Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.223
Filter
1.
J Nanobiotechnology ; 22(1): 219, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698419

ABSTRACT

BACKGROUND: Adipose-derived stem cells (ASCs) represent the most advantageous choice for soft tissue regeneration. Studies proved the recruitment of ASCs post tissue injury was mediated by chemokine CXCL12, but the mechanism by which CXCL12 is generated after tissue injury remains unclear. Migrasomes are newly discovered membrane-bound organelles that could deliver CXCL12 spatially and temporally in vivo. In this study, we sought to investigate whether migrasomes participate ASC-mediated tissue regeneration. METHODS: Discrepant and asymmetrical soft tissue regeneration mice model were established, in which HE staining, immunofluorescent staining, western blot and qPCR were conducted to confirm the role of CXCL12 and migrasomes in ASC-mediated tissue regeneration. Characterization of ASC-derived migrasomes were carried out by confocal microscopy, scanning electron microscopy, transmission electron microscopy as well as western blot analysis. The function and mechanism of migrasomes were further testified by assisting tissue regeneration with isolated migrasomes in vivo and by in vitro transwell combined with co-culture system. RESULTS: Here, we show for the first time that migrasomes participate in soft tissue regeneration. ASCs generate migrasomes enriched with CXCL12 to mediate tissue regeneration. Migrasomes from ASCs could promote stem cells migration by activating CXCR4/RhoA signaling in vivo and in vitro. Chemoattracted ASCs facilitate regeneration, as demonstrated by the upregulation of an adipogenesis-associated protein. This positive feed-back-loop creates a favorable microenvironment for soft tissue regeneration. Thus, migrasomes represent a new therapeutic target for ASC-mediated tissue regeneration. CONCLUSIONS: Our findings reveal a previously unknown function of ASCs in mediating tissue regeneration by generating migrasomes. The ASC-derived migrasomes can restore tissue regeneration by recruiting stem cells, which highlighting the potential application of ASC-derived migrasomes in regenerative medicine.


Subject(s)
Adipose Tissue , Chemokine CXCL12 , Receptors, CXCR4 , Regeneration , Stem Cells , rhoA GTP-Binding Protein , Chemokine CXCL12/metabolism , Animals , Receptors, CXCR4/metabolism , Mice , Adipose Tissue/cytology , Adipose Tissue/metabolism , rhoA GTP-Binding Protein/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Mice, Inbred C57BL , Feedback, Physiological , Cell Movement , Cells, Cultured , Male , Signal Transduction
2.
Clin Transl Sci ; 17(5): e13821, 2024 May.
Article in English | MEDLINE | ID: mdl-38742709

ABSTRACT

Inflammatory bowel disease (IBD) is characterized by a chronically dysregulated immune response in the gastrointestinal tract. Bone marrow multipotent mesenchymal stromal cells have an important immunomodulatory function and support regeneration of inflamed tissue by secretion of soluble factors as well as through direct local differentiation. CXCR4 is the receptor for CXCL12 (SDF-1, stromal-derived factor-1) and has been shown to be the main chemokine receptor, required for homing of MSCs. Increased expression of CXCL12 by inflamed intestinal tissue causes constitutive inflammation by attracting lymphocytes but can also be used to direct MSCs to sites of injury/inflammation. Trypsin is typically used to dissociate MSCs into single-cell suspensions but has also been shown to digest surface CXCR4. Here, we assessed the regenerative effects of CXCR4high and CXCR4low MSCs in an immune-deficient mouse model of DSS-induced colitis. We found that transplantation of MSCs resulted in clinical improvement and histological recovery of intestinal epithelium. In contrary to our expectations, the levels of CXCR4 on transplanted MSCs did not affect their regenerative supporting potential, indicating that paracrine effects of MSCs may be largely responsible for their regenerative/protective effects.


Subject(s)
Colitis , Disease Models, Animal , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Mice, Inbred C57BL , Receptors, CXCR4 , Regeneration , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Mesenchymal Stem Cells/metabolism , Colitis/chemically induced , Colitis/pathology , Colitis/immunology , Colitis/therapy , Colitis/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mice , Dextran Sulfate , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/immunology , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Bone Marrow Cells/metabolism
3.
JCI Insight ; 9(9)2024 May 08.
Article in English | MEDLINE | ID: mdl-38716725

