Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cytokine ; 152: 155810, 2022 04.
Article in English | MEDLINE | ID: mdl-35121493

ABSTRACT

Genome-wide association studies have recently identified 3p21.31, with lead variant pointing to the CXCR6 gene, as the strongest thus far reported susceptibility risk locus for severe manifestation of COVID-19. In order the determine its role, we measured plasma levels of Chemokine (C-X-C motif) ligand 16 (CXCL16) in the plasma of COVID-19 hospitalized patients. CXCL16 interacts with CXCR6 promoting chemotaxis or cell adhesion. The CXCR6/CXCL16 axis mediates homing of T cells to the lungs in disease and hyper-expression is associated with localised cellular injury. To characterize the CXCR6/CXCL16 axis in the pathogenesis of severe COVID-19, plasma concentrations of CXCL16 collected at baseline from 115 hospitalized COVID-19 patients participating in ODYSSEY COVID-19 clinical trial were assessed together with a set of controls. We report elevated levels of CXCL16 in a cohort of COVID-19 hospitalized patients. Specifically, we report significant elevation of CXCL16 plasma levels in association with severity of COVID-19 (as defined by WHO scale) (P-value < 0.02). Our current study is the largest thus far study reporting CXCL16 levels in COVID-19 hospitalized patients (with whole-genome sequencing data available). The results further support the significant role of the CXCR6/CXCL16 axis in the immunopathogenesis of severe COVID-19 and warrants further studies to understand which patients would benefit most from targeted treatments.


Subject(s)
COVID-19/blood , Chemokine CXCL16/blood , SARS-CoV-2/metabolism , Aged , COVID-19/genetics , COVID-19/immunology , Chemokine CXCL16/genetics , Chemokine CXCL16/immunology , Female , Humans , Male , Middle Aged , Patient Acuity , Receptors, CXCR6/blood , Receptors, CXCR6/genetics , Receptors, CXCR6/immunology , Signal Transduction/genetics , Signal Transduction/immunology
2.
Cancer Cell ; 39(7): 928-944.e6, 2021 07 12.
Article in English | MEDLINE | ID: mdl-33961783

ABSTRACT

Distinct T cell infiltration patterns, i.e., immune infiltrated, excluded, and desert, result in different responses to cancer immunotherapies. However, the key determinants and biology underpinning these tumor immune phenotypes remain elusive. Here, we provide a high-resolution dissection of the entire tumor ecosystem through single-cell RNA-sequencing analysis of 15 ovarian tumors. Immune-desert tumors are characterized by unique tumor cell-intrinsic features, including metabolic pathways and low antigen presentation, and an enrichment of monocytes and immature macrophages. Immune-infiltrated and -excluded tumors differ markedly in their T cell composition and fibroblast subsets. Furthermore, our study reveals chemokine receptor-ligand interactions within and across compartments as potential mechanisms mediating immune cell infiltration, exemplified by the tumor cell-T cell cross talk via CXCL16-CXCR6 and stromal-immune cell cross talk via CXCL12/14-CXCR4. Our data highlight potential molecular mechanisms that shape the tumor immune phenotypes and may inform therapeutic strategies to improve clinical benefit from cancer immunotherapies.


Subject(s)
Biomarkers, Tumor/genetics , Fibroblasts/immunology , Ovarian Neoplasms/immunology , Single-Cell Analysis/methods , Stromal Cells/immunology , T-Lymphocytes/immunology , Tumor Microenvironment , Biomarkers, Tumor/immunology , Chemokine CXCL12/genetics , Chemokine CXCL12/immunology , Chemokine CXCL16/genetics , Chemokine CXCL16/immunology , Chemokines, CXC/genetics , Chemokines, CXC/immunology , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , RNA-Seq , Receptors, CXCR4/genetics , Receptors, CXCR4/immunology , Receptors, CXCR6/genetics , Receptors, CXCR6/immunology , Stromal Cells/metabolism , Stromal Cells/pathology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
3.
Front Immunol ; 11: 601639, 2020.
Article in English | MEDLINE | ID: mdl-33552057

