Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Int Immunopharmacol ; 139: 112735, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39067397

ABSTRACT

Anti-factor VIII (FVIII) antibody development poses a significant challenge in hemophilia A (HA) patients receiving FVIII protein replacement therapy. There is an urgent need for novel therapeutic strategies to inhibit the production of anti-FVIII inhibitory antibodies (inhibitors) in HA. This study aimed to investigate a combination monoclonal antibody (mAb) therapy targeting CXCL13 and CD20 on the development of anti-FVIII antibodies in a HA murine model, along with the underlying mechanisms involved. Specifically, mAbs targeting mouse CD20 (18B12) with an IgG2a backbone and mouse CXCL13 (2C4) with an IgG1 backbone were synthesized. HA mice with FVIII inhibitors were established, and the results revealed that the combination therapy of anti-mCD20 with α-mCXCL13 significantly suppressed anti-FVIII antibody development and induced FVIII tolerance. Furthermore, this combination therapy led to a marked reduction of peripheral and splenic follicular helper T cells and an enhancement of regulatory T cell induction, along with sustained depletion of bone marrow and splenic plasma cells in HA mice with preexisting FVIII immunity. Thus, the concurrence of blockage of CD20 and neutralization of CXCL13 hold promise as a therapeutic strategy for HA patients with inhibitors.


Subject(s)
Antibodies, Monoclonal , Chemokine CXCL13 , Factor VIII , Hemophilia A , Animals , Hemophilia A/drug therapy , Hemophilia A/immunology , Factor VIII/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/immunology , Mice , Chemokine CXCL13/immunology , Chemokine CXCL13/metabolism , Humans , Antigens, CD20/immunology , Disease Models, Animal , Mice, Inbred C57BL , Male
2.
Scand J Immunol ; 99(4): e13353, 2024 Apr.
Article in English | MEDLINE | ID: mdl-39007994

ABSTRACT

Lyme borreliosis, caused by Borrelia burgdorferi sensu lato, is the most common tickborne disease. Its neuronal form, neuroborreliosis, comprises 3 to 38% of borreliosis cases in Europe. Borrelia outer surface proteins and virulence factors, OspE and BBK32, have been previously reported to help cause infection by promoting attachment to human host epithelial cells and evading complement attack. We assessed the serological responses to BBK32 and OspE in 19 individuals diagnosed with neuroborreliosis to see whether antibodies that could both target the bacteria and neutralize the virulence mechanisms on the microbial surface emerge. Results evaluate levels of total protein, IgG and the chemokine CXCL13, a determinant for B-cell recruitment during neuroinflammation, in patients' cerebrospinal fluid samples. Antibody levels against BBK32 and OspE correlated with those against VlsE, a well-characterized diagnostic serological marker of the disease. A dual serological profile of the patients was observed. K-means clustering split the cohort into two discrete groups presenting distinct serological and CNS responses. One group contained young patients with low levels of anti-BBK32 and OspE antibodies. The other group showed stronger responses, possibly following prolonged infections or reinfections. Additionally, we assessed anti-ganglioside antibodies that could cause autoimmunity or complement dysregulation but observed that they did not correlate with neuroborreliosis in our patient cohort. The dual nature of antibody responses against the virulence factors BBK32 and OspE in neuroborreliosis patients may suggest the necessity of repeated exposures for efficient immune responses. Better protection could be achieved if the virulence factors were formulated into vaccines.


Subject(s)
Antibodies, Bacterial , Antigens, Bacterial , Bacterial Outer Membrane Proteins , Borrelia burgdorferi , Lyme Neuroborreliosis , Humans , Lyme Neuroborreliosis/immunology , Lyme Neuroborreliosis/blood , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , Middle Aged , Female , Male , Adult , Aged , Borrelia burgdorferi/immunology , Antigens, Bacterial/immunology , Virulence Factors/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Chemokine CXCL13/blood , Chemokine CXCL13/immunology , Bacterial Proteins/immunology , Antibody Formation/immunology
3.
Proc Natl Acad Sci U S A ; 119(29): e2205378119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858347

ABSTRACT

Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged, but not young, mice, antiprogrammed death receptor (PD)-1 therapy elicited irAE-like multiorgan dysfunctions with ectopic accumulation of T and B cells in damaged organs. In this preclinical model, the organ toxicities were mediated by immunoglobulin G (IgG) deposition because administration of IG from ICB-treated aged mice induced the pathogenicity specifically in naïve aged hosts. Mechanistically, CD4 T-cell-derived interleukin (IL)-21 upregulated B-cell-homing chemokine, CXCL13, preferentially in irAE organs from aged mice treated with anti-PD-1 therapy. The ICB-induced pathogenicity was alleviated by B-cell depletion or by blockade of IL-21 or CXCL13 activity. These results suggest that age-associated immune regulatory milieu contributes to the formation of tertiary lymphoid structure-like lymphocytic aggregates in irAE organs and irAE-related toxicity employing IL-21-CXCL13-auto-antibody axis. Supporting this, a systemic increase in CXCL13 and Il21 expression in CD4 T cells correlated with irAE incidence in ICB-treated patients. These findings provide rationale for therapeutic usefulness of CXCL13 in irAE management.