ABSTRACT

IgA nephropathy (IgAN) represents the main cause of renal failure, while the precise pathogenetic mechanisms have not been fully determined. Herein, we conducted a cross-species single-cell survey on human IgAN and mouse and rat IgAN models to explore the pathogenic programs. Cross-species single-cell RNA sequencing (scRNA-Seq) revealed that the IgAN mesangial cells (MCs) expressed high levels of inflammatory signatures CXCL12, CCL2, CSF1, and IL-34 and specifically interacted with IgAN macrophages via the CXCL12/CXCR4, CSF1/IL-34/CSF1 receptor, and integrin subunit alpha X/integrin subunit alpha M/complement C3 (C3) axes. IgAN macrophages expressed high levels of CXCR4, PDGFB, triggering receptor expressed on myeloid cells 2, TNF, and C3, and the trajectory analysis suggested that these cells derived from the differentiation of infiltrating blood monocytes. Additionally, protein profiling of 21 progression and 28 nonprogression IgAN samples revealed that proteins CXCL12, C3, mannose receptor C-type 1, and CD163 were negatively correlated with estimated glomerular filtration rate (eGFR) value and poor prognosis (30% eGFR as composite end point). Last, a functional experiment revealed that specific blockade of the Cxcl12/Cxcr4 pathway substantially attenuated the glomerulus and tubule inflammatory injury, fibrosis, and renal function decline in the mouse IgAN model. This study provides insights into IgAN progression and may aid in the refinement of IgAN diagnosis and the optimization of treatment strategies.


Subject(s)
Disease Progression , Glomerulonephritis, IGA , Macrophages , Single-Cell Analysis , Adult , Animals , Female , Humans , Male , Mice , Rats , Chemokine CXCL12/metabolism , Disease Models, Animal , Glomerular Filtration Rate , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/pathology , Interleukins , Macrophages/immunology , Macrophages/metabolism , Mesangial Cells/pathology , Mesangial Cells/metabolism , Mesangial Cells/immunology , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Rats, Wistar
4.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38726826

ABSTRACT

Lung cancer (LC) is the leading cause of cancer-associated deaths worldwide, among which non-small-cell lung cancer (NSCLC) accounts for 80%. Stromal cell-derived factor-1 (SDF-1) inhibition results in a significant depletion of NSCLC metastasis. Additionally, SDF-1 is the only natural chemokine known to bind and activate the receptor CXCR4. Thus, we attempted to clarify the molecular mechanism of SDF-1 underlying NSCLC progression. Transwell migration, adhesion, and G-LISA assays were used to assess megakaryocytic chemotaxis in vitro and in vivo in terms of megakaryocytic migration, adherence, and RhoA activation, respectively. Western blotting was used to assess PI3K/Akt-associated protein abundances in MEG-01 cells and primary megakaryocytes under the indicated treatment. A hematology analyzer and flow cytometry were used to assess platelet counts in peripheral blood and newly formed platelet counts in Lewis LC mice under different treatments. Immunochemistry and flow cytometry were used to measure CD41+ megakaryocyte numbers in Lewis LC mouse tissue under different treatments. ELISA was used to measure serum TPO levels, and H&E staining was used to detect NSCLC metastasis.SDF-1 receptor knockdown suppressed megakaryocytic chemotaxis in Lewis LC mice. SDF-1 receptor inhibition suppressed megakaryocytic chemotaxis via the PI3K/Akt pathway. SDF-1 receptor knockdown suppressed CD41+ megakaryocyte numbers in vivo through PI3K/Akt signaling. SDF-1 receptor inhibition suppressed CD41+ megakaryocytes to hinder NSCLC metastasis. SDF-1 facilitates NSCLC metastasis by enhancing the chemoattraction of megakaryocytes via the PI3K/Akt signaling pathway, which may provide a potential new direction for seeking therapeutic plans for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Chemokine CXCL12 , Chemotaxis , Lung Neoplasms , Megakaryocytes , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Receptors, CXCR4 , Signal Transduction , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Megakaryocytes/metabolism , Megakaryocytes/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Animals , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Mice , Humans , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Cell Line, Tumor , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Neoplasm Metastasis , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
5.
Clin Exp Pharmacol Physiol ; 51(6): e13865, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692577

ABSTRACT

CTCE-9908, a CXC chemokine receptor 4 (CXCR4) antagonist, prevents CXCR4 phosphorylation and inhibits the interaction with chemokine ligand 12 (CXCL12) and downstream signalling pathways associated with metastasis. This study evaluated the in vitro effects of CTCE-9908 on B16 F10 melanoma cells with the use of mathematical modelling. Crystal violet staining was used to construct a mathematical model of CTCE-9908 B16 F10 (melanoma) and RAW 264.7 (non-cancerous macrophage) cell lines on cell viability to predict the half-maximal inhibitory concentration (IC50). Morphological changes were assessed using transmission electron microscopy. Flow cytometry was used to assess changes in cell cycle distribution, apoptosis via caspase-3, cell survival via extracellular signal-regulated kinase1/2 activation, CXCR4 activation and CXCL12 expression. Mathematical modelling predicted IC50 values from 0 to 100 h. At IC50, similar cytotoxicity between the two cell lines and ultrastructural morphological changes indicative of cell death were observed. At a concentration 10 times lower than IC50, CTCE-9908 induced inhibition of cell survival (p = 0.0133) in B16 F10 cells but did not affect caspase-3 or cell cycle distribution in either cell line. This study predicts CTCE-9908 IC50 values at various time points using mathematical modelling, revealing cytotoxicity in melanoma and non-cancerous cells. CTCE-9908 significantly inhibited melanoma cell survival at a concentration 10 times lower than the IC50 in B16 F10 cells but not RAW 264.7 cells. However, CTCE-9908 did not affect CXCR4 phosphorylation, apoptosis,\ or cell cycle distribution in either cell line.


