique, pleinement conscient de ses responsabilités sociales, François Gros a été à plusieurs reprises consulté sur la façon de mieux utiliser la science au service de la société. L'un des premiers rapports qui lui ont été demandés l'a été par le Président Giscard d'Estaing sur les conséquences sociales et industrielle de l'essor de la biologie (1979). Et c'est quelques années plus tard qu'à la demande du Président François Mitterrand il a présidé le Colloque national Recherche et Technologie (1981­1982) dont les suites devaient modifier considérablement toute l'organisation de la recherche publique française.


Subject(s)
Chemokine CXCL1
11.
BMC Cancer ; 24(1): 319, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454443

ABSTRACT

BACKGROUND: A high expression pattern of minichromosome maintenance 2 (MCM2) has been observed in various cancers. MCM2 is a protein involved in the cell cycle and plays a role in cancer growth and differentiation by binding to six members of the MCM subfamily. The MCM protein family includes MCM2 through MCM7. METHODS: MCM2 has shown high expression in both lung cancer stem cells (LCSCs) and glioma stem cells (GSCs). We investigated the characteristics of CSCs and the regulation of the epithelial-to-mesenchymal transition (EMT) phenomenon in LCSCs and GSCs by MCM2. Additionally, we explored secreted factors regulated by MCM2. RESULTS: There was a significant difference in survival rates between lung cancer patients and brain cancer patients based on MCM2 expression. MCM2 was found to regulate both markers and regulatory proteins in LCSCs. Moreover, MCM2 is thought to be involved in cancer metastasis by regulating cell migration and invasion, not limited to lung cancer but also identified in glioma. Among chemokines, chemokine (C-X-C motif) ligand 1 (CXCL1) was found to be regulated by MCM2. CONCLUSIONS: MCM2 not only participates in the cell cycle but also affects cancer cell growth by regulating the external microenvironment to create a favorable environment for cells. MCM2 is highly expressed in malignant carcinomas, including CSCs, and contributes to the malignancy of various cancers. Therefore, MCM2 may represent a crucial target for cancer therapeutics.


Subject(s)
Lung Neoplasms , Minichromosome Maintenance Proteins , Humans , Chemokine CXCL1 , Minichromosome Maintenance Proteins/genetics , Proteins , Neoplastic Stem Cells/metabolism , Minichromosome Maintenance Complex Component 2/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Cell Cycle Proteins/genetics , Tumor Microenvironment
12.
Mol Biol Rep ; 51(1): 331, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393465

ABSTRACT

BACKGROUND: ER positive breast cancer is currently targeted using various endocrine therapies. Despite the proven therapeutic efficacy, resistance to the drug and reoccurrence of tumor appears to be a complication that many patients deal with. Molecular pathways underlying the development of resistance are being widely studied. METHODS AND RESULTS: In this study, using four established endocrine resistant breast cancer (ERBC) cell lines, we characterized CXCL1 as a secreted factor in crosstalk between ERBC cells and fibroblasts. Protein array revealed upregulation of CXCL1 and we confirmed the CXCL1 expression by real-time qRT-PCR and U-Plex assay. Co-culturing ERBC cells with fibroblasts enhanced the cell growth and migration compared to monoculture. The crosstalk of ERBC cells with fibroblasts significantly activates ERK/MAPK signaling pathway while reparixin, CXCR1/2 receptor inhibitor, attenuates the activity. Reparixin displayed the ERBC cell growth inhibition and the combination treatment with reparixin and CDK4/6 inhibitor (palbociclib and ribociclib) increased these inhibitory effect. CONCLUSIONS: Taken together, our study implicates CXCL1 as a critical role in ERBC growth and metastasis via crosstalk with fibroblast and cotargeting CXCR1/2 and CDK4/6 could potentially overcome endocrine resistant breast cancer.


Subject(s)
Breast Neoplasms , Chemokine CXCL1 , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Chemokine CXCL1/genetics , Drug Resistance, Neoplasm , Fibroblasts/metabolism , Sulfonamides/pharmacology
13.
Toxicon ; 240: 107627, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253207

