Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
1.
J Obstet Gynaecol ; 44(1): 2373951, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38963237

ABSTRACT

BACKGROUND: The expression and function of coexpression genes of M1 macrophage in cervical cancer have not been identified. And the CXCL9-expressing tumour-associated macrophage has been poorly reported in cervical cancer. METHODS: To clarify the regulatory gene network of M1 macrophage in cervical cancer, we downloaded gene expression profiles of cervical cancer patients in TCGA database to identify M1 macrophage coexpression genes. Then we constructed the protein-protein interaction networks by STRING database and performed functional enrichment analysis to investigate the biological effects of the coexpression genes. Next, we used multiple bioinformatics databases and experiments to overall investigate coexpression gene CXCL9, including western blot assay and immunohistochemistry assay, GeneMANIA, Kaplan-Meier Plotter, Xenashiny, TISCH2, ACLBI, HPA, TISIDB, GSCA and cBioPortal databases. RESULTS: There were 77 positive coexpression genes and 5 negative coexpression genes in M1 macrophage. The coexpression genes in M1 macrophage participated in the production and function of chemokines and chemokine receptors. Especially, CXCL9 was positively correlated with M1 macrophage infiltration levels in cervical cancer. CXCL9 expression would significantly decrease and high CXCL9 levels were linked to good prognosis in the cervical cancer tumour patients, it manifestly expressed in blood immune cells, and was positively related to immune checkpoints. CXCL9 amplification was the most common type of mutation. The CXCL9 gene interaction network could regulate immune-related signalling pathways, and CXCL9 amplification was the most common mutation type in cervical cancer. Meanwhile, CXCL9 may had clinical significance for the drug response in cervical cancer, possibly mediating resistance to chemotherapy and targeted drug therapy. CONCLUSION: Our findings may provide new insight into the M1 macrophage coexpression gene network and molecular mechanisms in cervical cancer, and indicated that M1 macrophage association gene CXCL9 may serve as a good prognostic gene and a potential therapeutic target for cervical cancer therapies.


Cervical cancer is a common gynaecological malignancy, investigating the precise gene expression regulation of M1 macrophage is crucial for understanding the changes in the immune microenvironment of cervical cancer. In our study, a total of 82 coexpression genes with M1 macrophages were identified, and these genes were involved in the production and biological processes of chemokines and chemokine receptors. Especially, the chemokine CXCL9 was positively correlated with M1 macrophage infiltration levels in cervical cancer. CXCL9 as a protective factor, it manifestly expressed in blood immune cells, and was positively related to immune checkpoints. CXCL9 amplification was the most common type of mutation. And CXCL9 expression could have an effect on the sensitivity of some chemicals or targeted drugs against cervical cancer. These findings may provide new insight into the M1 macrophage coexpression gene network and molecular mechanisms, and shed light on the role of CXCL9 in cervical cancer.


Subject(s)
Chemokine CXCL9 , Uterine Cervical Neoplasms , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Humans , Female , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Gene Expression Regulation, Neoplastic , Macrophages/metabolism , Prognosis , Gene Regulatory Networks , Protein Interaction Maps/genetics , Computational Biology , Tumor-Associated Macrophages/metabolism , Gene Expression Profiling , Databases, Genetic
2.
Medicine (Baltimore) ; 103(27): e38666, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968513

ABSTRACT

Adenocarcinoma of the pancreas (PAAD) is one of the deadliest malignant tumors, and messenger ribonucleic acid vaccines, which constitute the latest generation of vaccine technology, are expected to lead to new ideas for the treatment of pancreatic cancer. The Cancer Genome Atlas-PAAD and Genotype-Tissue Expression data were merged and analyzed. Weighted gene coexpression network analysis was used to identify gene modules associated with tumor mutational burden among the genes related to both immunity and oxidative stress. Differentially expressed immune-related oxidative stress genes were screened via univariate Cox regression analysis, and these genes were analyzed via nonnegative matrix factorization. After immune infiltration analysis, least absolute shrinkage and selection operator regression combined with Cox regression was used to construct the model, and the usefulness of the model was predicted based on the receiver operating characteristic curve and decision curve analysis curves after model construction. Finally, metabolic pathway enrichment was analyzed using gene set enrichment analysis combined with Kyoto Encyclopedia of Genes and Genomes and gene ontology biological process analyses. This model consisting of the ERAP2, mesenchymal-epithelial transition factor (MET), CXCL9, and angiotensinogen (AGT) genes can be used to help predict the prognosis of pancreatic cancer patients more accurately than existing models. ERAP2 is involved in immune activation and is important in cancer immune evasion. MET binds to hepatocyte growth factor, leading to the dimerization and phosphorylation of c-MET. This activates various signaling pathways, including MAPK and PI3K, to regulate the proliferation, invasion, and migration of cancer cells. CXCL9 overexpression is associated with a poor patient prognosis and reduces the number of CD8 + cytotoxic T lymphocytes in the PAAD tumor microenvironment. AGT is cleaved by the renin enzyme to produce angiotensin 1, and AGT-converting enzyme cleaves angiotensin 1 to produce angiotensin 2. Exposure to AGT-converting enzyme inhibitors after pancreatic cancer diagnosis is associated with improved survival. The 4 genes identified in the present study - ERAP2, MET, CXCL9, and AGT - are expected to serve as targets for messenger ribonucleic acid vaccine development and need to be further investigated in depth.