ABSTRACT

The transmembrane chemokine pathways CXCL16/CXCR6 and CX3CL1/CX3CR1 are strongly implicated in inflammation and angiogenesis. We investigated the involvement of these chemokine pathways and their processing metalloproteinases ADAM10 and ADAM17 in the pathophysiology of proliferative diabetic retinopathy (PDR). Vitreous samples from 32 PDR and 24 non-diabetic patients, epiretinal membranes from 18 patients with PDR, rat retinas, human retinal Müller glial cells and human retinal microvascular endothelial cells (HRMECs) were studied by enzyme-linked immunosorbent assay, immunohistochemistry and Western blot analysis. In vitro angiogenesis assays were performed and the adherence of leukocytes to CXCL16-stimulated HRMECs was assessed. CXCL16, CX3CL1, ADAM10, ADAM17 and vascular endothelial growth factor (VEGF) levels were significantly increased in vitreous samples from PDR patients. The levels of CXCL16 were 417-fold higher than those of CX3CL1 in PDR vitreous samples. Significant positive correlations were found between the levels of VEGF and the levels of CXCL16, CX3CL1, ADAM10 and ADAM17. Significant positive correlations were detected between the numbers of blood vessels expressing CD31, reflecting the angiogenic activity of PDR epiretinal membranes, and the numbers of blood vessels and stromal cells expressing CXCL16, CXCR6, ADAM10 and ADAM17. CXCL16 induced upregulation of phospho-ERK1/2, p65 subunit of NF-κB and VEGF in cultured Müller cells and tumor necrosis factor-α induced upregulation of soluble CXCL16 and ADAM17 in Müller cells. Treatment of HRMECs with CXCL16 resulted in increased expression of intercellular adhesion molecule-1 (ICAM-1) and increased leukocyte adhesion to HRMECs. CXCL16 induced HRMEC proliferation, formation of sprouts from HRMEC spheroids and phosphorylation of ERK1/2. Intravitreal administration of CXCL16 in normal rats induced significant upregulation of the p65 subunit of NF-κB, VEGF and ICAM-1 in the retina. Our findings suggest that the chemokine axis CXCL16/CXCR6 and the processing metalloproteinases ADAM10 and ADAM17 might serve a role in the initiation and progression of PDR.


Subject(s)
ADAM10 Protein/immunology , ADAM17 Protein/immunology , Amyloid Precursor Protein Secretases/immunology , CX3C Chemokine Receptor 1/immunology , Chemokine CX3CL1/immunology , Chemokine CXCL16/immunology , Diabetic Retinopathy/immunology , Membrane Proteins/immunology , Animals , Diabetic Retinopathy/pathology , Humans , Male , Rats
4.
PLoS Pathog ; 15(7): e1007950, 2019 07.
Article in English | MEDLINE | ID: mdl-31356622

ABSTRACT

Equine arteritis virus (EAV) has the unique ability to establish long-term persistent infection in the reproductive tract of stallions and be sexually transmitted. Previous studies showed that long-term persistent infection is associated with a specific allele of the CXCL16 gene (CXCL16S) and that persistence is maintained despite the presence of local inflammatory and humoral and mucosal antibody responses. Here, we performed transcriptomic analysis of the ampullae, the primary site of EAV persistence in long-term EAV carrier stallions, to understand the molecular signatures of viral persistence. We demonstrated that the local CD8+ T lymphocyte response is predominantly orchestrated by the transcription factors eomesodermin (EOMES) and nuclear factor of activated T-cells cytoplasmic 2 (NFATC2), which is likely modulated by the upregulation of inhibitory receptors. Most importantly, EAV persistence is associated with an enhanced expression of CXCL16 and CXCR6 by infiltrating lymphocytes, providing evidence of the implication of this chemokine axis in the pathogenesis of persistent EAV infection in the stallion reproductive tract. Furthermore, we have established a link between the CXCL16 genotype and the gene expression profile in the ampullae of the stallion reproductive tract. Specifically, CXCL16 acts as a "hub" gene likely driving a specific transcriptional network. The findings herein are novel and strongly suggest that RNA viruses such as EAV could exploit the CXCL16/CXCR6 axis in order to modulate local inflammatory and immune responses in the male reproductive tract by inducing a dysfunctional CD8+ T lymphocyte response and unique lymphocyte homing in the reproductive tract.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Equartevirus/immunology , Equartevirus/pathogenicity , Animals , Arterivirus Infections/genetics , Arterivirus Infections/immunology , Arterivirus Infections/veterinary , Carrier State/immunology , Carrier State/veterinary , Carrier State/virology , Chemokine CXCL16/genetics , Chemokine CXCL16/immunology , Gene Expression Profiling , Genitalia, Male/immunology , Genitalia, Male/pathology , Genitalia, Male/virology , Horse Diseases/genetics , Horse Diseases/immunology , Horse Diseases/virology , Horses , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Male , Receptors, CXCR6/genetics , Receptors, CXCR6/immunology , Receptors, Virus/immunology , Transcription Factors/immunology , Virus Shedding/genetics , Virus Shedding/immunology
5.
Infect Immun ; 87(5)2019 03.
Article in English | MEDLINE | ID: mdl-30804103