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) is the most popular type of lung cancer. Sulfotanshinone IIA sodium (STS IIA) has been proven to have an anticancer effect. However, its role in LUAD and its underlying mechanism remain unclear. OBJECTIVE: To investigate the role and mechanism of STS IIA in LUAD angiogenesis. METHODS: The mRNA levels of genes, including forkhead box O3 (FOXO3) and chemokine C-X-C motif ligand 1 (CXCL1), were detected by qRT-PCR. The levels of proteins, including FOXO3, CXCL1, and vascular endothelial growth factor (VEGF), were measured by Western blot. The proliferation and angiogenesis of human umbilical vein endothelial cells (HUVECs) were detected by the EdU assay and the tubule formation assay, respectively. The binding relationship between FOXO3 and CXCL1 was detected by dual-luciferase reporter assay. RESULTS: Our results illustrated that different concentrations of STS IIA inhibited the proliferation and angiogenesis of HUVECs. FOXO3 regulated the proliferation and angiogenesis of HUVECs inhibited by STS ⅡA via targeting CXCL1. Subsequently, we proved that exogenous CXCL1 alleviated the inhibition of proliferation and angiogenesis of HUVECs regulated by STS IIA via activating the STAT3/VEGF pathway. Finally, we found that STS IIA inhibited the angiogenesis of lung adenocarcinoma though FOXO3 to inhibit the CXCL1/STAT3/VEGF pathway. CONCLUSION: Our study finally elucidated the underlying molecular mechanism by which STS ⅡA inhibits LUAD angiogenesis.


Subject(s)
Adenocarcinoma of Lung , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/metabolism , Signal Transduction , Cell Proliferation , Angiogenesis , Human Umbilical Vein Endothelial Cells , Adenocarcinoma of Lung/metabolism , Neovascularization, Pathologic , Chemokine CXCL1/metabolism , Chemokine CXCL1/pharmacology , Forkhead Box Protein O3/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/pharmacology
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166988, 2024 02.
Article in English | MEDLINE | ID: mdl-38070583

ABSTRACT

Psoriasis is a multifaceted chronic inflammatory skin disease; however, its underlying molecular mechanisms remain unclear. In this study, we explored the role of fucosylation in psoriasis using an imiquimod-induced psoriasis-like mouse model. ABH antigen and fucosyltransferase 1 (Fut1) expression was reduced in the granular layer of lesional skin of patients with psoriasis. In particular, the blood group H antigen type 2 (H2 antigen)-a precursor of blood group A and B antigens-and FUT1 were highly expressed throughout the spinous layer in both patients with psoriasis and the skin of imiquimod-treated mice. Upon the application of imiquimod, Fut1-deficient mice, which lacked the H2 antigen, exhibited higher clinical scores based on erythema, induration, and scaling than those of wild-type mice. Imiquimod-treated Fut1-deficient mice displayed increased skin thickness, trans-epidermal water loss, and Gr-1+ cell infiltration compared with wild-type mice. Notably, the levels of CXCL1 protein and mRNA were significantly higher in Fut1-deficient mice than those in wild-type mice; however, there were no significant differences in other psoriasis-related markers, such as IL-1ß, IL-6, IL-17A, and IL-23. Fut1-deficient primary keratinocytes treated with IL-17A also showed a significant increase in both mRNA and protein levels of CXCL1 compared with IL-17A-treated wild-type primary keratinocytes. Further mechanistic studies revealed that this increased Cxcl1 mRNA in Fut1-deficient keratinocytes was caused by enhanced Cxcl1 mRNA stabilization. In summary, our findings indicated that fucosylation, which is essential for ABH antigen synthesis in humans, plays a protective role in psoriasis-like skin inflammation and is a potential therapeutic target for psoriasis.


Subject(s)
Blood Group Antigens , Psoriasis , Humans , Animals , Mice , Imiquimod/adverse effects , Interleukin-17/genetics , Interleukin-17/metabolism , H-2 Antigens/adverse effects , Psoriasis/chemically induced , Psoriasis/genetics , Inflammation/chemically induced , RNA, Messenger/genetics , RNA, Messenger/metabolism , Blood Group Antigens/adverse effects , Chemokine CXCL1/genetics
15.
Life Sci ; 336: 122277, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37995936

ABSTRACT

Gastric cancer (GC) is the fifth-most prevalent and second-most deadly cancer worldwide. Due to the late onset of symptoms, GC is frequently treated at a mature stage. In order to improve the diagnostic and clinical decision-making processes, it is necessary to establish more specific and sensitive indicators valuable in the early detection of the disease whenever a cancer is asymptomatic. In this work, we gathered information about CXC chemokines and GC by using scientific search engines including Google Scholar, PubMed, SciFinder, and Web of Science. Researchers believe that GC chemokines, small proteins, class CXC chemokines, and chemokine receptors promote GC inflammation, initiation, and progression by facilitating angiogenesis, tumor transformation, invasion, survival, metastatic spread, host response safeguards, and inter-cell interaction. With our absolute best professionalism, the role of CXC chemokines and their respective receptors in GC diagnosis and prognosis has not been fully explained. This review article updates the general characteristics of CXC chemokines, their unique receptors, their function in the pathological process of GC, and their potential application as possible indicators for GC. Although there have only recently been a few studies focusing on the therapeutic efficacy of CXC chemokine inhibitors in GC, growing experimental evidence points to the inhibition of CXC chemokines as a promising targeted therapy. Therefore, further translational studies are warranted to determine whether specific antagonists or antibodies designed to target CXC chemokines alone or in combination with chemotherapy are useful for diagnosing advanced GC.