Subject(s)
Aging , CD4-Positive T-Lymphocytes , Chemokine CXCL13 , Immune Checkpoint Inhibitors , Immune System Diseases , Immunotherapy , Neoplasms , Programmed Cell Death 1 Receptor , Aging/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Chemokine CXCL13/immunology , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Immune System Diseases/etiology , Immunotherapy/adverse effects , Lymphocyte Activation , Mice , Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors
4.
J Immunol ; 208(10): 2425-2435, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35437281

ABSTRACT

Tumor metastasis is the primary cause of mortality in patients with cancer. Several chemokines are identified as important mediators of tumor growth and/or metastasis. The level of CXCL13 has been reported to be elevated in serum or tumor tissues in patients, which mainly functions to attract B cells and follicular B helper T cells. However, the role of CXCL13 in cancer growth and metastasis is not fully explored. In the current study, we found that CXCL13 is not a strong mediator to directly promote tumor growth; however, the mice deficient in CXCL13 had far fewer pulmonary metastatic foci than did the wild-type mice in experimental pulmonary metastatic models. In addition, Cxcl13 -/- mice also had fewer IL-10-producing B cells (CD45+CD19+IL-10+) in the metastatic tumor immune microenvironment than those of wild-type C57BL/6 mice, resulting in an enhanced antitumor immunity. Notably, CXCL13 deficiency further improved the efficacy of a traditional chemotherapeutic drug (cyclophosphamide), as well as that of anti-programmed death receptor-1 immunotherapy. These results suggested that CXCL13 has an important role in regulating IL-10-producing B cells in tumor metastasis and might be a promising target for improving therapeutic efficiency and stimulating tumor immunity in future cancer therapy.


Subject(s)
B-Lymphocytes, Regulatory , Chemokine CXCL13 , Neoplasms , Animals , B-Lymphocytes, Regulatory/immunology , B-Lymphocytes, Regulatory/pathology , Chemokine CXCL13/immunology , Humans , Interleukin-10 , Mice , Mice, Inbred C57BL , Neoplasm Metastasis , Neoplasms/immunology , Neoplasms/pathology , Tumor Microenvironment
5.
Eur J Clin Microbiol Infect Dis ; 41(1): 155-161, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34518964

ABSTRACT

For diagnosis of neuroborreliosis, calculation of the antibody index, based on Euroimmun Anti-Borrelia plus VlsE ELISA was compared to Virotech Borrelia Europe plus TpN17 immunoblot-based detection of Borrelia-specific intrathecal antibody production. CXCL13 results in cerebrospinal fluid were used to evaluate discordant results. A total of 64 serum/CSF pairs were analysed. Patients were classified according to European Federation of Neurological Societies criteria incorporating Virotech results. For the Euroimmun assay, a sensitivity of 100% and specificity of 94% was found. Agreement between the both tests was almost perfect (κ 0.81). Both methods are appropriate for the detection of Borrelia-specific intrathecal antibody production.


Subject(s)
Antibodies, Bacterial/analysis , Borrelia/immunology , Enzyme-Linked Immunosorbent Assay/methods , Immunoblotting/methods , Lyme Neuroborreliosis/diagnosis , Adolescent , Adult , Aged , Antibodies, Bacterial/blood , Borrelia/isolation & purification , Chemokine CXCL13/analysis , Chemokine CXCL13/immunology , Female , Humans , Lyme Neuroborreliosis/blood , Lyme Neuroborreliosis/cerebrospinal fluid , Lyme Neuroborreliosis/microbiology , Male , Middle Aged , Young Adult
6.
Immunogenetics ; 73(6): 435-448, 2021 12.
Article in English | MEDLINE | ID: mdl-34477936

ABSTRACT

Rheumatoid arthritis (RA) is a systemic autoimmune disease whose principal pathological change is aggressive chronic synovial inflammation; however, the specific etiology and pathogenesis have not been fully elucidated. We downloaded the synovial tissue gene expression profiles of four human knees from the Gene Expression Omnibus database, analyzed the differentially expressed genes in the normal and RA groups, and assessed their enrichment in functions and pathways using bioinformatics methods and the STRING online database to establish protein-protein interaction networks. Cytoscape software was used to obtain 10 hub genes; receiver operating characteristic (ROC) curves were calculated for each hub gene and differential expression analysis of the two groups of hub genes. The CIBERSORT algorithm was used to impute immune infiltration. We identified the signaling pathways that play important roles in RA and 10 hub genes: Ccr1, Ccr2, Ccr5, Ccr7, Cxcl5, Cxcl6, Cxcl13, Ccl13, Adcy2, and Pnoc. The diagnostic value of these 10 hub genes for RA was confirmed using ROC curves and expression analysis. Adcy2, Cxcl13, and Ccr5 are strongly associated with RA development. The study also revealed that the differential infiltration profile of different inflammatory immune cells in the synovial tissue of RA is an extremely critical factor in RA progression. This study may contribute to the understanding of signaling pathways and biological processes associated with RA and the role of inflammatory immune infiltration in the pathogenesis of RA. In addition, this study shows that Adcy2, Cxcl13, and Ccr5 have the potential to be biomarkers for RA treatment.