Subject(s)
Apoptosis , Cell Survival , Receptors, CXCR4 , Mice , Cell Survival/drug effects , Animals , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/metabolism , Apoptosis/drug effects , Melanoma, Experimental/pathology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , RAW 264.7 Cells , Cell Line, Tumor , Melanoma/pathology , Melanoma/drug therapy , Melanoma/metabolism , Models, Biological , Cell Cycle/drug effects , Chemokine CXCL12/metabolism
6.
Yakugaku Zasshi ; 144(5): 497-501, 2024.
Article in Japanese | MEDLINE | ID: mdl-38692923

ABSTRACT

Signal-transducing adaptor protein-2 (STAP-2) is a unique scaffold protein that regulates several immunological signaling pathways, including LIF/LIF receptor and LPS/TLR4 signals. STAP-2 is required for Fas/FasL-dependent T cell apoptosis and SDF-1α-induced T cell migration. Conversely, STAP-2 modulates integrin-mediated T cell adhesion, suggesting that STAP-2 is essential for several negative and positive T cell functions. However, whether STAP-2 is involved in T cell-antigen receptor (TCR)-mediated T cell activation is unknown. STAP-2 deficiency was recently reported to suppress TCR-mediated T cell activation by inhibiting LCK-mediated CD3ζ and ZAP-70 activation. Using STAP-2 deficient mice, it was demonstrated that STAP-2 is required for the pathogenesis of Propionibacterium acnes-induced granuloma formation and experimental autoimmune encephalomyelitis. Here, detailed functions of STAP-2 in TCR-mediated T cell activation, and how STAP-2 affects the pathogenesis of T cell-mediated inflammation and immune diseases, are reviewed.


Subject(s)
Adaptor Proteins, Signal Transducing , Lymphocyte Activation , Receptors, Antigen, T-Cell , Signal Transduction , T-Lymphocytes , ZAP-70 Protein-Tyrosine Kinase , Animals , Receptors, Antigen, T-Cell/physiology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Humans , Adaptor Proteins, Signal Transducing/physiology , Adaptor Proteins, Signal Transducing/metabolism , Mice , ZAP-70 Protein-Tyrosine Kinase/metabolism , ZAP-70 Protein-Tyrosine Kinase/physiology , Propionibacterium acnes/physiology , Propionibacterium acnes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/etiology , Inflammation/immunology , Apoptosis , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Cell Movement , Cell Adhesion , CD3 Complex , Chemokine CXCL12/physiology , Chemokine CXCL12/metabolism
7.
Int J Mol Sci ; 25(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38732237

ABSTRACT

NanoLuc-mediated bioluminescence resonance energy transfer (NanoBRET) has gained popularity for its ability to homogenously measure ligand binding to G protein-coupled receptors (GPCRs), including the subfamily of chemokine receptors. These receptors, such as ACKR3, CXCR4, CXCR3, play a crucial role in the regulation of the immune system, are associated with inflammatory diseases and cancer, and are seen as promising drug targets. The aim of this study was to optimize NanoBRET-based ligand binding to NLuc-ACKR3 and NLuc-CXCR4 using different fluorescently labeled chemokine CXCL12 analogs and their use in a multiplex NanoBRET binding assay of two chemokine receptors at the same time. The four fluorescent CXCL12 analogs (CXCL12-AZD488, -AZD546, -AZD594, -AZD647) showed high-affinity saturable binding to both NLuc-ACKR3 and NLuc-CXCR4, with relatively low levels of non-specific binding. Additionally, the binding of all AZDye-labeled CXCL12s to Nluc receptors was inhibited by pharmacologically relevant unlabeled chemokines and small molecules. The NanoBRET binding assay for CXCL10-AZD488 binding to Nluc-CXCR3 was also successfully established and successfully employed for the simultaneous measurement of the binding of unlabeled small molecules to NLuc-CXCR3 and NLuc-CXCR4. In conclusion, multiplexing the NanoBRET-based competition binding assay is a promising tool for testing unlabeled (small) molecules against multiple GPCRs simultaneously.