Subject(s)
Oxidative Stress , Pancreatic Neoplasms , mRNA Vaccines , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Humans , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Angiotensinogen/genetics , Gene Expression Regulation, Neoplastic , Prognosis
3.
Nat Commun ; 15(1): 5871, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997283

ABSTRACT

There are numerous mechanisms by which glioblastoma cells evade immunological detection, underscoring the need for strategic combinatorial treatments to achieve appreciable therapeutic effects. However, developing combination therapies is difficult due to dose-limiting toxicities, blood-brain-barrier, and suppressive tumor microenvironment. Glioblastoma is notoriously devoid of lymphocytes driven in part by a paucity of lymphocyte trafficking factors necessary to prompt their recruitment and activation. Herein, we develop a recombinant adeno-associated virus (AAV) gene therapy that enables focal and stable reconstitution of the tumor microenvironment with C-X-C motif ligand 9 (CXCL9), a powerful call-and-receive chemokine for lymphocytes. By manipulating local chemokine directional guidance, AAV-CXCL9 increases tumor infiltration by cytotoxic lymphocytes, sensitizing glioblastoma to anti-PD-1 immune checkpoint blockade in female preclinical tumor models. These effects are accompanied by immunologic signatures evocative of an inflamed tumor microenvironment. These findings support AAV gene therapy as an adjuvant for reconditioning glioblastoma immunogenicity given its safety profile, tropism, modularity, and off-the-shelf capability.


Subject(s)
Chemokine CXCL9 , Dependovirus , Genetic Therapy , Glioblastoma , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Glioblastoma/therapy , Glioblastoma/immunology , Dependovirus/genetics , Tumor Microenvironment/immunology , Animals , Humans , Immune Checkpoint Inhibitors/therapeutic use , Chemokine CXCL9/genetics , Chemokine CXCL9/immunology , Mice , Genetic Therapy/methods , Female , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Cell Line, Tumor , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Genetic Vectors/administration & dosage , Genetic Vectors/genetics
4.
Cell Mol Life Sci ; 81(1): 300, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001897

ABSTRACT

BACKGROUND: Age-associated impairments in innate immunity are believed to be a causative factor responsible for severe pathogenesis of Staphylococcus aureus (S. aureus) infection in the bone tissue. However, the basis for age-associated decline in innate immune response upon S. aureus infection remains poorly understood. RESULTS: Our transcriptional data (GEO: GSE166522) from a mouse model of S. aureus osteomyelitis show up-regulated CXCL9 and CXCL10 (CXCL9/10), which is further confirmed in vitro and in vivo by the present study. Notably, monocytes are a main source for CXCL9/10 production in bone marrow upon S. aureus challenge, but this response declines in middle-aged mice. Interestingly, conditional medium of bone marrow monocytes from middle-aged mice has a strikingly decreased effect on bactericidal functions of neutrophils and macrophages compares with that from young mice. We further show that activation of CXCL9/10-CXCR3 axis between monocytes and macrophages/neutrophils promotes the bactericidal function of the cells, whereas blocking the axis impairs such function. Importantly, treatment with either exogenous CXCL9 or CXCL10 in a middle-aged mice model enhances, while pharmacological inhibition of CXCR3 in young mice model impairs, bacterial clearance and bone marrow structure. CONCLUSIONS: These findings demonstrate that bone marrow monocytes act as a critical promotor of innate immune response via the CXLCL9/10-CXCR3 axis upon S. aureus infection, and that the increased susceptibility to S. aureus infection in skeleton in an aged host may be largely attributable to the declined induction of CXCR9/10 in monocytes.


Subject(s)
Chemokine CXCL10 , Chemokine CXCL9 , Disease Models, Animal , Immunity, Innate , Monocytes , Osteomyelitis , Staphylococcal Infections , Staphylococcus aureus , Animals , Osteomyelitis/microbiology , Osteomyelitis/immunology , Osteomyelitis/metabolism , Osteomyelitis/pathology , Monocytes/immunology , Monocytes/metabolism , Chemokine CXCL9/metabolism , Chemokine CXCL9/genetics , Staphylococcus aureus/immunology , Mice , Chemokine CXCL10/metabolism , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Staphylococcal Infections/metabolism , Mice, Inbred C57BL , Receptors, CXCR3/metabolism , Receptors, CXCR3/genetics , Aging/immunology , Neutrophils/immunology , Neutrophils/metabolism , Macrophages/immunology , Macrophages/metabolism
5.
Sci Rep ; 14(1): 16364, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013959

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is a hepatocyte inflammation based on hepatocellular steatosis, yet there is no effective drug treatment. Atherosclerosis (AS) is caused by lipid deposition in the endothelium, which can lead to various cardiovascular diseases. NASH and AS share common risk factors, and NASH can also elevate the risk of AS, causing a higher morbidity and mortality rate for atherosclerotic heart disease. Therefore, timely detection and diagnosis of NASH and AS are particularly important. In this study, differential gene expression analysis and weighted gene co-expression network analysis were performed on the AS (GSE100927) and NASH (GSE89632) datasets to obtain common crosstalk genes, respectively. Then, candidate Hub genes were screened using four topological algorithms and externally validated in the GSE43292 and GSE63067 datasets to obtain Hub genes. Furthermore, immune infiltration analysis and gene set variation analysis were performed on the Hub genes to explore the underlying mechanisms. The DGIbd database was used to screen candidate drugs for AS and NASH. Finally, a NASH model was constructed using free fatty acid-induced human L02 cells, an AS model was constructed using lipopolysaccharide-induced HUVECs, and a co-morbidity model was constructed using L02 cells and HUVECs to verify Hub gene expression. The result showed that a total of 113 genes common to both AS and NASH were identified as crosstalk genes, and enrichment analysis indicated that these genes were mainly involved in the regulation of immune and metabolism-related pathways. 28 candidate Hub genes were screened according to four topological algorithms, and CXCL9, IL2RB, and SPP1 were identified as Hub genes after in vitro experiments and external dataset validation. The ROC curves and SVM modeling demonstrated the good diagnostic efficacy of these three Hub genes. In addition, the Hub genes are strongly associated with immune cell infiltration, especially macrophages and γ-δ T cell infiltration. Finally, five potential therapeutic drugs were identified. has-miR-185 and hsa-miR-335 were closely related to AS and NASH. This study demonstrates that CXCL9, IL2RB, and SPP1 may serve as potential biomarkers for the diagnosis of the co-morbidity patterns of AS and NASH and as potential targets for drug therapy.


Subject(s)
Atherosclerosis , Biomarkers , Chemokine CXCL9 , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/diagnosis , Biomarkers/metabolism , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Gene Regulatory Networks , Comorbidity , Human Umbilical Vein Endothelial Cells/metabolism , Gene Expression Profiling
6.
FASEB J ; 38(13): e23745, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38923065

ABSTRACT

Idiopathic granulomatous mastitis (IGM), a recurrent inflammation disease of the non-lactating breast, has had an increasing clinical morbidity rate in recent years, and its complicated symptoms and unclear etiology make it challenging to treat. This rare benign inflammatory breast disease, centered on the lobules, represents the most challenging type of non-puerperal mastitis (NPM), also known as non-lactating mastitis. In this study, patients diagnosed with IGM (M, n = 23) were recruited as cases, and patients with benign control breast disease (C, n = 17) were enrolled as controls. Cytokine microarray detection measured and analyzed the differentially expressed cytokine factors between IGM and control patients. Then, we verified the mRNA and protein expression levels of the significantly changed cytokine factors using Q-RT-PCR, ELISA, western blot, and IHC experiments. The cytokine factor expression levels significantly changed compared to the control group. We observed a significant increase between IGM and control patients in cytokine factors expression, such as interleukin-1ß (IL-1ß), monokine induced by gamma interferon (MIG), macrophage inflammatory protein (MIP)-1α, MIP-1ß, tumor necrosis factor receptor 2 (TNF RII). Then, we verified the expression of these top five dysregulated factors in both mRNA and protein levels. Our results demonstrated the cytokine map in IGM and indicated that several cytokines, especially chemokines, were associated with and significantly dysregulated in IGM tissues compared to the control group. The chemokine factors involved might be essential in developing and treating IGM. These findings would be helpful for a better understanding of IGM and offer valuable insights for devising novel diagnostic and therapeutic strategies.


Subject(s)
Chemokines , Granulomatous Mastitis , Humans , Female , Granulomatous Mastitis/metabolism , Granulomatous Mastitis/genetics , Adult , Chemokines/metabolism , Chemokines/genetics , Middle Aged , Cytokines/metabolism , Cytokines/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Case-Control Studies , Chemokine CXCL9/metabolism , Chemokine CXCL9/genetics
7.
Respir Med ; 227: 107658, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704051

ABSTRACT

Pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) is associated with worse clinical outcomes and decreased survival rates. In absence of disease specific diagnostic/therapeutic targets and unclear pathophysiology, there is an urgent need for the identification of potential genetic/molecular markers and disease associated pathways. The present study aims to use a bioinformatics approach to identify and validate hypoxia-associated gene signatures in COPD-PH patients. Additionally, hypoxia-related inflammatory profile is also explored in these patients. Microarray dataset obtained from the Gene Expression Omnibus repository was used to identify differentially expressed genes (DEGs) in a hypoxic PH mice model. The top three hub genes identified were further validated in COPD-PH patients, with chemokine (C-X-C motif) ligand 9 (CXCL9) and CXCL12 showing significant changes in comparison to healthy controls. Furthermore, multiplexed analysis of 10 inflammatory cytokines, tumor necrosis factor alpha (TNF-α), transforming growth factor ß (TGF-ß), interleukin 1-beta (IL-1ß), IL-4, IL-5, IL-6, IL-13, IL-17, IL-18 and IL-21 was also performed. These markers showed significant changes in COPD-PH patients as compared to controls. They also exhibited the ability to differentially diagnose COPD-PH patients in comparison to COPD. Additionally, IL-6 and IL-17 showed significant positive correlation with systolic pulmonary artery pressure (sPAP). This study is the first report to assess the levels of CXCL9 and CXCL12 in COPD-PH patients and also explores their link with the inflammatory profile of these patients. Our findings could be extended to better understand the underlying disease mechanism and possibly used for tailoring therapies exclusive for the disease.


Subject(s)
Chemokine CXCL12 , Computational Biology , Cytokines , Hypertension, Pulmonary , Hypoxia , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/physiopathology , Cytokines/metabolism , Cytokines/genetics , Computational Biology/methods , Humans , Hypoxia/genetics , Hypoxia/metabolism , Animals , Mice , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Hypertension, Pulmonary/genetics , Chemokine CXCL9/genetics , Gene Expression Profiling , Male , Female , Disease Models, Animal , Inflammation/genetics , Inflammation/metabolism , Middle Aged
8.
N Engl J Med ; 390(20): 1873-1884, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38810185

ABSTRACT

BACKGROUND: Autoimmune polyendocrine syndrome type 1 (APS-1) is a life-threatening, autosomal recessive syndrome caused by autoimmune regulator (AIRE) deficiency. In APS-1, self-reactive T cells escape thymic negative selection, infiltrate organs, and drive autoimmune injury. The effector mechanisms governing T-cell-mediated damage in APS-1 remain poorly understood. METHODS: We examined whether APS-1 could be classified as a disease mediated by interferon-γ. We first assessed patients with APS-1 who were participating in a prospective natural history study and evaluated mRNA and protein expression in blood and tissues. We then examined the pathogenic role of interferon-γ using Aire-/-Ifng-/- mice and Aire-/- mice treated with the Janus kinase (JAK) inhibitor ruxolitinib. On the basis of our findings, we used ruxolitinib to treat five patients with APS-1 and assessed clinical, immunologic, histologic, transcriptional, and autoantibody responses. RESULTS: Patients with APS-1 had enhanced interferon-γ responses in blood and in all examined autoimmunity-affected tissues. Aire-/- mice had selectively increased interferon-γ production by T cells and enhanced interferon-γ, phosphorylated signal transducer and activator of transcription 1 (pSTAT1), and CXCL9 signals in multiple organs. Ifng ablation or ruxolitinib-induced JAK-STAT blockade in Aire-/- mice normalized interferon-γ responses and averted T-cell infiltration and damage in organs. Ruxolitinib treatment of five patients with APS-1 led to decreased levels of T-cell-derived interferon-γ, normalized interferon-γ and CXCL9 levels, and remission of alopecia, oral candidiasis, nail dystrophy, gastritis, enteritis, arthritis, Sjögren's-like syndrome, urticaria, and thyroiditis. No serious adverse effects from ruxolitinib were identified in these patients. CONCLUSIONS: Our findings indicate that APS-1, which is caused by AIRE deficiency, is characterized by excessive, multiorgan interferon-γ-mediated responses. JAK inhibition with ruxolitinib in five patients showed promising results. (Funded by the National Institute of Allergy and Infectious Diseases and others.).


Subject(s)
AIRE Protein , Interferon-gamma , Janus Kinase Inhibitors , Polyendocrinopathies, Autoimmune , Adult , Animals , Female , Humans , Male , Mice , AIRE Protein/deficiency , AIRE Protein/genetics , AIRE Protein/immunology , Autoantibodies/blood , Autoantibodies/immunology , Chemokine CXCL9/genetics , Interferon-gamma/genetics , Interferon-gamma/immunology , Janus Kinase Inhibitors/therapeutic use , Mice, Knockout , Nitriles/therapeutic use , Polyendocrinopathies, Autoimmune/genetics , Polyendocrinopathies, Autoimmune/drug therapy , Polyendocrinopathies, Autoimmune/immunology , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Pyrimidines/therapeutic use , T-Lymphocytes/immunology , Transcription Factors/genetics , Transcription Factors/immunology , Pilot Projects , Disease Models, Animal , Child , Adolescent , Middle Aged
9.
Sci Rep ; 14(1): 12085, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802459

ABSTRACT

The co-existence of inflammatory bowel disease (IBD) and non-alcoholic steatohepatitis (NASH) has raised interest in identifying shared molecular mechanisms and potential therapeutic targets. However, the relationship between these two diseases remains unclear and effective medical treatments are still lacking. Through the bioinformatics analysis in this study, 116 shared differentially expressed genes (SDEGs) were identified between IBD and NASH datasets. GO and KEGG pathway analyses revealed significant involvement of SDEGs in apoptotic processes, cell death, defense response, cytokine and chemokine activity, and signaling pathways. Furthermore, weighted gene co-expression network analysis (WGCNA) identified five shared signature genes associated specifically with IBD and NASH, they were CXCL9, GIMAP2, ADAMTS5, GRAP, and PRF1. These five genes represented potential diagnostic biomarkers for distinguishing patients with diseases from healthy individuals by using two classifier algorithms and were positively related to autophagy, ferroptosis, angiogenesis, and immune checkpoint factors in the two diseases. Additionally, single-cell analysis of IBD and NASH samples highlighted the expression of regulatory genes in various immune cell subtypes, emphasizing their significance in disease pathogenesis. Our work elucidated the shared signature genes and regulatory mechanisms of IBD and NASH, which could provide new potential therapies for patients with IBD and NASH.


Subject(s)
Computational Biology , Gene Regulatory Networks , Inflammatory Bowel Diseases , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Computational Biology/methods , Gene Expression Profiling , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Biomarkers , Transcriptome , Gene Expression Regulation
10.
Front Immunol ; 15: 1323199, 2024.
Article in English | MEDLINE | ID: mdl-38742112