Subject(s)
Adenylyl Cyclases/genetics , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Chemokine CXCL13/genetics , Protein Interaction Maps , Receptors, CCR5/genetics , Adenylyl Cyclases/immunology , Adenylyl Cyclases/metabolism , Arthritis, Rheumatoid/therapy , Biomarkers , Chemokine CXCL13/immunology , Chemokine CXCL13/metabolism , Computational Biology , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Inflammation , Receptors, CCR5/immunology , Receptors, CCR5/metabolism , Signal Transduction , Synovial Membrane/metabolism , Transcriptome
7.
Fluids Barriers CNS ; 18(1): 40, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34446066

ABSTRACT

BACKGROUND: C-X-C chemokine ligand 13 (CXCL13) is frequently elevated in cerebrospinal fluid (CSF) in a variety of inflammatory central nervous system (CNS) diseases, has been detected in meningeal B cell aggregates in brain tissues of multiple sclerosis patients, and proposedly recruits B cells into the inflamed CNS. Besides B cells also follicular helper T (Tfh) cells express the cognate receptor C-X-C chemokine receptor type 5 (CXCR5) and follow CXCL13 gradients in lymphoid tissues. These highly specialized B cell helper T cells are indispensable for B cell responses to infection and vaccination and involved in autoimmune diseases. Phenotypically and functionally related circulating CXCR5+CD4 T cells occur in blood. Their co-recruitment to the inflamed CSF is feasible but unresolved. METHODS: We approached this question with a retrospective study including data of all patients between 2017 and 2019 of whom immune phenotyping data of CXCR5 expression and CSF CXCL13 concentrations were available. Discharge diagnoses and CSF laboratory parameters were retrieved from records. Patients were categorized as pyogenic/aseptic meningoencephalitis (ME, n = 29), neuroimmunological diseases (NIMM, n = 22), and non-inflammatory neurological diseases (NIND, n = 6). ANOVA models and Spearman's Rank-Order correlation were used for group comparisons and associations of CXCL13 levels with immune phenotyping data. RESULTS: In fact, intrathecal CXCL13 elevations strongly correlated with CXCR5+CD4 T cell frequencies in the total cohort (p < 0.0001, r = 0.59), and ME (p = 0.003, r = 0.54) and NIMM (p = 0.043, r = 0.44) patients. Moreover, the ratio of CSF-to-peripheral blood (CSF/PB) frequencies of CXCR5+CD4 T cells strongly correlated with CXCL13 levels both in the total cohort (p = 0.001, r = 0.45) and ME subgroup (p = 0.005, r = 0.50), indicating selective accumulation. ME, NIMM and NIND groups differed with regard to CSF cell counts, albumin quotient, intrathecal IgG, CXCL13 elevations and CXCR5+CD4 T cells, which were higher in inflammatory subgroups. CONCLUSION: The observed link between intrathecal CXCL13 elevations and CXCR5+CD4 T cell frequencies does not prove but suggests recruitment of possible professional B cell helpers to the inflamed CSF. This highlights CSF CXCR5+CD4 T cells a key target and potential missing link to the poorly understood phenomenon of intrathecal B cell and antibody responses with relevance for infection control, chronic inflammation and CNS autoimmunity.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Chemokine CXCL13/cerebrospinal fluid , Neuroinflammatory Diseases/cerebrospinal fluid , Receptors, CXCR5/metabolism , Adult , Aged , Aged, 80 and over , CD4-Positive T-Lymphocytes/immunology , Chemokine CXCL13/immunology , Female , Humans , Male , Middle Aged , Neuroinflammatory Diseases/immunology , Receptors, CXCR5/immunology , Retrospective Studies , Young Adult
8.
Nat Commun ; 12(1): 4734, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354077

ABSTRACT

The tumor microenvironment (TME) is a complex amalgam of tumor cells, immune cells, endothelial cells and fibroblastic stromal cells (FSC). Cancer-associated fibroblasts are generally seen as tumor-promoting entity. However, it is conceivable that particular FSC populations within the TME contribute to immune-mediated tumor control. Here, we show that intratumoral treatment of mice with a recombinant lymphocytic choriomeningitis virus-based vaccine vector expressing a melanocyte differentiation antigen resulted in T cell-dependent long-term control of melanomas. Using single-cell RNA-seq analysis, we demonstrate that viral vector-mediated transduction reprogrammed and activated a Cxcl13-expressing FSC subset that show a pronounced immunostimulatory signature and increased expression of the inflammatory cytokine IL-33. Ablation of Il33 gene expression in Cxcl13-Cre-positive FSCs reduces the functionality of intratumoral T cells and unleashes tumor growth. Thus, reprogramming of FSCs by a self-antigen-expressing viral vector in the TME is critical for curative melanoma treatment by locally sustaining the activity of tumor-specific T cells.


Subject(s)
Melanoma, Experimental/therapy , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Cellular Reprogramming Techniques/methods , Chemokine CXCL13/genetics , Chemokine CXCL13/immunology , Female , Genetic Vectors , Interleukin-33/deficiency , Interleukin-33/genetics , Interleukin-33/immunology , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/immunology , Lymphocytic choriomeningitis virus/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Stromal Cells/immunology , Stromal Cells/pathology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Tumor Microenvironment/immunology
9.
Nat Commun ; 12(1): 4888, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34373466