Subject(s)
Chemokine CXCL12 , Protein Binding , Receptors, CXCR3 , Receptors, CXCR4 , Receptors, CXCR , Humans , Receptors, CXCR4/metabolism , Receptors, CXCR/metabolism , Receptors, CXCR/genetics , Chemokine CXCL12/metabolism , Receptors, CXCR3/metabolism , Bioluminescence Resonance Energy Transfer Techniques/methods , Ligands , Fluorescent Dyes/chemistry
8.
ACS Biomater Sci Eng ; 10(5): 3470-3477, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38652035

ABSTRACT

The laminar flow profiles in microfluidic systems coupled to rapid diffusion at flow streamlines have been widely utilized to create well-controlled chemical gradients in cell cultures for spatially directing cell migration. However, within hydrogel-based closed microfluidic systems of limited depth (≤0.1 mm), the biomechanical cues for the cell culture are dominated by cell interactions with channel surfaces rather than with the hydrogel microenvironment. Also, leaching of poly(dimethylsiloxane) (PDMS) constituents in closed systems and the adsorption of small molecules to PDMS alter chemotactic profiles. To address these limitations, we present the patterning and integration of a PDMS-free open fluidic system, wherein the cell-laden hydrogel directly adjoins longitudinal channels that are designed to create chemotactic gradients across the 3D culture width, while maintaining uniformity across its ∼1 mm depth to enhance cell-biomaterial interactions. This hydrogel-based open fluidic system is assessed for its ability to direct migration of U87 glioma cells using a hybrid hydrogel that includes hyaluronic acid (HA) to mimic the brain tumor microenvironment and gelatin methacrylate (GelMA) to offer the adhesion motifs for promoting cell migration. Chemotactic gradients to induce cell migration across the hydrogel width are assessed using the chemokine CXCL12, and its inhibition by AMD3100 is validated. This open-top hydrogel-based fluidic system to deliver chemoattractant cues over square-centimeter-scale areas and millimeter-scale depths can potentially serve as a robust screening platform to assess emerging glioma models and chemotherapeutic agents to eradicate them.


Subject(s)
Cell Movement , Chemotaxis , Glioma , Hydrogels , Humans , Glioma/pathology , Glioma/metabolism , Cell Movement/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Chemotaxis/drug effects , Cell Line, Tumor , Cell Culture Techniques, Three Dimensional/methods , Tumor Microenvironment/drug effects , Chemokine CXCL12/pharmacology , Chemokine CXCL12/metabolism , Cyclams/pharmacology , Cyclams/chemistry , Cell Culture Techniques/methods , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Gelatin/chemistry , Benzylamines/pharmacology , Benzylamines/chemistry , Brain Neoplasms/pathology , Brain Neoplasms/metabolism
9.
J Stroke Cerebrovasc Dis ; 33(6): 107717, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608825

ABSTRACT

BACKGROUND: Moyamoya disease (MMD) is characterized by an abundance of moyamoya vessels; however, the precise mechanism driving the spontaneous angiogenesis of these compensatory vessels remains unclear. Previous research has established a link between the stromal cell-derived factor-1 (SDF-1)/ CXC receptor 4 (CXCR4) axis and angiogenesis under hypoxic conditions. Nevertheless, the alterations in this axis within the cerebrospinal fluid, arachnoid membranes and vascular tissue of MMD patients have not been fully investigated. METHODS: Our study enrolled 66 adult MMD patients and 61 patients with atherosclerotic vascular disease (ACVD). We investigated the SDF-1 concentration in cerebrospinal fluid (CSF) and CXCR4 expression level on the arachnoid membranes and vascular tissue. We utilized enzyme-linked immunosorbent assay and immunohistochemistr. Additionally, we cultured and stimulated human brain microvascular endothelial cells (HBMECs) and smooth muscle cells (SMCs) under oxygen and glucose deprivation (OGD) conditions followed by reoxygenation, to examine any changes in the SDF-1/CXCR4 axis. RESULTS: The results demonstrated an elevation in the level of SDF-1 in CSF among MMD patients compared to those with ACVD. Moreover, the expression of CXCR4 in arachnoid membranes and vascular tissue showed a similar trend. Furthermore, the content of CXCR4 in HBMECs and SMCs increased with the duration of ischemia and hypoxia. However, it was observed that the expression of CXCR4 decreased at OGD/R 24h compared to OGD 24h. The temporal pattern of SDF-1 expression in HBMECs and SMCs mirrored that of CXCR4 expression. CONCLUSION: These findings indicate a critical role for the SDF-1/CXCR4 axis in the angiogenesis of moyamoya disease.


Subject(s)
Chemokine CXCL12 , Moyamoya Disease , Receptors, CXCR4 , Humans , Moyamoya Disease/metabolism , Moyamoya Disease/physiopathology , Moyamoya Disease/cerebrospinal fluid , Receptors, CXCR4/metabolism , Chemokine CXCL12/metabolism , Chemokine CXCL12/cerebrospinal fluid , Male , Female , Adult , Middle Aged , Cells, Cultured , Endothelial Cells/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Signal Transduction , Cell Hypoxia , Aged , Up-Regulation , Young Adult , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology
10.
ACS Appl Mater Interfaces ; 16(17): 21610-21622, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647446

ABSTRACT

The treatment of acute myeloid leukemia (AML) remains unsatisfactory, owing to the absence of efficacious therapy regimens over decades. However, advances in molecular biology, including inhibiting the CXCR4/CXCL12 biological axis, have introduced novel therapeutic options for AML. Additionally, self-stimulated phototherapy can solve the poor light penetration from external sources, and it will overcome the limitation that traditional phototherapy cannot be applied to the treatment of AML. Herein, we designed and manufactured a self-stimulated photodynamic nanoreactor to enhance antileukemia efficacy and suppress leukemia recurrence and metastasis in AML mouse models. To fulfill our design, we utilized the CXCR4/CXCL12 biological axis and biomimetic cell membranes in conjunction with self-stimulated phototherapy. This nanoreactor possesses the capability to migrate into the bone marrow cavity, inhibit AML cells from infiltrating into the visceral organ, significantly enhance the antileukemia effect, and prolong the survival time of leukemic mice. Therefore, this nanoreactor has significant potential for achieving high success rates and low recurrence rates in leukemia treatment.


Subject(s)
Leukemia, Myeloid, Acute , Photochemotherapy , Receptors, CXCR4 , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Mice , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/therapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Cell Line, Tumor , Chemokine CXCL12/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
11.
Int Immunopharmacol ; 132: 111944, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38581990

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal malignancy worldwide owing to its complex tumour microenvironment and dense physical barriers. Stromal-derived factor-1 (SDF-1), which is abundantly secreted by tumour stromal cells, plays a pivotal role in promoting PDAC growth and metastasis. In this study, we investigated the impact and molecular mechanisms of the anti-PD-L1&CXCR4 bispecific nanobody on the TME and their consequent interference with PDAC progression. We found that blocking the SDF-1/CXCR4 signalling pathway delayed the epithelial-mesenchymal transition in pancreatic cancer cells. Anti-PD-L1&CXCR4 bispecific nanobody effectively suppress the secretion of SDF-1 by pancreatic stellate cells and downregulate the expression of smooth muscle actin alpha(α-SMA), thereby preventing the activation of cancer-associated fibroblasts by downregulating the PI3K/AKT signaling pathway. This improves the pancreatic tumour microenvironment, favouring the infiltration of T cells into the tumour tissue. In conclusion, our results suggest that the anti-PD-L1&CXCR4 bispecific nanobody exerts an antitumor immune response by changing the pancreatic tumour microenvironment. Hence, the anti-PD-L1&CXCR4 bispecific nanobody is a potential candidate for pancreatic cancer treatment.


Subject(s)
B7-H1 Antigen , Carcinoma, Pancreatic Ductal , Chemokine CXCL12 , Pancreatic Neoplasms , Pancreatic Stellate Cells , Receptors, CXCR4 , Single-Domain Antibodies , Tumor Microenvironment , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/drug effects , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/immunology , Humans , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Cell Line, Tumor , Animals , Chemokine CXCL12/metabolism , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/immunology , Signal Transduction , Mice , Epithelial-Mesenchymal Transition/drug effects , Disease Progression
12.
Int Immunopharmacol ; 132: 111894, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38569426

ABSTRACT

AIMS: To investigate the immunology shared mechanisms underlying chronic obstructive pulmonary disease (COPD) and type 2 diabetes mellitus (T2DM) and examine the impact of anti-diabetic drugs on acute exacerbation of COPD (AECOPD). METHODS: We analyzed GSE76925, GSE76894, GSE37768, and GSE25724 to identify differentially expressed genes. Hub-genes were identified through protein-protein interaction network analysis and evaluated by the receiver operating characteristic curve. CXCL12 emerged as a robust biomarker, and its correlation with lung function and CD8+ T cells were further quantified and validated. The activated signaling pathways were inferred through Gene set enrichment analysis (GSEA). The retrospective clinical analysis was executed to identify the influence of dipeptidyl peptidase-4 inhibitors (DPP-4i) on CXCL12 and evaluate the drug's efficacy in AECOPD. RESULTS: The significant up-regulation of CXCL12 expression in patients with two diseases were revealed. CXCL12 exhibited a negative correlation with pulmonary function (r = -0.551, p < 0.05). Consistent with analysis in GSE76925 and GSE76894, the positive correlation between the proportion of CD8+ T cells was demonstrated(r=0.469, p<0.05). GSEA identified "cytokines interaction" as an activated signaling pathway, and the clinical study revealed the correlation between CXCL12 and IL-6 (r=0.668, p<0.05). In patients with COPD and T2DM, DDP-4i treatment exhibited significantly higher serum CXCL12, compared to GLP-1RA. Analysis of 187 COPD patients with T2DM indicated that the DPP-4i group had a higher frequency of AECOPD compared to the GLP-1RA group (OR 1.287, 95%CI [1.018-2.136]). CONCLUSIONS: CXCL12 may represent a therapeutic target for COPD and T2DM. GLP-1RA treatment may be associated with lower CXCL12 levels and a lower risk of AECOPD compared to DPP-4i treatment. CLINICAL TRIAL REGISTRATION: China Clinical Trial Registration Center(ChiCTR2200055611).