ABSTRACT

CXCL16 is a multifunctional chemokine that is highly expressed by macrophages and other immune cells in response to bacterial and viral pathogens; however, little is known regarding the role of CXCL16 during parasitic infections. The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis. Even though chemokine production is a host defense mechanism during infection, subversion of the host chemokine system constitutes a survival strategy adopted by the parasite. Here, we report that L. donovani promastigotes upregulate CXCL16 synthesis and secretion by bone marrow-derived macrophages (BMDM). In contrast to wild-type parasites, a strain deficient in the virulence factor lipophosphoglycan (LPG) failed to induce CXCL16 production. Consistent with this, cell treatment with purified L. donovani LPG augmented CXCL16 expression and secretion. Notably, the ability of BMDM to promote migration of cells expressing CXCR6, the cognate receptor of CXCL16, was augmented upon L. donovani infection in a CXCL16- and LPG-dependent manner. Mechanistically, CXCL16 induction by L. donovani required the activity of AKT and the mechanistic target of rapamycin (mTOR) but was independent of Toll-like receptor signaling. Collectively, these data provide evidence that CXCL16 is part of the inflammatory response elicited by L. donovani LPG in vitro Further investigation using CXCL16 knockout mice is required to determine whether this chemokine contributes to the pathogenesis of visceral leishmaniasis and to elucidate the underlying molecular mechanisms.


Subject(s)
Chemokine CXCL16/immunology , Chemotaxis/immunology , Glycosphingolipids/immunology , Host-Parasite Interactions/immunology , Leishmania donovani/immunology , Leishmaniasis, Visceral/immunology , Animals , Disease Models, Animal , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
6.
Gut ; 68(2): 335-346, 2019 02.
Article in English | MEDLINE | ID: mdl-29440463

ABSTRACT

OBJECTIVES: Yttrium-90 (Y90)-radioembolisation (RE) significantly regresses locally advanced hepatocellular carcinoma and delays disease progression. The current study is designed to deeply interrogate the immunological impact of Y90-RE, which elicits a sustained therapeutic response. DESIGN: Time-of-flight mass cytometry and next-generation sequencing (NGS) were used to analyse the immune landscapes of tumour-infiltrating leucocytes (TILs), tumour tissues and peripheral blood mononuclear cells (PBMCs) at different time points before and after Y90-RE. RESULTS: TILs isolated after Y90-RE exhibited signs of local immune activation: higher expression of granzyme B (GB) and infiltration of CD8+ T cells, CD56+ NK cells and CD8+ CD56+ NKT cells. NGS confirmed the upregulation of genes involved in innate and adaptive immune activation in Y90-RE-treated tumours. Chemotactic pathways involving CCL5 and CXCL16 correlated with the recruitment of activated GB+CD8+ T cells to the Y90-RE-treated tumours. When comparing PBMCs before and after Y90-RE, we observed an increase in tumour necrosis factor-α on both the CD8+ and CD4+ T cells as well as an increase in percentage of antigen-presenting cells after Y90-RE, implying a systemic immune activation. Interestingly, a high percentage of PD-1+/Tim-3+CD8+ T cells coexpressing the homing receptors CCR5 and CXCR6 denoted Y90-RE responders. A prediction model was also built to identify sustained responders to Y90-RE based on the immune profiles from pretreatment PBMCs. CONCLUSION: High-dimensional analysis of tumour and systemic immune landscapes identified local and systemic immune activation that corresponded to the sustained response to Y90-RE. Potential biomarkers associated with a positive clinical response were identified and a prediction model was built to identify sustained responders prior to treatment.