ABSTRACT

The objective of the present study was to identify biological signatures of severe coronavirus disease 2019 (COVID-19) predictive of admission in the intensive care unit (ICU). Over 170 immunological markers were investigated in a 'discovery' cohort (n = 98 patients) of the Lausanne University Hospital (LUH-1). Here we report that 13 out of 49 cytokines were significantly associated with ICU admission in the three cohorts (P < 0.05 to P < 0.001), while cellular immunological markers lacked power in discriminating between ICU and non-ICU patients. The cytokine results were confirmed in two 'validation' cohorts, i.e. the French COVID-19 Study (FCS; n = 62) and a second LUH-2 cohort (n = 47). The combination of hepatocyte growth factor (HGF) and C-X-C motif chemokine ligand 13 (CXCL13) was the best predictor of ICU admission (positive and negative predictive values ranging from 81.8% to 93.1% and 85.2% to 94.4% in the 3 cohorts) and occurrence of death during patient follow-up (8.8 fold higher likelihood of death when both cytokines were increased). Of note, HGF is a pleiotropic cytokine with anti-inflammatory properties playing a fundamental role in lung tissue repair, and CXCL13, a pro-inflammatory chemokine associated with pulmonary fibrosis and regulating the maturation of B cell response. Up-regulation of HGF reflects the most powerful counter-regulatory mechanism of the host immune response to antagonize the pro-inflammatory cytokines including CXCL13 and to prevent lung fibrosis in COVID-19 patients.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Chemokine CXCL13/immunology , Cytokines/immunology , Hepatocyte Growth Factor/immunology , Biomarkers/blood , CD4-Positive T-Lymphocytes , COVID-19/blood , COVID-19/diagnosis , Chemokine CXCL13/genetics , Cytokines/blood , Hepatocyte Growth Factor/genetics , Hospitalization , Humans , Intensive Care Units , Pulmonary Fibrosis , SARS-CoV-2/isolation & purification , Severity of Illness Index
10.
Cells ; 10(7)2021 07 06.
Article in English | MEDLINE | ID: mdl-34359880

ABSTRACT

An imbalance of TNF signalling in the inflammatory milieu generated by meningeal immune cell infiltrates in the subarachnoid space in multiple sclerosis (MS), and its animal model may lead to increased cortical pathology. In order to explore whether this feature may be present from the early stages of MS and may be associated with the clinical outcome, the protein levels of TNF, sTNF-R1 and sTNF-R2 were assayed in CSF collected from 122 treatment-naïve MS patients and 36 subjects with other neurological conditions at diagnosis. Potential correlations with other CSF cytokines/chemokines and with clinical and imaging parameters at diagnosis (T0) and after 2 years of follow-up (T24) were evaluated. Significantly increased levels of TNF (fold change: 7.739; p < 0.001), sTNF-R1 (fold change: 1.693; p < 0.001) and sTNF-R2 (fold change: 2.189; p < 0.001) were detected in CSF of MS patients compared to the control group at T0. Increased TNF levels in CSF were significantly (p < 0.01) associated with increased EDSS change (r = 0.43), relapses (r = 0.48) and the appearance of white matter lesions (r = 0.49). CSF levels of TNFR1 were associated with cortical lesion volume (r = 0.41) at T0, as well as with new cortical lesions (r = 0.56), whilst no correlation could be found between TNFR2 levels in CSF and clinical or MRI features. Combined correlation and pathway analysis (ingenuity) of the CSF protein pattern associated with TNF expression (encompassing elevated levels of BAFF, IFN-γ, IL-1ß, IL-10, IL-8, IL-16, CCL21, haptoglobin and fibrinogen) showed a particular relationship to the interaction between innate and adaptive immune response. The CSF sTNF-R1-associated pattern (encompassing high levels of CXCL13, TWEAK, LIGHT, IL-35, osteopontin, pentraxin-3, sCD163 and chitinase-3-L1) was mainly related to altered T cell and B cell signalling. Finally, the CSF TNFR2-associated pattern (encompassing high CSF levels of IFN-ß, IFN-λ2, sIL-6Rα) was linked to Th cell differentiation and regulatory cytokine signalling. In conclusion, dysregulation of TNF and TNF-R1/2 pathways associates with specific clinical/MRI profiles and can be identified at a very early stage in MS patients, at the time of diagnosis, contributing to the prediction of the disease outcome.


Subject(s)
Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/genetics , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Tumor Necrosis Factor-alpha/genetics , Adaptive Immunity , Adult , Antigens, CD/cerebrospinal fluid , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, Differentiation, Myelomonocytic/cerebrospinal fluid , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/immunology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , C-Reactive Protein/cerebrospinal fluid , C-Reactive Protein/genetics , C-Reactive Protein/immunology , Case-Control Studies , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/immunology , Cerebral Cortex/pathology , Chemokine CXCL13/cerebrospinal fluid , Chemokine CXCL13/genetics , Chemokine CXCL13/immunology , Chitinase-3-Like Protein 1/cerebrospinal fluid , Chitinase-3-Like Protein 1/genetics , Chitinase-3-Like Protein 1/immunology , Cytokine TWEAK/cerebrospinal fluid , Cytokine TWEAK/genetics , Cytokine TWEAK/immunology , Early Diagnosis , Female , Gene Expression Regulation , Humans , Immunity, Innate , Interleukins/cerebrospinal fluid , Interleukins/genetics , Interleukins/immunology , Magnetic Resonance Imaging , Male , Meninges/diagnostic imaging , Meninges/immunology , Meninges/pathology , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/pathology , Osteopontin/cerebrospinal fluid , Osteopontin/genetics , Osteopontin/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Receptors, Tumor Necrosis Factor, Type I/cerebrospinal fluid , Receptors, Tumor Necrosis Factor, Type I/immunology , Receptors, Tumor Necrosis Factor, Type II/cerebrospinal fluid , Receptors, Tumor Necrosis Factor, Type II/immunology
11.
J Immunol ; 206(9): 2045-2051, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33846228