Subject(s)
Chemokine CXCL12 , Computational Biology , Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/drug therapy , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Diabetes Mellitus, Type 2/drug therapy , Male , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Female , Aged , Middle Aged , Retrospective Studies , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Disease Progression , Protein Interaction Maps
13.
PLoS Biol ; 22(4): e3002590, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683849

ABSTRACT

Brain pericytes are one of the critical cell types that regulate endothelial barrier function and activity, thus ensuring adequate blood flow to the brain. The genetic pathways guiding undifferentiated cells into mature pericytes are not well understood. We show here that pericyte precursor populations from both neural crest and head mesoderm of zebrafish express the transcription factor nkx3.1 develop into brain pericytes. We identify the gene signature of these precursors and show that an nkx3.1-, foxf2a-, and cxcl12b-expressing pericyte precursor population is present around the basilar artery prior to artery formation and pericyte recruitment. The precursors later spread throughout the brain and differentiate to express canonical pericyte markers. Cxcl12b-Cxcr4 signaling is required for pericyte attachment and differentiation. Further, both nkx3.1 and cxcl12b are necessary and sufficient in regulating pericyte number as loss inhibits and gain increases pericyte number. Through genetic experiments, we have defined a precursor population for brain pericytes and identified genes critical for their differentiation.


Subject(s)
Brain , Cell Differentiation , Pericytes , Transcription Factors , Zebrafish Proteins , Zebrafish , Pericytes/metabolism , Pericytes/cytology , Animals , Zebrafish/metabolism , Zebrafish/embryology , Zebrafish/genetics , Brain/metabolism , Brain/embryology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Differentiation/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Gene Expression Regulation, Developmental , Neural Crest/metabolism , Neural Crest/cytology , Mesoderm/metabolism , Mesoderm/cytology , Signal Transduction , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics
14.
Phytomedicine ; 128: 155362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522312

ABSTRACT

BACKGROUND: Stroke is a leading cause of disability and death worldwide. Currently, there is a lack of clinically effective treatments for the brain damage following ischemic stroke. Catalpol is a bioactive compound derived from the traditional Chinese medicine Rehmannia glutinosa and shown to be protective in various neurological diseases. However, the potential roles of catalpol against ischemic stroke are still not completely clear. PURPOSE: This study aimed to further elucidate the protective effects of catalpol against ischemic stroke. METHODS: A rat permanent middle cerebral artery occlusion (pMCAO) and oxygen-glucose deprivation (OGD) model was established to assess the effect of catalpol in vivo and in vitro, respectively. Behavioral tests were used to examine the effects of catalpol on neurological function of ischemic rats. Immunostaining was performed to evaluate the proliferation, migration and differentiation of neural stem cells (NSCs) as well as the angiogenesis in each group. The protein level of related molecules was detected by western-blot. The effects of catalpol on cultured NSCs as well as brain microvascular endothelial cells (BMECs) subjected to OGD in vitro were also examined by similar methods. RESULTS: Catalpol attenuated the neurological deficits and improved neurological function of ischemic rats. It stimulated the proliferation of NSCs in the subventricular zone (SVZ), promoted their migration to the ischemic cortex and differentiation into neurons or glial cells. At the same time, catalpol increased the cerebral vessels density and the number of proliferating cerebrovascular endothelial cells in the infracted cortex of ischemic rats. The level of SDF-1α and CXCR4 in the ischemic cortex was found to be enhanced by catalpol treatment. Catalpol was also shown to promote the proliferation and migration of cultured NSCs as well as the proliferation of BMECs subjected to OGD insult in vitro. Interestingly, the impact of catalpol on cultured cells was inhibited by CXCR4 inhibitor AMD3100. Moreover, the culture medium of BMECs containing catalpol promoted the proliferation of NSCs, which was also suppressed by AMD3100. CONCLUSION: Our data demonstrate that catalpol exerts neuroprotective effects by promoting neurogenesis and angiogenesis via the SDF-1α/CXCR4 pathway, suggesting the therapeutic potential of catalpol in treating cerebral ischemia.


Subject(s)
Chemokine CXCL12 , Iridoid Glucosides , Ischemic Stroke , Neurogenesis , Rats, Sprague-Dawley , Receptors, CXCR4 , Rehmannia , Animals , Iridoid Glucosides/pharmacology , Receptors, CXCR4/metabolism , Neurogenesis/drug effects , Chemokine CXCL12/metabolism , Male , Rehmannia/chemistry , Ischemic Stroke/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Neural Stem Cells/drug effects , Cell Proliferation/drug effects , Rats , Neuroprotective Agents/pharmacology , Neovascularization, Physiologic/drug effects , Cell Movement/drug effects , Cell Differentiation/drug effects , Endothelial Cells/drug effects , Disease Models, Animal , Signal Transduction/drug effects , Cells, Cultured , Angiogenesis
15.
PLoS One ; 19(3): e0299821, 2024.
Article in English | MEDLINE | ID: mdl-38517864