Subject(s)
Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/radiotherapy , Leukocytes, Mononuclear/immunology , Liver Neoplasms/immunology , Liver Neoplasms/radiotherapy , Yttrium Radioisotopes , Antigen-Presenting Cells/immunology , Biomarkers, Tumor/immunology , Chemokine CCL5/immunology , Chemokine CXCL16/immunology , Disease Progression , Female , Flow Cytometry/methods , Granzymes/immunology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Male , Singapore , Treatment Outcome , Tumor Necrosis Factor-alpha/immunology
7.
Am J Respir Crit Care Med ; 197(9): 1164-1176, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29327939

ABSTRACT

RATIONALE: C5aR1 (CD88), a receptor for complement anaphylatoxin C5a, is a potent immune mediator. Its impact on malignant growth and dissemination of non-small cell lung cancer cells is poorly understood. OBJECTIVES: To investigate the contribution of the C5a/C5aR1 axis to the malignant phenotype of non-small cell lung cancer cells, particularly in skeletal colonization, a preferential lung metastasis site. METHODS: Association between C5aR1 expression and clinical outcome was assessed in silico and validated by immunohistochemistry. Functional significance was evaluated by lentiviral gene silencing and ligand l-aptamer inhibition in in vivo models of lung cancer bone metastasis. In vitro functional assays for signaling, migration, invasion, metalloprotease activity, and osteoclastogenesis were also performed. MEASUREMENTS AND MAIN RESULTS: High levels of C5aR1 in human lung tumors were significantly associated with shorter recurrence-free survival, overall survival, and bone metastasis. Silencing of C5aR1 in lung cancer cells led to a substantial reduction in skeletal metastatic burden and osteolysis in in vivo models. Furthermore, metalloproteolytic, migratory, and invasive tumor cell activities were modulated in vitro by C5aR1 stimulation or gene silencing. l-Aptamer blockade or C5aR1 silencing significantly reduced the osseous metastatic activity of lung cancer cells in vivo. This effect was associated with decreased osteoclastogenic activity in vitro and was rescued by the exogenous addition of the chemokine CXCL16. CONCLUSIONS: Disruption of C5aR1 signaling in lung cancer cells abrogates their tumor-associated osteoclastogenic activity, impairing osseous colonization. This study unveils the role played by the C5a/C5aR1 axis in lung cancer dissemination and supports its potential use as a novel therapeutic target.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Chemokine CXCL16/immunology , Lung Neoplasms/complications , Lung Neoplasms/immunology , Neoplasm Metastasis/immunology , Receptor, Anaphylatoxin C5a/immunology , Signal Transduction/immunology , Adult , Aged , Aged, 80 and over , Bone Neoplasms/immunology , Female , Humans , Male , Middle Aged
8.
J Invest Dermatol ; 138(2): 344-354, 2018 02.
Article in English | MEDLINE | ID: mdl-28942364

ABSTRACT

Innate immune processes are central in the development of the chronic inflammatory skin disease psoriasis. Studying stimulation of keratinocytes, monocytes, and dendritic cells by type I interferons or ligation of Toll-like receptors 1/2, 2/6, or 7, but not 7/8, resulted in enhanced surface expression and secretion of CXC chemokine ligand (CXCL) 16. The corresponding CXC chemokine receptor 6 was expressed on neutrophils whose recruitment into skin is important, especially in early psoriatic disease. Using the recently developed technique real-time deformability cytometry demonstrated that CXCL16 and IL-8 decreased the stiffness and enhanced deformation of neutrophils facilitating transmigration through vessel wall. In addition, CXCL16 potently induced migration of neutrophils and enhanced the chemotactic effect of IL-8. The positive feedback loop was supported by IL-8 enhancing CXCL16 production of neutrophils. Blocking of CXCL16 expression by effective treatment of psoriasis patients with tumor necrosis factor-α blockers further supported the pathogenic role of this chemokine. In summary, the data link innate immune stimulation to CXCL16 upregulation and neutrophil infiltration into skin. CXCL16 could therefore represent a potent future target for treatment of psoriasis.


Subject(s)
Chemokine CXCL16/metabolism , Neutrophil Activation/immunology , Psoriasis/immunology , Toll-Like Receptors/metabolism , Adalimumab/pharmacology , Adalimumab/therapeutic use , Adult , Biopsy , Chemokine CXCL16/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Etanercept/pharmacology , Etanercept/therapeutic use , Humans , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Interleukin-8/immunology , Interleukin-8/metabolism , Keratinocytes , Middle Aged , Monocytes/immunology , Monocytes/metabolism , Neutrophil Infiltration/immunology , Primary Cell Culture , Psoriasis/drug therapy , Psoriasis/pathology , Signal Transduction/drug effects , Signal Transduction/immunology , Skin/cytology , Skin/immunology , Skin/metabolism , Skin/pathology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...