ABSTRACT

Autoreactive CD4 T cells are thought to play pivotal roles in the pathogenesis of rheumatoid arthritis (RA). Recently, a subset of CD4 T cells that express high levels of programmed death-1 (PD-1) but are distinct from follicular helper T cells have been identified in the joints of RA patients and named peripheral helper T (Tph) cells. Because PD-1 is expressed on T cells chronically stimulated with the Ags, we tested a hypothesis that Tph cells are the pathogenic autoreactive CD4 T cells in RA. We found that human Tph cells in RA joints produce proinflammatory effector cytokines, including IFN-γ, TNF-α, and GM-CSF, in addition to B cell-helping cytokines, such as IL-21 and CXCL13. Flow cytometric analysis showed different bias of TCR Vß usage between PD-1high Tph cells and PD-1low/neg CD4 T cells, including Th1 cells, in the joint or memory CD4 T cells in the peripheral blood, whereas there was little difference between the latter two subsets. In line with this, deep sequencing of TCR demonstrated an overlap of expanded clones between peripheral blood memory CD4 T cells and PD-1low/neg CD4 T cells but not Tph cells in the joint. Interestingly, Tph cells preferentially exhibited autologous MLR in vitro, which required recognition of self-MHC class II and was pronounced by blocking PD-1 signaling. Taken together, these results suggest that Tph cells are the pathogenic autoreactive CD4 T cells in RA, which expand locally in the joints and are regulated by PD-1 signaling.


Subject(s)
Arthritis, Rheumatoid/immunology , CD4-Positive T-Lymphocytes/immunology , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes, Helper-Inducer/immunology , Aged , Arthritis, Rheumatoid/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Chemokine CXCL13/immunology , Chemokine CXCL13/metabolism , Cytokines/immunology , Cytokines/metabolism , Female , Humans , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Male , Middle Aged , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism
12.
Front Immunol ; 12: 638872, 2021.
Article in English | MEDLINE | ID: mdl-33732259

ABSTRACT

CXCL13 signals through the G protein-coupled chemokine receptor CXCR5 to drive development of secondary lymphoid tissue as well as B cell and Tfh cell trafficking to germinal centers (GC), which leads to the differentiation of B cells to plasma cells and memory B cells. CXCL13 has been proposed as a general plasma biomarker for GC activities. In HIV-1 infected individuals, plasma CXCL13 levels have been associated with the rate of disease progression to AIDS. Moreover, CXCL13 production has been reported to be increased in HIV-1-infected lymph nodes, which may drive increased downregulation of CXCR5. In this review, we address the role of CXCL13 in HIV-1 infected individuals with regard to GC formation, generation of broadly neutralizing antibodies after infection and vaccination, and AIDS-related B cell lymphoma.


Subject(s)
AIDS Vaccines/immunology , Chemokine CXCL13/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Antibody Formation/immunology , Broadly Neutralizing Antibodies/immunology , Humans
13.
Cancer Sci ; 112(4): 1402-1416, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33529452

ABSTRACT

Human papillomavirus (HPV) is an important etiological factor of head and neck squamous cell carcinoma (HNSCC). HPV+ HNSCC patients usually have a better prognosis, which probably results from the higher infiltration of B lymphocytes. This study was purposed to detect the infiltration of B lymphocyte subsets and the correlation between B lymphocyte subsets and the prognosis in HPV-related HNSCC. In this study, 124 HPV+ and 513 HPV- HNSCC samples were obtained from the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database for transcriptomic analysis. Infiltration of B lymphocytes subsets was detected with 7 HPV+ HNSCC and 13 HPV- HNSCC tissues through immunohistochemistry and immunofluorescence. One HPV- HNSCC sample was detected with single-cell sequencing for chemokine analysis. In the results, the infiltration of plasma cells (CD19+ CD38+ ) and memory B cells (MS4A1+ CD27+ ) was higher in HPV+ HNSCC samples. High infiltration of plasma cells and memory B cells was related to a better prognosis. High density of B lymphocytes was positively correlated with high CXCL13 production mainly from CD4+ T lymphocytes in HNSCC. These results indicated that a high density of plasma cells and memory B cells could predict excellent prognosis. CD4+ T lymphocytes might affect B lymphocytes and their subsets through the CXCL13/CXCR5 axis in HNSCC.


Subject(s)
Alphapapillomavirus/immunology , B-Lymphocytes/immunology , Carcinoma, Squamous Cell/immunology , Head and Neck Neoplasms/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Aged , CD4-Positive T-Lymphocytes/immunology , Carcinoma, Squamous Cell/virology , Chemokine CXCL13/immunology , Female , Head and Neck Neoplasms/virology , Humans , Male , Middle Aged , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Prognosis , Receptors, CXCR5/immunology , Squamous Cell Carcinoma of Head and Neck/virology
14.
J Autoimmun ; 116: 102559, 2021 01.
Article in English | MEDLINE | ID: mdl-33087256

ABSTRACT

Autoimmune disorders are the third most common diseases in the United States, and affect the daily lives of millions of people. In this study, we analyzed patient samples, utilized a transgenic mouse model and human B cells to reveal Natural Killer Cell Transcript 4 (NK4) as a novel regulator that promotes the development of autoimmune disorders. NK4 was significantly elevated in samples from patients with SjÓ§gren's Syndrome (SS). SS patients show elevated NK4 levels. There is a strong and positive correlation between the increased levels of NK4 and the duration of SS. Interestingly, transgenic expression of NK4 in a mouse model led to the development of autoantibodies and lymphocytic infiltration in salivary glands similar to those in SS patients. Those phenotypes were associated with increased B1a cells in the peritoneum, plasma cells in the spleen, and increased IgM, IgA, and IgG2a in serum of the NK4 transgenic mice. The autoimmune phenotypes became more severe in older mice. Moreover, after NK4 transfection, human naïve B cells were activated and memory B cells differentiation into IgG and IgA-plasmablasts, resulting in an increased production of autoantibodies.NK4 regulated the differentiation and activation of B cells through activating Rap1 activity. NK4 also promoted B cell migration in a paracrine fashion through an induction of CXCL13 in endothelial cells. Collectively, these findings identify NK4 as a promoter of the development of autoimmune disorders through its roles on B cells. Therefore, NK4 may be a novel therapeutic target for the treatment of autoimmune diseases.