ABSTRACT

Pancreatic ß-cell failure is a pathological feature in type 1 diabetes. One promising approach involves inducing transdifferentiation of related pancreatic cell types, specifically α cells that produce glucagon. The chemokine stromal cell-derived factor-1 alpha (SDF-1α) is implicated in pancreatic α-to-ß like cell transition. Here, the serum level of SDF-1α was lower in T1D with C-peptide loss, the miR-23a was negatively correlated with SDF-1α. We discovered that exosomal miR-23a, secreted from ß cells, functionally downregulates the expression of SDF-1α, leading to increased Pax4 expression and decreased Arx expression in vivo. Adenovirus-vectored miR-23a sponge and mimic were constructed to further explored the miR-23a on pancreatic α-to-ß like cell transition in vitro, which yielded results consistent with our cell-based assays. Suppression of miR-23a upregulated insulin level and downregulated glucagon level in STZ-induced diabetes mice models, effectively promoting α-to-ß like cell transition. Our findings highlight miR-23a as a new therapeutic target for regenerating pancreatic ß cells from α cells.


Subject(s)
Glucagon-Secreting Cells , Insulin-Secreting Cells , MicroRNAs , Animals , Mice , Cell Transdifferentiation/genetics , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Glucagon , Glucagon-Secreting Cells/metabolism , Insulin-Secreting Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
16.
Nat Commun ; 15(1): 2763, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553476

ABSTRACT

The binding of therapeutic antagonists to their receptors often fail to translate into adequate manipulation of downstream pathways. To fix this 'bug', here we report a strategy that stitches cell surface 'patches' to promote receptor clustering, thereby synchronizing subsequent mechano-transduction. The "patches" are sewn with two interactable nanothreads. In sequence, Nanothread-1 strings together adjacent receptors while presenting decoy receptors. Nanothread-2 then targets these decoys multivalently, intertwining with Nanothread-1 into a coiled-coil supramolecular network. This stepwise actuation clusters an extensive vicinity of receptors, integrating mechano-transduction to disrupt signal transmission. When applied to antagonize chemokine receptors CXCR4 expressed in metastatic breast cancer of female mice, this strategy elicits and consolidates multiple events, including interception of metastatic cascade, reversal of immunosuppression, and potentiation of photodynamic immunotherapy, reducing the metastatic burden. Collectively, our work provides a generalizable tool to spatially rearrange cell-surface receptors to improve therapeutic outcomes.


Subject(s)
Chemokine CXCL12 , Neoplasms , Female , Animals , Mice , Chemokine CXCL12/metabolism , Signal Transduction , Receptors, CXCR4/metabolism , Cell Movement , Neoplasm Metastasis , Cell Line, Tumor
17.
Glia ; 72(6): 1183-1200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38477581

ABSTRACT

Barrier-forming olfactory glia cells, termed sustentacular cells, play important roles for immune defense of the olfactory mucosa, for example as entry sites for SARS-CoV-2 and subsequent development of inflammation-induced smell loss. Here we demonstrate that sustentacular cells express ACKR3, a chemokine receptor that functions both as a scavenger of the chemokine CXCL12 and as an activator of alternative signaling pathways. Differential gene expression analysis of bulk RNA sequencing data obtained from WT and ACKR3 conditional knockout mice revealed upregulation of genes involved in immune defense. To map the regulated genes to the different cell types of the olfactory mucosa, we employed biocomputational methods utilizing a single-cell reference atlas. Transcriptome analysis, PCR and immunofluorescence identified up-regulation of NF-κB-related genes, known to amplify inflammatory signaling and to facilitate leukocyte transmigration, in the gliogenic lineage. Accordingly, we found a marked increase in leukocyte-expressed genes and confirmed leukocyte infiltration into the olfactory mucosa. In addition, lack of ACKR3 led to enhanced expression and secretion of early mediators of immune defense by Bowman's glands. As a result, the number of apoptotic cells in the epithelium was decreased. In conclusion, our research underlines the importance of sustentacular cells in immune defense of the olfactory mucosa. Moreover, it identifies ACKR3, a druggable G protein-coupled receptor, as a promising target for modulation of inflammation-associated anosmia.


Subject(s)
Inflammation , Olfactory Mucosa , Animals , Mice , Chemokine CXCL12/metabolism , Gene Expression Profiling , Inflammation/metabolism , Neuroglia/metabolism , Olfactory Mucosa/metabolism
18.
J Ethnopharmacol ; 328: 118117, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38548120

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chuanxiong, a plant of the Umbelliferae family, is a genuine medicinal herb from Sichuan Province. Phthalides are one of its main active components and exhibit good protective effect against cerebrovascular diseases. However, the mechanism by which phthalides exert neuroprotective effects is still largely unclear. AIM OF THE STUDY: In this study, we extracted a phthalein component (named as QBT) from Ligusticum Chuanxiong, and investigated its neuroprotective effects against vascular dementia (VaD) rats and the underlying mechanism, focusing on the chemokine 12 (CXCL12)/chemokine (C-X-C motif) receptor 4 (CXCR4) axis. METHODS: A rat model of VaD was established, and treated with QBT. Cognitive dysfunction in VaD rats was assessed using the Y-maze, new object recognition, and Morris water maze tests. Neuronal damage and inflammatory response in VaD rats were examined through Nissl staining, immunofluorescence, enzyme-linked immunospecific assay, and western blotting analysis. Furthermore, the effects of QBT on CXCL12/CXCR4 axis and its downstream signaling pathways, Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/nuclear factor-κB (NF-κB), were investigated in VaD rats and BV2 microglial cells exposed to oxygen glucose deprivation. RESULTS: QBT significantly alleviated cognitive dysfunction and neuronal damage in VaD rats, along with inhibition of VaD-induced over-activation of microglia and astrocytes and inflammatory response. Moreover, QBT exhibited anti-inflammatory effects by inhibiting the CXCL12/CXCR4 axis and its downstream JAK2/STAT3 and PI3K/AKT/NF-κB pathways, thereby attenuating the neuroinflammatory response both in vivo and in vitro. CONCLUSION: QBT effectively mitigated neuronal damage and cognitive dysfunction in VaD rats, exerting neuroprotective effects by suppressing neuroinflammatory response through inhibition of the CXCL12/CXCR4 axis.


Subject(s)
Cognitive Dysfunction , Dementia, Vascular , Neuroprotective Agents , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , NF-kappa B/metabolism , Neuroinflammatory Diseases , Phosphatidylinositol 3-Kinases/metabolism , Rats, Sprague-Dawley , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Microglia , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Chemokine CXCL12/metabolism
19.
J Neuroimmune Pharmacol ; 19(1): 9, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430337

ABSTRACT

Primarily regarded as immune proteins, chemokines are emerging as a family of molecules serving neuromodulatory functions in the developing and adult brain. Among them, CXCL12 is constitutively and widely expressed in the CNS, where it was shown to act on cellular, synaptic, network, and behavioral levels. Its receptor, CXCR4, is abundant in the amygdala, a brain structure involved in pathophysiology of anxiety disorders. Dysregulation of CXCL12/CXCR4 signaling has been implicated in anxiety-related behaviors. Here we demonstrate that exogenous CXCL12 at 2 nM but not at 5 nM increased neuronal excitability in the lateral division of the rat central amygdala (CeL) which was evident in the Late-Firing but not Regular-Spiking neurons. These effects were blocked by AMD3100, a CXCR4 antagonist. Moreover, CXCL12 increased the excitability of the neurons of the basolateral amygdala (BLA) that is known to project to the CeL. However, CXCL12 increased neither the spontaneous excitatory nor spontaneous inhibitory synaptic transmission in the CeL. In summary, the data reveal specific activation of Late-Firing CeL cells along with BLA neurons by CXCL12 and suggest that this chemokine may alter information processing by the amygdala that likely contributes to anxiety and fear conditioning.


Subject(s)
Basolateral Nuclear Complex , Central Amygdaloid Nucleus , Rats , Animals , Receptors, CXCR4/metabolism , Central Amygdaloid Nucleus/metabolism , Chemokine CXCL12/metabolism , Neurons/metabolism
20.
Cell Mol Life Sci ; 81(1): 132, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38472446

ABSTRACT

P2Y11 is a G protein-coupled ATP receptor that activates IL-1 receptor (IL-1R) in a cyclic AMP dependent manner. In human macrophages, P2Y11/IL-1R crosstalk with CCL20 as a prime target is controlled by phosphodiesterase 4 (PDE4), which mediates breakdown of cyclic AMP. Here, we used gene expression analysis to identify activation of CXCR4 and CXCR7 as a hallmark of P2Y11 signaling. We found that PDE4 inhibition with rolipram boosts P2Y11/IL-1R-induced upregulation of CXCR7 expression and CCL20 production in an epidermal growth factor receptor dependent manner. Using an astrocytoma cell line, naturally expressing CXCR7 but lacking CXCR4, P2Y11/IL-1R activation effectively induced and CXCR7 agonist TC14012 enhanced CCL20 production even in the absence of PDE4 inhibition. Moreover, CXCR7 depletion by RNA interference suppressed CCL20 production. In macrophages, the simultaneous activation of P2Y11 and CXCR7 by their respective agonists was sufficient to induce CCL20 production with no need of PDE4 inhibition, as CXCR7 activation increased its own and eliminated CXCR4 expression. Finally, analysis of multiple CCL chemokines in the macrophage secretome revealed that CXCR4 inactivation and CXCR7 activation selectively enhanced P2Y11/IL-1R-mediated secretion of CCL20. Altogether, our data establish CXCR7 as an integral component of the P2Y11/IL-1R-initiated signaling cascade and CXCR4-associated PDE4 as a regulatory checkpoint.


Subject(s)
Receptors, CXCR4 , Signal Transduction , Humans , Cell Line , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Chemokine CXCL12/pharmacology , Cyclic AMP/metabolism , Macrophages/metabolism , Receptors, CXCR4/genetics , Receptors, Purinergic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...