Subject(s)
Chemokines, CXC , Stomach Neoplasms , Humans , Chemokines, CXC/metabolism , Stomach Neoplasms/diagnosis , Stomach Neoplasms/therapy , Stomach Neoplasms/metabolism , Chemokines , Receptors, Chemokine/metabolism , Chemokine CXCL1
16.
J Cell Physiol ; 239(1): 97-111, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37921259

ABSTRACT

Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment, and the M2-type TAMs can promote tumor growth, invasion and angiogenesis, and suppress antitumor immune responses. It has been reported that spectrin beta, non-erythrocytic 1 (SPTBN1) may inhibit the infiltration of macrophages in Sptbn1+/-  mouse liver, but whether tumor SPTBN1 affects TAMs polarization remains unclear. This study investigated the effect and mechanism of tumor cell SPTBN1 on polarization and migration of TAMs in hepatoma and breast cancer. By analyzing tumor immune databases, we found a negative correlation between SPTBN1 and abundance of macrophages and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. By reverse transcription-quantitative real-time PCR assays and cell migration assays, the migration and M2 polarization of macrophages were enhanced by the culture medium from hepatocellular carcinoma cell line PLC/PRF/5, SNU449, and breast cancer cell line MDA-MB-231 with SPTBN1 suppression, which could be reversed by CXCL1 neutralizing antibody MAB275. Meanwhile, the ability of migration and colony formation of PLC/PRF/5, SNU449, and MDA-MB-231 cells were promoted when coculture with M2 macrophages. We also found that SPTBN1 regulated CXCL1 through p65 by cytoplasmic-nuclear protein isolation experiments and ChIP-qPCR. Our data suggest that tumor cell SPTBN1 inhibits migration and M2-type polarization of TAMs by reducing the expression and secretion of CXCL1 via inhibiting p65 nuclear localization.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Spectrin , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Liver Neoplasms/metabolism , Macrophages/metabolism , Tumor Microenvironment , Tumor-Associated Macrophages/pathology , Humans , Spectrin/metabolism , Chemokine CXCL1
17.
J Leukoc Biol ; 115(3): 565-572, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38128116

ABSTRACT

The chemokine Cxcl1 plays a crucial role in recruiting neutrophils in response to infection. The early events in chemokine-mediated neutrophil extravasation involve a sequence of highly orchestrated steps including rolling, adhesion, arrest, and diapedesis. Cxcl1 function is determined by its properties of reversible monomer-dimer equilibrium and binding to Cxcr2 and glycosaminoglycans. Here, we characterized how these properties orchestrate extravasation using intravital microscopy of the cremaster. Compared to WT Cxcl1, which exists as both a monomer and a dimer, the trapped dimer caused faster rolling, less adhesion, and less extravasation. Whole-mount immunofluorescence of the cremaster and arrest assays confirmed these data. Moreover, the Cxcl1 dimer showed impaired LFA-1-mediated neutrophil arrest that could be attributed to impaired Cxcr2-mediated ERK signaling. We conclude that Cxcl1 monomer-dimer equilibrium and potent Cxcr2 activity of the monomer together coordinate the early events in neutrophil recruitment.


Subject(s)
Glycosaminoglycans , Neutrophils , Chemokine CXCL1/metabolism , Neutrophils/metabolism , Cell Movement , Glycosaminoglycans/metabolism , Chemokines/metabolism , Neutrophil Infiltration , Receptors, Interleukin-8B/metabolism
18.
C R Biol ; 346(S2): 45-49, 2024 03 29.
Article in English | MEDLINE | ID: mdl-38113106

ABSTRACT

I joined the laboratory of Professor Francois Gros in 1987 and worked there as a postdoc with Robert Whalen until 1992. I recount the research we carried out and mention that of the other scientists also working on skeletal muscle on the 6th floor of the Molecular Biology Department of the Institut Pasteur at that time. I then present my subsequent research when I returned to Japan. I pay tribute to the influence of Professor Gros and to his support in establishing Japanese/French meetings on muscle biology and muscular dystrophy. I also invoke personal memories of Robert Whalen and Margaret Buckingham and remember the occasions when I returned to Paris to honour François Gros.


J'ai rejoint le laboratoire du professeur François Gros en 1987 et j'y ai travaillé en tant que postdoc avec Robert Whalen jusqu'en 1992. Je raconte les recherches que nous avons menées et je mentionne celles des autres scientifiques qui travaillaient également sur le muscle squelettique au 6 e étage du Département de biologie moléculaire de l'Institut Pasteur à cette époque. Je présente ensuite les recherches ultérieures que j'ai menées de retour au Japon. Je rends hommage à l'influence du professeur Gros et à son soutien lors de la mise en place de réunions franco-japonaises autour de la biologie musculaire et de la dystrophie musculaire. J'évoque également des souvenirs personnels de Robert Whalen et de Margaret Buckingham et je me rappelle les moments où je suis retourné à Paris pour rendre hommage à François Gros.


Subject(s)
Chemokine CXCL1
19.
Spine (Phila Pa 1976) ; 49(7): E87-E99, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38098294

ABSTRACT

STUDY DESIGN: Experimental study of the role and mechanism of spinal NFκB-CXCL1/CXCR2 in rats with nucleus pulposus-induced radicular pain. OBJECTIVE: This study investigated the role and mechanism of spinal NFκB-CXCL1/CXCR2 in autologous nucleus pulposus-induced pain behavior in rats and to clarify the involvement and regulation of spinal NFκB as an upstream molecule of CXCL1 in autologous nucleus pulposus-induced radicular pain in rats. SUMMARY OF BACKGROUND DATA: The inflammatory response of nerve roots is an important mechanism for the occurrence of chronic pain. NFκB-CXCL1/CXCR2 pathway plays an important role in the development of radicular pain, but its regulatory mechanism in the model of radicular pain induced by autologous nucleus pulposus is still unclear. MATERIALS AND METHODS: We established a rat model of autologous medullary nucleus transplantation. We observed and recorded the changes in 50% mechanical withdrawal threshold and thermal withdrawal latency before and after the administration of CXCL1-neutralizing antibodies, CXCR2 inhibitor, and NFκB inhibitor in each group of rats and evaluated the expression of NFκB, CXCL1, and CXCR2 in the spinal dorsal horn using immunofluorescence and Western blot. To compare differences between groups in behavioral testing, analysis of variance was employed. Dunnett's method was used to compare differences at different time points within a group and between different groups at the same time point. A comparison of the relative concentration of protein, relative concentration of mRNA, and semiquantitative data from immunofluorescence staining was conducted utilizing one-way ANOVA and Dunnett's pairwise comparison. RESULTS: Autologous nucleus pulposus transplantation can induce radicular pain in rats and upregulate the expression of CXCL1, CXCR2, and NFκB in the spinal cord. CXCL1 is co-expressed with astrocytes, CXCR2 with neurons, and NFκB with both astrocytes and neurons. The application of CXCL1 neutralizing antibodies, CXCR2 inhibitors, and NFκB inhibitors can alleviate pain hypersensitivity induced by autologous nucleus pulposus transplantation in rats. Inhibitors of NFκB could downregulate the expression of CXCL1 and CXCR2. CONCLUSIONS: We found that spinal NFκB is involved in NP-induced radicular pain in rats through the activation of CXCL1/CXCR2, enriching the mechanism of medullary-derived radicular pain and providing a possible new target and theoretical basis for the development of more effective anti-inflammatory and analgesic drugs for patients with chronic pain following LDH.


Subject(s)
Chronic Pain , Intervertebral Disc Displacement , Nucleus Pulposus , Humans , Rats , Animals , NF-kappa B/metabolism , Nucleus Pulposus/metabolism , Spinal Cord/metabolism , Antibodies, Neutralizing/metabolism , Intervertebral Disc Displacement/metabolism , Hyperalgesia/metabolism , Chemokine CXCL1/metabolism
20.
Exp Biol Med (Maywood) ; 248(23): 2249-2261, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38158808

ABSTRACT

Chemokines critically orchestrate the tumorigenesis, metastasis, and stemness features of cancer cells that lead to poor outcomes. High plasma levels of transforming growth factor-ß1 (TGFß1) correlate with poor prognostic features in advanced lung cancer patients, thus suggesting the importance of TGFß1 in the lung tumor microenvironment. However, the role of chemokines in TGFß1-induced tumor stemness features remains unclear. Here, we clarify the previously undocumented role of CXCL1 in TGFß1-induced lung cancer stemness features. CXCL1 and its receptor CXCR2 were significantly upregulated in TGFß1-induced lung cancer stem cells (CSCs). CXCL1 silencing (shCXCL1) suppressed stemness gene expression, tumorsphere formation, colony formation, drug resistance, and in vivo tumorigenicity in TGFß1-induced lung tumorspheres. Immunohistochemistry staining showed that patients with stage II/III lung cancer had higher expression levels of CXCL1. The levels of CXCL1 were positively associated with lymph node metastasis and correlated with the expression of the CSC transcription factor Oct-4. Furthermore, online database analysis revealed that CXCL1 expression was negatively correlated with lung cancer survival in patients. Patients with high TGFß1/CXCL1/CD44 co-expression had a worse survival rate. We suggest that CXCL1 serves as a crucial factor in TGFß1-induced stemness features of lung cancer.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/metabolism , Transforming Growth Factor beta1/metabolism , Cell Line, Tumor , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Neoplastic Stem Cells/metabolism , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...