Subject(s)
B-Lymphocytes/immunology , Interleukins/immunology , Sjogren's Syndrome/immunology , rap1 GTP-Binding Proteins/immunology , Adult , Aged , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Line, Tumor , Cell Movement/genetics , Cell Movement/immunology , Cells, Cultured , Chemokine CXCL13/genetics , Chemokine CXCL13/immunology , Chemokine CXCL13/metabolism , Endothelial Cells/cytology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Female , Flow Cytometry/methods , Humans , Interleukins/genetics , Interleukins/metabolism , Male , Mice, Transgenic , Middle Aged , Salivary Glands/immunology , Salivary Glands/metabolism , Sjogren's Syndrome/genetics , Sjogren's Syndrome/metabolism , Young Adult , rap1 GTP-Binding Proteins/genetics , rap1 GTP-Binding Proteins/metabolism
15.
Front Immunol ; 11: 521110, 2020.
Article in English | MEDLINE | ID: mdl-33193299

ABSTRACT

Tumor immunity is a rapidly evolving area of research consisting of many possible permutations of immune cell tumor interactions that are dependent upon cell type, tumor type, and stage in tumor progression. At the same time, the majority of cancer immunotherapies have been focused on modulating the T cell-mediated antitumor immune response and have largely ignored the potential utility that B cells possess with respect to tumor immunity. Therefore, this motivated an exploration into the role that B cells and their accompanying chemokine, CXCL13, play in tumor immunity across multiple tumor types. Both B cells and CXCL13 possess dualistic impacts on tumor progression and tumor immunity which is furthered detail in this review. Specifically, various B cells subtypes are able to suppress or enhance several important immunological functions. Paradoxically, CXCL13 has been shown to drive several pro-growth and invasive signaling pathways across multiple tumor types, while also, correlating with improved survival and immune cell tumor localization in other tumor types. Potential tools for better elucidating the mechanisms by which B cells and CXCL13 impact the antitumor immune response are also discussed. In addition, multiples strategies are proposed for modulating the B cell-CXCL13 axis for cancer immunotherapies.


Subject(s)
B-Lymphocytes/immunology , Chemokine CXCL13/immunology , Neoplasm Proteins/immunology , Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , B-Lymphocytes/pathology , Humans , Immunotherapy , Neoplasms/pathology , Neoplasms/therapy
16.
Nat Commun ; 11(1): 3677, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32699279

ABSTRACT

Through the formation of concentration gradients, morphogens drive graded responses to extracellular signals, thereby fine-tuning cell behaviors in complex tissues. Here we show that the chemokine CXCL13 forms both soluble and immobilized gradients. Specifically, CXCL13+ follicular reticular cells form a small-world network of guidance structures, with computer simulations and optimization analysis predicting that immobilized gradients created by this network promote B cell trafficking. Consistent with this prediction, imaging analysis show that CXCL13 binds to extracellular matrix components in situ, constraining its diffusion. CXCL13 solubilization requires the protease cathepsin B that cleaves CXCL13 into a stable product. Mice lacking cathepsin B display aberrant follicular architecture, a phenotype associated with effective B cell homing to but not within lymph nodes. Our data thus suggest that reticular cells of the B cell zone generate microenvironments that shape both immobilized and soluble CXCL13 gradients.


Subject(s)
B-Lymphocytes/immunology , Cellular Microenvironment/immunology , Chemokine CXCL13/metabolism , Dendritic Cells, Follicular/immunology , Adaptive Immunity , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cathepsin B/genetics , Cathepsin B/metabolism , Cell Line , Chemokine CXCL13/immunology , Computer Simulation , Dendritic Cells, Follicular/cytology , Dendritic Cells, Follicular/metabolism , Extracellular Matrix/metabolism , Humans , Mice , Mice, Knockout , Microscopy, Fluorescence , Models, Biological , Palatine Tonsil/cytology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Stromal Cells/immunology , Stromal Cells/metabolism
17.
Biochem Pharmacol ; 178: 114103, 2020 08.
Article in English | MEDLINE | ID: mdl-32562787