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide. PANoptosis is a recently unveiled programmed cell death pathway, Nonetheless, the precise implications of PANoptosis within the context of HCC remain incompletely elucidated. Methods: We conducted a comprehensive bioinformatics analysis to evaluate both the expression and mutation patterns of PANoptosis-related genes (PRGs). We categorized HCC into two clusters and identified differentially expressed PANoptosis-related genes (DEPRGs). Next, a PANoptosis risk model was constructed using LASSO and multivariate Cox regression analyses. The relationship between PRGs, risk genes, the risk model, and the immune microenvironment was studies. In addition, drug sensitivity between high- and low-risk groups was examined. The expression profiles of these four risk genes were elucidate by qRT-PCR or immunohistochemical (IHC). Furthermore, the effect of CTSC knock down on HCC cell behavior was verified using in vitro experiments. Results: We constructed a prognostic signature of four DEPRGs (CTSC, CDCA8, G6PD, and CXCL9). Receiver operating characteristic curve analyses underscored the superior prognostic capacity of this signature in assessing the outcomes of HCC patients. Subsequently, patients were stratified based on their risk scores, which revealed that the low-risk group had better prognosis than those in the high-risk group. High-risk group displayed a lower Stromal Score, Immune Score, ESTIMATE score, and higher cancer stem cell content, tumor mutation burden (TMB) values. Furthermore, a correlation was noted between the risk model and the sensitivity to 56 chemotherapeutic agents, as well as immunotherapy efficacy, in patient with. These findings provide valuable guidance for personalized clinical treatment strategies. The qRT-PCR analysis revealed that upregulated expression of CTSC, CDCA8, and G6PD, whereas downregulated expression of CXCL9 in HCC compared with adjacent tumor tissue and normal liver cell lines. The knockdown of CTSC significantly reduced both HCC cell proliferation and migration. Conclusion: Our study underscores the promise of PANoptosis-based molecular clustering and prognostic signatures in predicting patient survival and discerning the intricacies of the tumor microenvironment within the context of HCC. These insights hold the potential to advance our comprehension of the therapeutic contribution of PANoptosis plays in HCC and pave the way for generating more efficacious treatment strategies.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Computational Biology , Liver Neoplasms , Tumor Microenvironment , Female , Humans , Male , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Chemokine CXCL9/genetics , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Prognosis , Transcriptome , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
11.
Biosci Trends ; 18(2): 198-200, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38616129

ABSTRACT

Alopecia areata (AA) is an autoimmune disease characterized by damage to hair follicles and hair loss. Cell-free DNA (cfDNA) has recently received attention as a biomarker of various disorders including inflammatory skin diseases. In this study, we aimed to investigate the clinical significance of cfDNA and the circulating DNAs of disease-associated cytokines in AA patients. Serum samples were obtained from 63 patients with AA and 32 healthy controls (HC). Using droplet digital polymerase chain reaction, circulating C-X-C motif chemokine ligand (CXCL) 9, CXCL10, CXCL11, C-X-C motif chemokine receptor 3, interferon (IFN)-γ, interleukin (IL) -7, IL-15, and Janus kinase (JAK) 2 were detectable in both HC and AA patients. Among the detectable DNAs, copies of circulating CXCL9, CXCL11, IL-15, IFN-γ, and JAK2 were significantly higher in AA patients than in HC. These results suggest that increased circulating DNA levels may reflect damage to hair follicles in AA patients.


Subject(s)
Alopecia Areata , Cell-Free Nucleic Acids , Cytokines , Humans , Alopecia Areata/blood , Alopecia Areata/genetics , Cell-Free Nucleic Acids/blood , Male , Female , Adult , Cytokines/blood , Case-Control Studies , Biomarkers/blood , Middle Aged , Young Adult , Janus Kinase 2/genetics , Janus Kinase 2/blood , Chemokine CXCL9/blood , Chemokine CXCL9/genetics , Chemokine CXCL11/blood , Chemokine CXCL11/genetics , Interferon-gamma/blood , Hair Follicle , Chemokine CXCL10/blood , Adolescent , Interleukin-15/blood , Interleukin-15/genetics
12.
Cancer Sci ; 115(7): 2196-2208, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38655660

ABSTRACT

Although microwave ablation (MWA) is an important curative therapy in colorectal cancer liver metastasis, recurrence still occurs clinically. Our previous studies have shown that the expression of programmed cell death 1 ligand 1 (PD-L1) is upregulated following MWA, suggesting that MWA combined with anti-PD-L1 treatment can serve as a promising clinical therapeutic strategy against cancer. Using MWA-treated preclinical mice models, MWA combined with αPD-L1 treatment decreased tumor growth and prolonged overall survival (OS). Furthermore, through flow cytometry and single-cell RNA sequencing analysis, we determined that the MWA plus αPD-L1 therapy significantly suppressed CD8+ T cell exhaustion and enhanced their effector function. A significant increase in γ-interferon (IFN-γ) stimulated transcription factors, specifically Irf8, was observed. This enhancement facilitated the polarization of tumor-associated macrophages (TAM1s and TAM2s) through the nuclear factor-κB/JAK-STAT1 signaling pathway. Furthermore, the combination therapy stimulated the production of CXC motif chemokine ligand (CXCL9) by TAM1s and tumor cells, potentially increasing the chemotaxis of CD8 T cells and Th1 cells. Knocking out Cxcl9 in MC38 tumor cells or using CXCL9 blockade enhanced tumor growth of untreated tumors and shortened OS. Taken together, our study showed that blocking the IFN-γ-Cxcl9-CD8+ T axis promoted tumor progression and discovered a potential involvement of IRF8-regulated TAMs in preventing T cell exhaustion. Collectively, we identified that the combination of MWA with anti-PD-L1 treatment holds promise as a therapeutic strategy to rejuvenate the immune response against tumors. This merits further exploration in clinical studies.


Subject(s)
B7-H1 Antigen , CD8-Positive T-Lymphocytes , Chemokine CXCL9 , Immune Checkpoint Inhibitors , Microwaves , Animals , Mice , Chemokine CXCL9/metabolism , Chemokine CXCL9/genetics , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Microwaves/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , Combined Modality Therapy , Mice, Inbred C57BL , Humans , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Signal Transduction , Female , Tumor Microenvironment/immunology , Interferon-gamma/metabolism , STAT1 Transcription Factor/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/therapy
13.
J Stomatol Oral Maxillofac Surg ; 125(3S): 101836, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508395

ABSTRACT

INTRODUCTION: The established association between thyroid disorders (TD) and its two main subtypes-hyperthyroidism and hypothyroidism-and the incidence of oral and oropharyngeal cancer (OCPC) has been substantiated. However, the direct causal relationship and potential intermediary mechanisms linking these conditions have not been clearly defined in prior studies. MATERIAL & METHODS: This study employed univariate Mendelian randomization (MR) analysis to explore those relationship. Instrumental variables from genome-wide association study (GWAS) datasets for TD (n = 218,792), hyperthyroidism (n = 460,499), hypothyroidism (n = 213,990), and OCPC (n = 12,619), along with 41 intermediary inflammatory cytokines (n = 8293), were analyzed. Inverse variance weighting (IVW) method assessed the causal relationships, while summary MR analysis with pQTL datasets from decode and 91 inflammatory cytokines explored the cytokines' roles as biomarkers and therapeutic targets for OCPC. Multivariable MR (MVMR) analysis quantified the mediation effect of these cytokines in the TD-OCPC relationship. RESULTS: UVMR analysis provided strong evidence for a causal relationship between TD (OR = 1.376, 95 % CI = 1.142-1.656, p = 0.001), hyperthyroidism (OR = 1.319, 95 % CI=1.129-1.541, p = 0.001), hypothyroidism (OR = 1.224, 95 % CI = 1.071-1.400, p = 0.003), and the risk of OCPC. CXCL9 was identified as a significant intermediary in mediating the risk of OCPC from TD and its two subtypes (OR = 1.218, 95 % CI = 1.016-1.461, P = 0.033), suggesting its potential as a predictive biomarker for OCPC. MVMR analysis further revealed that CXCL9 mediated 7.94 %, 14.4 %, and 18 % of the effects of TD, hyperthyroidism, and hypothyroidism on OCPC risk, respectively. DISCUSSION: This study not only elucidated the potential causal relationships between TD including its two subtypes and OCPC risk, but also highlighted CXCL9 as a pivotal mediator in this association.


Subject(s)
Chemokine CXCL9 , Genome-Wide Association Study , Mendelian Randomization Analysis , Mouth Neoplasms , Oropharyngeal Neoplasms , Humans , Oropharyngeal Neoplasms/epidemiology , Oropharyngeal Neoplasms/etiology , Oropharyngeal Neoplasms/genetics , Mouth Neoplasms/epidemiology , Mouth Neoplasms/etiology , Mouth Neoplasms/genetics , Mouth Neoplasms/diagnosis , Chemokine CXCL9/genetics , Hyperthyroidism/epidemiology , Hyperthyroidism/genetics , Hyperthyroidism/complications , Hyperthyroidism/diagnosis , Thyroid Diseases/epidemiology , Thyroid Diseases/complications , Thyroid Diseases/diagnosis , Thyroid Diseases/genetics , Risk Factors , Hypothyroidism/epidemiology , Hypothyroidism/genetics , Hypothyroidism/complications
14.
Biomed Pharmacother ; 173: 116427, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484558

ABSTRACT

Uncertainty exists regarding the mechanisms by which hypoxia-inducible factors (HIFs) control CD8+T-cell migration into tumor microenvironments. Here, we found that HIF-1α knockdown or overexpression resulted in increased or decreased CXCL9, -10, and -11 expression in vitro, respectively. Gene Set Variation Analysis revealed that elevated HIF-1α levels correlated with a poor prognosis, severe pathological stage, and an absence of CD8+ T cells in the tumor microenvironment in colorectal cancer (CRC) patients. HIF-1α was inversely associated with pathways beneficial to anti-tumor immunotherapy and cytokine/chemokine function. In vivo, inhibiting HIF-1α or its upstream regulator BIRC2 significantly suppressed tumor growth and promoted CD8+ T-cell infiltration. CXCR3 neutralizing antibodies reversed these effects, implicating the involvement of CXCL9, -10, and -11/CXCR3 axis. The presence of HIF-1α weakened the upregulation of CXCL9, -10, and -11 by bleomycin and doxorubicin. Combining HIF-1α inhibition with bleomycin promoted CD8+ T-cell infiltration and tumor suppression in vivo. Moreover, doxorubicin could upregulate CXCL9, -10 and -11 by suppressing HIF-1α. Our findings highlight the potential of HIF-1α inhibition to improve CRC microenvironments and increase chemotherapy sensitivity.


Subject(s)
Colorectal Neoplasms , Drug Resistance, Neoplasm , Hypoxia-Inducible Factor 1, alpha Subunit , Humans , Bleomycin , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Cytokines , Doxorubicin/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Tumor Microenvironment
15.
Adv Sci (Weinh) ; 11(15): e2309026, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342608

ABSTRACT

Tumor-associated macrophages (TAM) are a diverse population of myeloid cells that are often abundant and immunosuppressive in human cancers. CXCL9Hi TAM has recently been described to have an antitumor phenotype and is linked to immune checkpoint response. Despite the emerging understanding of the unique antitumor TAM phenotype, there is a lack of TAM-specific therapeutics to exploit this new biological understanding. Here, the discovery and characterization of multiple small-molecule enhancers of chemokine ligand 9 (CXCL9) and their targeted delivery in a TAM-avid systemic nanoformulation is reported. With this strategy, it is efficient encapsulation and release of multiple drug loads that can efficiently induce CXCL9 expression in macrophages, both in vitro and in vivo in a mouse tumor model. These observations provide a window into the molecular features that define TAM-specific states, an insight a novel therapeutic anticancer approach is used to discover.


Subject(s)
Neoplasms , Tumor-Associated Macrophages , Animals , Humans , Mice , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Macrophages/metabolism , Neoplasms/pathology , Phenotype
16.
Arthritis Res Ther ; 26(1): 26, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38229121

ABSTRACT

BACKGROUND: Primary Sjögren's syndrome (pSS) is an autoimmune condition that causes harm to exocrine glands and also has extra-glandular manifestations (EGM). pSS patients with EGM have a worse prognosis than those with only sicca symptoms. Previous studies have shown that the minor salivary glands (MSG) of pSS patients exhibit a unique profile of cytokines and chemokines compared to healthy controls. However, there is a lack of research comparing pSS with EGM (pSS-EGM) and pSS without EGM (pSS-non-EGM). This study aims to explore potential biomarkers associated with pSS, particularly pSS with EGM. METHODS: By utilizing RNA sequencing, we conducted an analysis on the gene expression profiles of MSG in 63 patients diagnosed with pSS, as well as 12 non-pSS individuals. Furthermore, we also investigated the MSG of pSS patients, both with and without EGM. Through bioinformatics analysis, we identified genes with differential expression (DEGs) and determined the core hub genes using PPI network. We then analyzed the top 20 DEGs and their correlation with the patients' clinical characteristics, and validated our findings using peripheral blood plasma. RESULTS: A total of 725 differentially expressed genes (DEGs) were identified in the comparison between pSS and non-pSS groups, and 727 DEGs were observed between pSS-EGM and pSS-non-EGM. It is noteworthy that the expression levels of CXCL9 were higher in both pSS patients and pSS-EGM when compared to the control group. Taking into consideration the significance of the top 20 DEGs in relation to clinical parameters and the central hub genes, we ultimately chose CXCL9. In comparison to the non-pSS group, pSS patients exhibited notably greater expression of the CXCL9 gene in the MSG, as well as higher levels of CXCL9 protein in their plasma (p < 0.001). Furthermore, the expression of the CXCL9 gene and levels of CXCL9 protein were notably higher in pSS patients accompanied by EGM and those with SSA antibodies. Additionally, a correlation was found between the expression of the CXCL9 gene and the EULAR Sjogren's Syndrome Disease Activity Index (ESSDAI), as well as with immunoglobulin G (IgG) levels and erythrocyte sedimentation rate (ESR). Meanwhile, the protein levels of CXCL9 were found to be correlated with IgG levels and ESSDAI. CONCLUSION: CXCL9 proves to be a valuable biomarker in pSS, specifically due to its strong ability to differentiate between pSS patients with EGM and those without EGM. There is a significant correlation between CXCL9 and various clinical parameters both at the gene and protein level. Therefore, CXCL9 could be a potential target for future treatment of pSS.


Subject(s)
Autoimmune Diseases , Sjogren's Syndrome , Humans , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/genetics , Sjogren's Syndrome/complications , Autoimmune Diseases/complications , Biomarkers , Transcriptome , Immunoglobulin G/genetics , Chemokine CXCL9/genetics , Chemokine CXCL9/therapeutic use
17.
Mol Ther ; 32(2): 469-489, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38098230

ABSTRACT

Macrophages play a crucial role in shaping the immune state within the tumor microenvironment (TME) and are often influenced by tumors to hinder antitumor immunity. However, the underlying mechanisms are still elusive. Here, we observed abnormal expression of complement 5a receptor (C5aR) in human ovarian cancer (OC), and identified high levels of C5aR expression on tumor-associated macrophages (TAMs), which led to the polarization of TAMs toward an immunosuppressive phenotype. C5aR knockout or inhibitor treatment restored TAM antitumor response and attenuated tumor progression. Mechanistically, C5aR deficiency reprogrammed macrophages from a protumor state to an antitumor state, associating with the upregulation of immune response and stimulation pathways, which in turn resulted in the enhanced antitumor response of cytotoxic T cells in a manner dependent on chemokine (C-X-C motif) ligand 9 (CXCL9). The pharmacological inhibition of C5aR also improved the efficacy of immune checkpoint blockade therapy. In patients, C5aR expression associated with CXCL9 production and infiltration of CD8+ T cells, and a high C5aR level predicted poor clinical outcomes and worse benefits from anti-PD-1 therapy. Thus, our study sheds light on the mechanisms underlying the modulation of TAM antitumor immune response by the C5a-C5aR axis and highlights the potential of targeting C5aR for clinical applications.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Chemokine CXCL9/genetics , Immunity , Neoplasms/pathology , Receptor, Anaphylatoxin C5a/genetics , Tumor Microenvironment , Tumor-Associated Macrophages/metabolism , Female
18.
J Biol Chem ; 299(10): 105230, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37689116

ABSTRACT

Macrophages must respond appropriately to pathogens and other pro-inflammatory stimuli in order to perform their roles in fighting infection. One way in which inflammatory stimuli can vary is in their dynamics-that is, the amplitude and duration of stimulus experienced by the cell. In this study, we performed long-term live cell imaging in a microfluidic device to investigate how the pro-inflammatory genes IRF1, CXCL10, and CXCL9 respond to dynamic interferon-gamma (IFNγ) stimulation. We found that IRF1 responds to low concentration or short duration IFNγ stimulation, whereas CXCL10 and CXCL9 require longer or higherconcentration stimulation to be expressed. We also investigated the heterogeneity in the expression of each gene and found that CXCL10 and CXCL9 have substantial cell-to-cell variability. In particular, the expression of CXCL10 appears to be largely stochastic with a subpopulation of nonresponding cells across all the stimulation conditions tested. We developed both deterministic and stochastic models for the expression of each gene. Our modeling analysis revealed that the heterogeneity in CXCL10 can be attributed to a slow chromatin-opening step that is on a similar timescale to that of adaptation of the upstream signal. In this way, CXCL10 expression in individual cells can remain stochastic in response to each pulse of repeated stimulation, which we also validated by experiments. Together, we conclude that pro-inflammatory genes in the same signaling pathway can respond to dynamic IFNγ stimulus with very different response features and that upstream signal adaptation can contribute to shaping heterogeneous gene expression.


Subject(s)
Chemokine CXCL10 , Chemokine CXCL9 , Gene Expression Regulation , Interferon Regulatory Factor-1 , Macrophages , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Interferon-gamma/pharmacology , Macrophages/metabolism , Signal Transduction/genetics , RAW 264.7 Cells , Animals , Mice , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Computer Simulation , Single-Cell Analysis , Adjuvants, Immunologic/pharmacology
19.
J Ovarian Res ; 16(1): 180, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37644593

ABSTRACT

BACKGROUND: C-X-C motif chemokine ligand 9 (CXCL9), which is involved in the pathological processes of various human cancers, has become a hot topic in recent years. We developed a radiomic model to identify CXCL9 status in ovarian cancer (OC) and evaluated its prognostic significance. METHODS: We analyzed enhanced CT scans, transcriptome sequencing data, and corresponding clinical characteristics of CXCL9 in OC using the TCIA and TCGA databases. We used the repeat least absolute shrinkage (LASSO) and recursive feature elimination(RFE) methods to determine radiomic features after extraction and normalization. We constructed a radiomic model for CXCL9 prediction based on logistic regression and internal tenfold cross-validation. Finally, a 60-month overall survival (OS) nomogram was established to analyze survival data based on Cox regression. RESULTS: CXCL9 mRNA levels and several other genes involving in T-cell infiltration were significantly relevant to OS in OC patients. The radiomic score (rad_score) of our radiomic model was calculated based on the five features for CXCL9 prediction. The areas under receiver operating characteristic (ROC) curves (AUC-ROC) for the training cohort was 0.781, while that for the validation cohort was 0.743. Patients with a high rad_score had better overall survival (P < 0.001). In addition, calibration curves and decision curve analysis (DCA) showed good consistency between the prediction and actual observations, demonstrating the clinical utility of our model. CONCLUSION: In patients with OC, the radiomics signature(RS) of CT scans can distinguish the level of CXCL9 expression and predict prognosis, potentially fulfilling the ultimate purpose of precision medicine.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/genetics , Databases, Factual , Nomograms , Precision Medicine , RNA, Messenger , Chemokine CXCL9/genetics
20.
J Clin Invest ; 133(13)2023 07 03.
Article in English | MEDLINE | ID: mdl-37395276

ABSTRACT

BackgroundAcute tubulointerstitial nephritis (AIN) is one of the few causes of acute kidney injury with diagnosis-specific treatment options. However, due to the need to obtain a kidney biopsy for histological confirmation, AIN diagnosis can be delayed, missed, or incorrectly assumed. Here, we identify and validate urinary CXCL9, an IFN-γ-induced chemokine involved in lymphocyte chemotaxis, as a diagnostic biomarker for AIN.MethodsIn a prospectively enrolled cohort with pathologist-adjudicated histological diagnoses, termed the discovery cohort, we tested the association of 180 immune proteins measured by an aptamer-based assay with AIN and validated the top protein, CXCL9, using sandwich immunoassay. We externally validated these findings in 2 cohorts with biopsy-confirmed diagnoses, termed the validation cohorts, and examined mRNA expression differences in kidney tissue from patients with AIN and individuals in the control group.ResultsIn aptamer-based assay, urinary CXCL9 was 7.6-fold higher in patients with AIN than in individuals in the control group (P = 1.23 × 10-5). Urinary CXCL9 measured by sandwich immunoassay was associated with AIN in the discovery cohort (n = 204; 15% AIN) independently of currently available clinical tests for AIN (adjusted odds ratio for highest versus lowest quartile: 6.0 [1.8-20]). Similar findings were noted in external validation cohorts, where CXCL9 had an AUC of 0.94 (0.86-1.00) for AIN diagnosis. CXCL9 mRNA expression was 3.9-fold higher in kidney tissue from patients with AIN (n = 19) compared with individuals in the control group (n = 52; P = 5.8 × 10-6).ConclusionWe identified CXCL9 as a diagnostic biomarker for AIN using aptamer-based urine proteomics, confirmed this association using sandwich immunoassays in discovery and external validation cohorts, and observed higher expression of this protein in kidney biopsies from patients with AIN.FundingThis study was supported by National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) awards K23DK117065 (DGM), K08DK113281 (KM), R01DK128087 (DGM), R01DK126815 (DGM and LGC), R01DK126477 (KNC), UH3DK114866 (CRP, DGM, and FPW), R01DK130839 (MES), and P30DK079310 (the Yale O'Brien Center). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Subject(s)
Nephritis, Interstitial , Humans , Nephritis, Interstitial/diagnosis , Nephritis, Interstitial/chemically induced , Nephritis, Interstitial/pathology , Kidney/pathology , Biomarkers , RNA, Messenger , Chemokine CXCL9/genetics , Chemokine CXCL9/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...