ABSTRACT

Janus kinase (JAK) inhibitors (also termed Jakinibs) constitute a family of small drugs that target various isoforms of JAKs (JAK1, JAK2, JAK3 and/or tyrosine kinase 2 (Tyk2)). They exert anti-inflammatory properties linked, in part, to the modulation of the activation state of pro-inflammatory M1 macrophages. The exact impact of JAK inhibitors on a wider spectrum of activation states of macrophages is however still to be determined, especially in the context of disorders involving concomitant activation of pro-inflammatory M1 macrophages and profibrotic M2 macrophages. This is especially the case in autoimmune pulmonary fibrosis like scleroderma-associated interstitial lung disease (ILD), in which M1 and M2 macrophages play a key pathogenic role. In this study, we directly compared the anti-inflammatory and anti-fibrotic effects of three JAK inhibitors (ruxolitinib (JAK2/1 inhibitor); tofacitinib (JAK3/2 inhibitor) and itacitinib (JAK1 inhibitor)) on five different activation states of primary human monocyte-derived macrophages (MDM). These three JAK inhibitors exert anti-inflammatory properties towards macrophages, as demonstrated by the down-expression of key polarization markers (CD86, MHCII, TLR4) and the limited secretion of key pro-inflammatory cytokines (CXCL10, IL-6 and TNFα) in M1 macrophages activated by IFNγ and LPS or by IFNγ alone. We also highlighted that these JAK inhibitors can limit M2a activation of macrophages induced by IL-4 and IL-13, as notably demonstrated by the down-regulation of the M2a associated surface marker CD206 and of the secretion of CCL18. Moreover, these JAK inhibitors reduced the expression of markers such as CXCL13, MARCO and SOCS3 in alternatively activated macrophages induced by IL-10 and dexamethasone (M2c + dex) or IL-10 alone (M2c MDM). For all polarization states, Jakinibs with inhibitory properties over JAK2 had the highest effects, at both 1 µM or 0.1 µM. Based on these in vitro results, we also explored the effects of JAK2/1 inhibition by ruxolitinib in vivo, on mouse macrophages in a model of HOCl-induced ILD, that mimics scleroderma-associated ILD. In this model, we showed that ruxolitinib significantly prevented the upregulation of pro-inflammatory M1 markers (TNFα, CXCL10, NOS2) and pro-fibrotic M2 markers (Arg1 and Chi3L3). These results were associated with an improvement of skin and pulmonary involvement. Overall, our results suggest that the combined anti-inflammatory and anti-fibrotic properties of JAK2/1 inhibitors could be relevant to target lung macrophages in autoimmune and inflammatory pulmonary disorders that have no efficient disease modifying drugs to date.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Lung Diseases, Interstitial/drug therapy , Macrophages/drug effects , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Scleroderma, Systemic/drug therapy , Animals , Cell Differentiation , Chemokine CXCL13/genetics , Chemokine CXCL13/immunology , Female , Gene Expression Regulation , Hypochlorous Acid/administration & dosage , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/genetics , Janus Kinase 1/immunology , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/genetics , Janus Kinase 2/immunology , Janus Kinase 3/antagonists & inhibitors , Janus Kinase 3/genetics , Janus Kinase 3/immunology , Lung/drug effects , Lung/immunology , Lung/pathology , Lung Diseases, Interstitial/chemically induced , Lung Diseases, Interstitial/immunology , Lung Diseases, Interstitial/pathology , Macrophage Activation/drug effects , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Nitriles , Primary Cell Culture , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Scleroderma, Systemic/chemically induced , Scleroderma, Systemic/immunology , Scleroderma, Systemic/pathology , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/immunology
18.
Arthritis Rheumatol ; 72(7): 1214-1226, 2020 07.
Article in English | MEDLINE | ID: mdl-32103637

ABSTRACT

OBJECTIVE: Juvenile dermatomyositis (DM) is a heterogeneous systemic immune-mediated vasculopathy. This study was undertaken to 1) identify inflammation/endothelial dysfunction-related biomarker profiles reflecting disease severity at diagnosis, and 2) establish whether such biomarker profiles could be used for predicting the response to treatment in patients with juvenile DM. METHODS: In total, 39 biomarkers related to activation of endothelial cells, endothelial dysfunction, and inflammation were measured using multiplex technology in serum samples from treatment-naive patients with juvenile DM from 2 independent cohorts (n = 30 and n = 29). Data were analyzed by unsupervised hierarchical clustering, nonparametric tests with correction for multiple comparisons, and Kaplan-Meier tests with Cox proportional hazards models for analysis of treatment duration. Myositis-specific antibodies (MSAs) were measured in the patients' serum using line blot assays. RESULTS: Severe vasculopathy in patients with juvenile DM was associated with low serum levels of intercellular adhesion molecule 1 (Spearman's rho [rs ] = 0.465, P = 0.0111) and high serum levels of endoglin (rs = -0.67, P < 0.0001). In the discovery cohort, unsupervised hierarchical clustering analysis of the biomarker profiles yielded 2 distinct patient clusters, of which the smaller cluster (cluster 1; n = 8) exhibited high serum levels of CXCL13, CCL19, galectin-9, CXCL10, tumor necrosis factor receptor type II (TNFRII), and galectin-1 (false discovery rate <0.0001), and this cluster had greater severity of muscle disease and global disease activity (each P < 0.05 versus cluster 2). In the validation cohort, correlations between the serum levels of galectin-9, CXCL10, TNFRII, and galectin-1 and the severity of global disease activity were confirmed (rs = 0.40-0.52, P < 0.05). Stratification of patients according to the 4 confirmed biomarkers identified a cluster of patients with severe symptoms (comprising 64.7% of patients) who were considered at high risk of requiring more intensive treatment in the first 3 months after diagnosis (P = 0.0437 versus other cluster). Moreover, high serum levels of galectin-9, CXCL10, and TNFRII were predictive of a longer total treatment duration (P < 0.05). The biomarker-based clusters were not evidently correlated with patients' MSA serotypes. CONCLUSION: Results of this study confirm the heterogeneity of new-onset juvenile DM based on serum biomarker profiles. Patients with high serum levels of galectin-9, CXCL10, TNFRII, and galectin-1 may respond suboptimally to conventional treatment, and may therefore benefit from more intensive monitoring and/or treatment.


Subject(s)
Dermatomyositis/drug therapy , Dermatomyositis/metabolism , Immunosuppressive Agents/therapeutic use , Biomarkers , Chemokine CCL19/immunology , Chemokine CXCL10/immunology , Chemokine CXCL13/immunology , Child , Child, Preschool , Cohort Studies , Dermatomyositis/immunology , Duration of Therapy , Endoglin/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Female , Galectin 1/metabolism , Galectins/metabolism , Humans , Inflammation/immunology , Intercellular Adhesion Molecule-1/metabolism , Male , Prognosis , Proportional Hazards Models , Receptors, Tumor Necrosis Factor, Type II/immunology
19.
Rheumatology (Oxford) ; 59(4): 860-868, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31497844

ABSTRACT

OBJECTIVE: To address heterogeneity complicating primary SS (pSS) clinical trials, research and care by characterizing and clustering patients by their molecular phenotypes. METHODS: pSS patients met American-European Consensus Group classification criteria and had at least one systemic manifestation and stimulated salivary flow of ⩾0.1 ml/min. Correlated transcriptional modules were derived from gene expression microarray data from blood (n = 47 with appropriate samples). Patients were clustered based on this molecular information using an unbiased random forest modelling approach. In addition, multiplex, bead-based assays and ELISAs were used to assess 30 serum cytokines, chemokines and soluble receptors. Eleven autoantibodies, including anti-Ro/SSA and anti-La/SSB, were measured by Bio-Rad Bioplex 2200. RESULTS: Transcriptional modules distinguished three clusters of pSS patients. Cluster 1 showed no significant elevation of IFN or inflammation modules. Cluster 2 showed strong IFN and inflammation modular network signatures, as well as high plasma protein levels of IP-10/CXCL10, MIG/CXCL9, BLyS (BAFF) and LIGHT. Cluster 3 samples exhibited moderately elevated IFN modules, but with suppressed inflammatory modules, increased IP-10/CXCL10 and B cell-attracting chemokine 1/CXCL13 and trends toward increased MIG/CXCL9, IL-1α, and IL-21. Anti-Ro/SSA and anti-La/SSB were present in all three clusters. CONCLUSION: Molecular profiles encompassing IFN, inflammation and other signatures can be used to separate patients with pSS into distinct clusters. In the future, such profiles may inform patient selection for clinical trials and guide treatment decisions.


Subject(s)
Gene Expression , Sjogren's Syndrome/genetics , Adult , Antibodies, Antinuclear/immunology , Autoantibodies/immunology , B-Cell Activating Factor/genetics , B-Cell Activating Factor/immunology , B-Cell Activating Factor/metabolism , Chemokine CXCL10/genetics , Chemokine CXCL10/immunology , Chemokine CXCL10/metabolism , Chemokine CXCL13/genetics , Chemokine CXCL13/immunology , Chemokine CXCL13/metabolism , Chemokine CXCL9/genetics , Chemokine CXCL9/immunology , Chemokine CXCL9/metabolism , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Gene Regulatory Networks , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Interferons/genetics , Interferons/immunology , Interferons/metabolism , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Interleukin-1alpha/metabolism , Interleukins/genetics , Interleukins/immunology , Interleukins/metabolism , Male , Middle Aged , Models, Statistical , Phenotype , Sjogren's Syndrome/classification , Sjogren's Syndrome/immunology , Sjogren's Syndrome/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 14/genetics , Tumor Necrosis Factor Ligand Superfamily Member 14/immunology , Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
20.
Scand J Immunol ; 91(4): e12858, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31833092

ABSTRACT

To understand functional role of PD-1-expressing MAIT cells during tuberculosis infection in humans, sorted PD-1+ and PD-1- MAIT cells from pleural effusions of patients with pleural tuberculosis were subjected to transcriptome sequencing. PD-1-expressing MAIT cells were analysed by flow cytometry and their phenotypic and functional features were investigated. Transcriptome sequencing identified 144 genes that were differentially expressed between PD-1+ and PD-1- MAIT cells from tuberculous pleural effusions and CXCL13 was the gene with highest fold difference. The level of PD-1-expressing MAIT cells was associated with extent of TB infection in humans. PD-1-expressing MAIT cells had increased production of CXCL13 and IL-21 as determined by flow cytometry. PD-1high CXCR5- MAIT cells were significantly expanded in pleural effusions from patients with pleural tuberculosis as compared with those from peripheral blood of both patients with tuberculosis and healthy controls. Although PD-1high CXCR5- MAIT cells from tuberculous pleural effusions had reduced IFN-γ level and increased expression of Tim-3 and GITR, they showed activated phenotype and had higher glucose uptake and lipid content. It is concluded that PD-1-expressing MAIT cells had reduced IFN-γ level but increased production of both CXCL13 and IL-21.


Subject(s)
Chemokine CXCL13/biosynthesis , Mucosal-Associated Invariant T Cells/immunology , Tuberculosis, Pleural/immunology , Adult , Chemokine CXCL13/immunology , Female , Humans , Male , Middle Aged , Mucosal-Associated Invariant T Cells/metabolism , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Tuberculosis, Pleural/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL