Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 361
Filter
1.
J Immunother Cancer ; 12(9)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260826

ABSTRACT

BACKGROUND AND AIMS: Endosialin, also known as tumor endothelial marker1 or CD248, is a transmembrane glycoprotein that is mainly expressed in cancer-associated fibroblasts (CAFs) in hepatocellular carcinoma (HCC). Our previous study has found that endosialin-positive CAFs could recruit and induce the M2 polarization of macrophages in HCC. However, whether they may regulate other types of immune cells to promoting HCC progression is not known. APPROACH AND RESULTS: The growth of both subcutaneous and orthotopic HCC tumors was significantly inhibited in endosialin knockout (ENKO) mice. Single-cell sequencing and flow cytometry analysis showed that tumor tissues from ENKO mice had increased CD8+ T cell infiltration. Mixed HCC tumor with Hepa1-6 cells and endosialin knockdown fibroblasts also showed inhibited growth and increased CD8+ T cell infiltration. Data from in vitro co-culture assay, chemokine array and antibody blocking assay, RNA-seq and validation experiments showed that endosialin inhibits the phosphorylation and nuclear translocation of STAT1 in CAFs. This inhibition leads to a decrease in CXCL9/10 expression and secretion, resulting in the suppression of CD8+ T cell infiltration. High level of endosialin protein expression was correlated with low CD8+ T infiltration in the tumor tissue of HCC patients. The combination therapy of endosialin antibody and PD-1 antibody showed synergistic antitumor effect compared with either antibody used individually. CONCLUSIONS: Endosialin could inhibit CD8+ T cell infiltration by inhibiting the expression and secretion of CXCL9/10 in CAFs, thus promote HCC progression. Combination therapy with endosialin antibody could increase the antitumor effect of PD-1 antibody in HCC, which may overcome the resistance to PD-1 blockade.


Subject(s)
CD8-Positive T-Lymphocytes , Cancer-Associated Fibroblasts , Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , Cancer-Associated Fibroblasts/metabolism , Antigens, CD/metabolism , Disease Progression , Cell Line, Tumor , Chemokine CXCL9/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice, Knockout , Tumor Microenvironment , STAT1 Transcription Factor/metabolism , Chemokine CXCL10/metabolism , Male , Antigens, Neoplasm , Neoplasm Proteins
2.
Front Immunol ; 15: 1455457, 2024.
Article in English | MEDLINE | ID: mdl-39301034

ABSTRACT

Chemokines are cytokines that mediate leukocyte traffic between the lymphoid organs, the bloodstream, and the site of tissue damage, which is essential for an efficient immune response. In particular, the gamma interferon (IFN- γ) inducible chemokines CXCL9, CXCL10, and CXCL11, and their receptor CXCR3, are involved in T cell and macrophage recruitment to the site of infection. The nature and function of these chemokines and their receptor are well-known in mammals, but further research is needed to achieve a similar level of understanding in fish immunity. Thus, in this study, we seek to identify the genes encoding the components of the Atlantic salmon (Salmo salar) CXCL9, CXCL10, CXCL11/CXCR3 axis (CXCL9-11/CXCR3), predict the protein structure from the amino acid sequence, and explore the regulation of gene expression as well as the response of these chemokines and their receptor to viral infections. The cxcl9, cxcl10, cxcl11, and cxcr3 gene sequences were retrieved from the databases, and the phylogenetic analysis was conducted to determine the evolutionary relationships. The study revealed an interesting pattern of clustering and conservation among fish and mammalian species. The salmon chemokine sequences clustered with orthologs from other fish species, while the mammalian sequences formed separate clades. This indicates a divergent evolution of chemokines between mammals and fish, possibly due to different evolutionary pressures. While the structural analysis of the chemokines and the CXCR3 receptor showed the conservation of critical motifs and domains, suggesting preserved functions and stability throughout evolution. Regarding the regulation of gene expression, some components of the CXCL9-11/CXCR3 axis are induced by recombinant gamma interferon (rIFN-γ) and by Infectious pancreatic necrosis virus (IPNV) infection in Atlantic salmon cells. Further studies are needed to explore the role of Atlantic salmon CXCL9-11 chemokines in regulating immune cell migration and endothelial activation, as seen in mammals. To the best of our knowledge, there have been no functional studies of chemokines to understand these effects in Atlantic salmon.


Subject(s)
Chemokine CXCL9 , Phylogeny , Receptors, CXCR3 , Salmo salar , Animals , Salmo salar/immunology , Salmo salar/genetics , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Chemokine CXCL9/immunology , Gene Expression Regulation , Chemokine CXCL11/genetics , Chemokine CXCL11/metabolism , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Fish Diseases/immunology , Fish Diseases/virology , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Infectious pancreatic necrosis virus/immunology
3.
Cytokine ; 183: 156731, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39168064

ABSTRACT

Subunit vaccines drive immune cell-cell interactions in the lymph node (LN), yet it remains unclear how distinct adjuvants influence the chemokines responsible for this interaction in the tissue. Here, we tested the hypothesis that classic Th1-polarizing vaccines elicit a unique chemokine signature in the LN compared to other adjuvants. Polyinosinic:polycytidylic acid (Poly I:C) vaccination resulted in dynamic upregulation of CXCL9 that was localized in the interfollicular region, a response not observed after vaccination with alum or a combination of alum and poly I:C. Experiments using in vivo mouse models and live ex vivo LN slices revealed that poly I:C vaccination resulted in a type-I IFN response in the LN that led to the secretion of IFNγ, and type-I IFN and IFNγ were required for CXCL9 expression in this context. CXCL9 expression in the LN was correlated with an IgG2c antibody polarization after vaccination; however, genetic depletion of the receptor for CXCL9 did not prevent the development of this polarization. Additionally, we measured secretion of CXCL9 from ex vivo LN slices after stimulation with a variety of adjuvants and confirmed that adjuvants that induced IFNγ responses also promoted CXCL9 expression. Taken together, these results identify a CXCL9 signature in a suite of Th1-polarizing adjuvants and determined the pathway involved in driving CXCL9 in the LN, opening avenues to target this chemokine pathway in future vaccines.


Subject(s)
B-Lymphocytes , Chemokine CXCL9 , Interferon Type I , Interferon-gamma , Lymph Nodes , Mice, Inbred C57BL , Poly I-C , Signal Transduction , Vaccination , Animals , Chemokine CXCL9/metabolism , Poly I-C/pharmacology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Interferon Type I/metabolism , Interferon-gamma/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Adjuvants, Immunologic/pharmacology , Female
4.
Nat Cardiovasc Res ; 3(8): 970-986, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39196030

ABSTRACT

Doxorubicin, the most prescribed chemotherapeutic drug, causes dose-dependent cardiotoxicity and heart failure. However, our understanding of the immune response elicited by doxorubicin is limited. Here we show that an aberrant CD8+ T cell immune response following doxorubicin-induced cardiac injury drives adverse remodeling and cardiomyopathy. Doxorubicin treatment in non-tumor-bearing mice increased circulating and cardiac IFNγ+CD8+ T cells and activated effector CD8+ T cells in lymphoid tissues. Moreover, doxorubicin promoted cardiac CD8+ T cell infiltration and depletion of CD8+ T cells in doxorubicin-treated mice decreased cardiac fibrosis and improved systolic function. Doxorubicin treatment induced ICAM-1 expression by cardiac fibroblasts resulting in enhanced CD8+ T cell adhesion and transformation, contact-dependent CD8+ degranulation and release of granzyme B. Canine lymphoma patients and human patients with hematopoietic malignancies showed increased circulating CD8+ T cells after doxorubicin treatment. In human cancer patients, T cells expressed IFNγ and CXCR3, and plasma levels of the CXCR3 ligands CXCL9 and CXCL10 correlated with decreased systolic function.


Subject(s)
Disease Models, Animal , Doxorubicin , Fibrosis , Interferon-gamma , T-Lymphocytes, Cytotoxic , Animals , Doxorubicin/adverse effects , Fibrosis/chemically induced , Humans , Dogs , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Interferon-gamma/metabolism , Antibiotics, Antineoplastic/adverse effects , Antibiotics, Antineoplastic/toxicity , Mice, Inbred C57BL , Cardiotoxicity/etiology , Receptors, CXCR3/metabolism , Chemokine CXCL10/metabolism , Male , Granzymes/metabolism , Cardiomyopathies/chemically induced , Cardiomyopathies/pathology , Cardiomyopathies/immunology , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology , Cell Degranulation/drug effects , Chemokine CXCL9/metabolism , Ventricular Function, Left/drug effects , Systole/drug effects , Mice , Female , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Cell Adhesion/drug effects , Lymphocyte Activation/drug effects
5.
Front Immunol ; 15: 1382538, 2024.
Article in English | MEDLINE | ID: mdl-39165364

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with an urgent unmet clinical need for new therapies. Using a combination of in vitro assays and in vivo preclinical models we demonstrate that therapeutic inhibition of the IGF signalling axis promotes the accumulation of CD8+ cytotoxic T cells within the tumour microenvironment of PDAC tumours. Mechanistically, we show that IGF blockade promotes macrophage and fibroblast production of the chemokines CXCL9 and CXCL10 to facilitate CD8+ T cell recruitment and trafficking towards the PDAC tumour. Exploring this pathway further, we show that IGF inhibition leads to increased STAT1 transcriptional activity, correlating with a downregulation of the AKT/STAT3 signalling axis, in turn promoting Cxcl9 and Cxcl10 gene transcription. Using patient derived tumour explants, we also demonstrate that our findings translate into the human setting. PDAC tumours are frequently described as "immunologically cold", therefore bolstering CD8+ T cell recruitment to PDAC tumours through IGF inhibition may serve to improve the efficacy of immune checkpoint inhibitors which rely on the presence of CD8+ T cells in tumours.


Subject(s)
Carcinoma, Pancreatic Ductal , Chemokine CXCL10 , Chemokine CXCL9 , Macrophages , Pancreatic Neoplasms , Tumor Microenvironment , Chemokine CXCL9/metabolism , Humans , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Animals , Tumor Microenvironment/immunology , Chemokine CXCL10/metabolism , Macrophages/immunology , Macrophages/metabolism , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Mice , Somatomedins/metabolism , Cell Line, Tumor , T-Lymphocytes, Cytotoxic/immunology , STAT1 Transcription Factor/metabolism , CD8-Positive T-Lymphocytes/immunology , Signal Transduction , Fibroblasts/metabolism , Fibroblasts/immunology , Insulin-Like Peptides
6.
Clin Exp Med ; 24(1): 204, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196390

ABSTRACT

The application of CAR-T cells in solid tumors poses several challenges, including poor T cell homing ability, limited infiltration of T cells and an immunosuppressive tumor environment. In this study, we developed a novel approach to address these obstacles by designing GPC3-specific CAR-T cell that co-express IL-21 and CXCL9 (21 × 9 GPC3 CAR-T cells) and blocking the PD-1 expression on it. The proliferation, cell phenotype, cytokine secretion and cell migration of indicated CAR-T cells were evaluated in vitro. The cytotoxic activities of genetically engineered CAR-T cells were accessed in vitro and in vivo. Compared to conventional GPC3 CAR-T cells, the 21 × 9 GPC3 CAR-T cells demonstrated superior proliferation, cytokine secretion and chemotaxis capabilities in vitro. Furthermore, when combined with PD-1 blockade, the 21 × 9 GPC3 CAR-T cells exhibited enhanced proliferation, cytokine secretion and enrichment of effector T cells such as CTL, NKT and TEM cells. In xenograft tumor models, the PD-1 blocked 21 × 9 GPC3 CAR-T cells effectively suppressed HCC xenograft growth and increased T cell infiltration. Overall, our study successfully generated GPC3 CAR-T cells expressing both IL-21 and CXCL9, demonstrated that combining PD-1 blockade can further enhance CAR-T cell function by promoting proliferation, cytokine secretion, chemotaxis and antitumor activity. These findings present a hopeful and potentially effective strategy for GPC3-positive HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Chemokine CXCL9 , Glypicans , Immunotherapy, Adoptive , Interleukins , Liver Neoplasms , Programmed Cell Death 1 Receptor , Receptors, Chimeric Antigen , Glypicans/immunology , Glypicans/metabolism , Glypicans/antagonists & inhibitors , Glypicans/genetics , Interleukins/metabolism , Interleukins/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/drug therapy , Animals , Humans , Immunotherapy, Adoptive/methods , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Mice , Chemokine CXCL9/metabolism , Chemokine CXCL9/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Xenograft Model Antitumor Assays , Cell Proliferation , Cell Line, Tumor
7.
Int J Med Sci ; 21(10): 1976-1989, 2024.
Article in English | MEDLINE | ID: mdl-39113895

ABSTRACT

Aortic aneurysm and dissection (AD) represent a critical cardiovascular emergency with an alarmingly high mortality rate. Recent research has spotlighted the overexpression of genes associated with the m6A modification in AD patients, linking them to the presence of inflammatory M1-type macrophages. Moreover, glycolysis is widely recognized as a key feature of inflammatory M1-type macrophages, but biomarkers linking glycolysis and macrophage function to promote disease progression in AD have not been reported. We conducted an analysis of aortic immune cell infiltration, macrophages, and m6A-related biomarkers in AD patients using bioinformatics techniques. Subsequently, we employed a combination of RT-PCR, WB, and immunofluorescence assays to elucidate the alterations in the expression of M1- and M2-type macrophages, as well as markers of glycolysis, following the overexpression of key biomarkers. These findings were further validated in vivo through the creation of a rat model of AD with knockdown of the aforementioned key biomarkers. The findings revealed that the m6A-modified related gene RBM15 exhibited heightened expression in AD samples and was correlated with macrophage polarization. Upon overexpression of RBM15 in macrophages, there was an observed increase in the expression of M1-type macrophage markers CXCL9 and CXCL10, alongside a decrease in the expression of M2-type macrophage markers CCL13 and MRC1. Furthermore, there was an elevation in the expression of glycolytic enzymes GLUT1 and Hexokinase, as well as HIF1α, GAPDH, and PFKFB3 after RBM15 overexpression. Moreover, in vivo knockdown of RBM15 led to an amelioration of aortic aneurysm in the rat AD model. This knockdown also resulted in a reduction of the M1-type macrophage marker iNOS, while significantly increasing the expression of the M2-type macrophage marker CD206. In conclusion, our findings demonstrate that RBM15 upregulates glycolysis in macrophages, thus contributing to the progression of AD through the promotion of M1-type macrophage polarization. Conversely, downregulation of RBM15 suppresses M1-type macrophage polarization, thereby decelerating the advancement of AD. These results unveil potential novel targets for the treatment of AD.


Subject(s)
Aortic Aneurysm , Aortic Dissection , Disease Progression , Glycolysis , Macrophages , RNA-Binding Proteins , Glycolysis/genetics , Humans , Animals , Macrophages/metabolism , Macrophages/immunology , Rats , Aortic Dissection/pathology , Aortic Dissection/genetics , Aortic Dissection/metabolism , Aortic Aneurysm/metabolism , Aortic Aneurysm/genetics , Aortic Aneurysm/pathology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Male , Disease Models, Animal , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Biomarkers/metabolism , Chemokine CXCL9/metabolism , Chemokine CXCL9/genetics , Female , Adenosine/analogs & derivatives
8.
Medicine (Baltimore) ; 103(27): e38666, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968513

ABSTRACT

Adenocarcinoma of the pancreas (PAAD) is one of the deadliest malignant tumors, and messenger ribonucleic acid vaccines, which constitute the latest generation of vaccine technology, are expected to lead to new ideas for the treatment of pancreatic cancer. The Cancer Genome Atlas-PAAD and Genotype-Tissue Expression data were merged and analyzed. Weighted gene coexpression network analysis was used to identify gene modules associated with tumor mutational burden among the genes related to both immunity and oxidative stress. Differentially expressed immune-related oxidative stress genes were screened via univariate Cox regression analysis, and these genes were analyzed via nonnegative matrix factorization. After immune infiltration analysis, least absolute shrinkage and selection operator regression combined with Cox regression was used to construct the model, and the usefulness of the model was predicted based on the receiver operating characteristic curve and decision curve analysis curves after model construction. Finally, metabolic pathway enrichment was analyzed using gene set enrichment analysis combined with Kyoto Encyclopedia of Genes and Genomes and gene ontology biological process analyses. This model consisting of the ERAP2, mesenchymal-epithelial transition factor (MET), CXCL9, and angiotensinogen (AGT) genes can be used to help predict the prognosis of pancreatic cancer patients more accurately than existing models. ERAP2 is involved in immune activation and is important in cancer immune evasion. MET binds to hepatocyte growth factor, leading to the dimerization and phosphorylation of c-MET. This activates various signaling pathways, including MAPK and PI3K, to regulate the proliferation, invasion, and migration of cancer cells. CXCL9 overexpression is associated with a poor patient prognosis and reduces the number of CD8 + cytotoxic T lymphocytes in the PAAD tumor microenvironment. AGT is cleaved by the renin enzyme to produce angiotensin 1, and AGT-converting enzyme cleaves angiotensin 1 to produce angiotensin 2. Exposure to AGT-converting enzyme inhibitors after pancreatic cancer diagnosis is associated with improved survival. The 4 genes identified in the present study - ERAP2, MET, CXCL9, and AGT - are expected to serve as targets for messenger ribonucleic acid vaccine development and need to be further investigated in depth.


Subject(s)
Oxidative Stress , Pancreatic Neoplasms , mRNA Vaccines , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Humans , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Angiotensinogen/genetics , Gene Expression Regulation, Neoplastic , Prognosis
9.
Cell Mol Life Sci ; 81(1): 300, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001897

ABSTRACT

BACKGROUND: Age-associated impairments in innate immunity are believed to be a causative factor responsible for severe pathogenesis of Staphylococcus aureus (S. aureus) infection in the bone tissue. However, the basis for age-associated decline in innate immune response upon S. aureus infection remains poorly understood. RESULTS: Our transcriptional data (GEO: GSE166522) from a mouse model of S. aureus osteomyelitis show up-regulated CXCL9 and CXCL10 (CXCL9/10), which is further confirmed in vitro and in vivo by the present study. Notably, monocytes are a main source for CXCL9/10 production in bone marrow upon S. aureus challenge, but this response declines in middle-aged mice. Interestingly, conditional medium of bone marrow monocytes from middle-aged mice has a strikingly decreased effect on bactericidal functions of neutrophils and macrophages compares with that from young mice. We further show that activation of CXCL9/10-CXCR3 axis between monocytes and macrophages/neutrophils promotes the bactericidal function of the cells, whereas blocking the axis impairs such function. Importantly, treatment with either exogenous CXCL9 or CXCL10 in a middle-aged mice model enhances, while pharmacological inhibition of CXCR3 in young mice model impairs, bacterial clearance and bone marrow structure. CONCLUSIONS: These findings demonstrate that bone marrow monocytes act as a critical promotor of innate immune response via the CXLCL9/10-CXCR3 axis upon S. aureus infection, and that the increased susceptibility to S. aureus infection in skeleton in an aged host may be largely attributable to the declined induction of CXCR9/10 in monocytes.


Subject(s)
Chemokine CXCL10 , Chemokine CXCL9 , Disease Models, Animal , Immunity, Innate , Monocytes , Osteomyelitis , Staphylococcal Infections , Staphylococcus aureus , Animals , Osteomyelitis/microbiology , Osteomyelitis/immunology , Osteomyelitis/metabolism , Osteomyelitis/pathology , Monocytes/immunology , Monocytes/metabolism , Chemokine CXCL9/metabolism , Chemokine CXCL9/genetics , Staphylococcus aureus/immunology , Mice , Chemokine CXCL10/metabolism , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Staphylococcal Infections/metabolism , Mice, Inbred C57BL , Receptors, CXCR3/metabolism , Receptors, CXCR3/genetics , Aging/immunology , Neutrophils/immunology , Neutrophils/metabolism , Macrophages/immunology , Macrophages/metabolism
10.
Sci Rep ; 14(1): 16364, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39013959

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is a hepatocyte inflammation based on hepatocellular steatosis, yet there is no effective drug treatment. Atherosclerosis (AS) is caused by lipid deposition in the endothelium, which can lead to various cardiovascular diseases. NASH and AS share common risk factors, and NASH can also elevate the risk of AS, causing a higher morbidity and mortality rate for atherosclerotic heart disease. Therefore, timely detection and diagnosis of NASH and AS are particularly important. In this study, differential gene expression analysis and weighted gene co-expression network analysis were performed on the AS (GSE100927) and NASH (GSE89632) datasets to obtain common crosstalk genes, respectively. Then, candidate Hub genes were screened using four topological algorithms and externally validated in the GSE43292 and GSE63067 datasets to obtain Hub genes. Furthermore, immune infiltration analysis and gene set variation analysis were performed on the Hub genes to explore the underlying mechanisms. The DGIbd database was used to screen candidate drugs for AS and NASH. Finally, a NASH model was constructed using free fatty acid-induced human L02 cells, an AS model was constructed using lipopolysaccharide-induced HUVECs, and a co-morbidity model was constructed using L02 cells and HUVECs to verify Hub gene expression. The result showed that a total of 113 genes common to both AS and NASH were identified as crosstalk genes, and enrichment analysis indicated that these genes were mainly involved in the regulation of immune and metabolism-related pathways. 28 candidate Hub genes were screened according to four topological algorithms, and CXCL9, IL2RB, and SPP1 were identified as Hub genes after in vitro experiments and external dataset validation. The ROC curves and SVM modeling demonstrated the good diagnostic efficacy of these three Hub genes. In addition, the Hub genes are strongly associated with immune cell infiltration, especially macrophages and γ-δ T cell infiltration. Finally, five potential therapeutic drugs were identified. has-miR-185 and hsa-miR-335 were closely related to AS and NASH. This study demonstrates that CXCL9, IL2RB, and SPP1 may serve as potential biomarkers for the diagnosis of the co-morbidity patterns of AS and NASH and as potential targets for drug therapy.


Subject(s)
Atherosclerosis , Biomarkers , Chemokine CXCL9 , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/diagnosis , Biomarkers/metabolism , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Gene Regulatory Networks , Comorbidity , Human Umbilical Vein Endothelial Cells/metabolism , Gene Expression Profiling
11.
J Obstet Gynaecol ; 44(1): 2373951, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38963237

ABSTRACT

BACKGROUND: The expression and function of coexpression genes of M1 macrophage in cervical cancer have not been identified. And the CXCL9-expressing tumour-associated macrophage has been poorly reported in cervical cancer. METHODS: To clarify the regulatory gene network of M1 macrophage in cervical cancer, we downloaded gene expression profiles of cervical cancer patients in TCGA database to identify M1 macrophage coexpression genes. Then we constructed the protein-protein interaction networks by STRING database and performed functional enrichment analysis to investigate the biological effects of the coexpression genes. Next, we used multiple bioinformatics databases and experiments to overall investigate coexpression gene CXCL9, including western blot assay and immunohistochemistry assay, GeneMANIA, Kaplan-Meier Plotter, Xenashiny, TISCH2, ACLBI, HPA, TISIDB, GSCA and cBioPortal databases. RESULTS: There were 77 positive coexpression genes and 5 negative coexpression genes in M1 macrophage. The coexpression genes in M1 macrophage participated in the production and function of chemokines and chemokine receptors. Especially, CXCL9 was positively correlated with M1 macrophage infiltration levels in cervical cancer. CXCL9 expression would significantly decrease and high CXCL9 levels were linked to good prognosis in the cervical cancer tumour patients, it manifestly expressed in blood immune cells, and was positively related to immune checkpoints. CXCL9 amplification was the most common type of mutation. The CXCL9 gene interaction network could regulate immune-related signalling pathways, and CXCL9 amplification was the most common mutation type in cervical cancer. Meanwhile, CXCL9 may had clinical significance for the drug response in cervical cancer, possibly mediating resistance to chemotherapy and targeted drug therapy. CONCLUSION: Our findings may provide new insight into the M1 macrophage coexpression gene network and molecular mechanisms in cervical cancer, and indicated that M1 macrophage association gene CXCL9 may serve as a good prognostic gene and a potential therapeutic target for cervical cancer therapies.


Cervical cancer is a common gynaecological malignancy, investigating the precise gene expression regulation of M1 macrophage is crucial for understanding the changes in the immune microenvironment of cervical cancer. In our study, a total of 82 coexpression genes with M1 macrophages were identified, and these genes were involved in the production and biological processes of chemokines and chemokine receptors. Especially, the chemokine CXCL9 was positively correlated with M1 macrophage infiltration levels in cervical cancer. CXCL9 as a protective factor, it manifestly expressed in blood immune cells, and was positively related to immune checkpoints. CXCL9 amplification was the most common type of mutation. And CXCL9 expression could have an effect on the sensitivity of some chemicals or targeted drugs against cervical cancer. These findings may provide new insight into the M1 macrophage coexpression gene network and molecular mechanisms, and shed light on the role of CXCL9 in cervical cancer.


Subject(s)
Chemokine CXCL9 , Uterine Cervical Neoplasms , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Humans , Female , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Gene Expression Regulation, Neoplastic , Macrophages/metabolism , Prognosis , Gene Regulatory Networks , Protein Interaction Maps/genetics , Computational Biology , Tumor-Associated Macrophages/metabolism , Gene Expression Profiling , Databases, Genetic
12.
FASEB J ; 38(13): e23745, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38923065

ABSTRACT

Idiopathic granulomatous mastitis (IGM), a recurrent inflammation disease of the non-lactating breast, has had an increasing clinical morbidity rate in recent years, and its complicated symptoms and unclear etiology make it challenging to treat. This rare benign inflammatory breast disease, centered on the lobules, represents the most challenging type of non-puerperal mastitis (NPM), also known as non-lactating mastitis. In this study, patients diagnosed with IGM (M, n = 23) were recruited as cases, and patients with benign control breast disease (C, n = 17) were enrolled as controls. Cytokine microarray detection measured and analyzed the differentially expressed cytokine factors between IGM and control patients. Then, we verified the mRNA and protein expression levels of the significantly changed cytokine factors using Q-RT-PCR, ELISA, western blot, and IHC experiments. The cytokine factor expression levels significantly changed compared to the control group. We observed a significant increase between IGM and control patients in cytokine factors expression, such as interleukin-1ß (IL-1ß), monokine induced by gamma interferon (MIG), macrophage inflammatory protein (MIP)-1α, MIP-1ß, tumor necrosis factor receptor 2 (TNF RII). Then, we verified the expression of these top five dysregulated factors in both mRNA and protein levels. Our results demonstrated the cytokine map in IGM and indicated that several cytokines, especially chemokines, were associated with and significantly dysregulated in IGM tissues compared to the control group. The chemokine factors involved might be essential in developing and treating IGM. These findings would be helpful for a better understanding of IGM and offer valuable insights for devising novel diagnostic and therapeutic strategies.


Subject(s)
Chemokines , Granulomatous Mastitis , Humans , Female , Granulomatous Mastitis/metabolism , Granulomatous Mastitis/genetics , Adult , Chemokines/metabolism , Chemokines/genetics , Middle Aged , Cytokines/metabolism , Cytokines/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Case-Control Studies , Chemokine CXCL9/metabolism , Chemokine CXCL9/genetics
13.
Sci Rep ; 14(1): 12085, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802459

ABSTRACT

The co-existence of inflammatory bowel disease (IBD) and non-alcoholic steatohepatitis (NASH) has raised interest in identifying shared molecular mechanisms and potential therapeutic targets. However, the relationship between these two diseases remains unclear and effective medical treatments are still lacking. Through the bioinformatics analysis in this study, 116 shared differentially expressed genes (SDEGs) were identified between IBD and NASH datasets. GO and KEGG pathway analyses revealed significant involvement of SDEGs in apoptotic processes, cell death, defense response, cytokine and chemokine activity, and signaling pathways. Furthermore, weighted gene co-expression network analysis (WGCNA) identified five shared signature genes associated specifically with IBD and NASH, they were CXCL9, GIMAP2, ADAMTS5, GRAP, and PRF1. These five genes represented potential diagnostic biomarkers for distinguishing patients with diseases from healthy individuals by using two classifier algorithms and were positively related to autophagy, ferroptosis, angiogenesis, and immune checkpoint factors in the two diseases. Additionally, single-cell analysis of IBD and NASH samples highlighted the expression of regulatory genes in various immune cell subtypes, emphasizing their significance in disease pathogenesis. Our work elucidated the shared signature genes and regulatory mechanisms of IBD and NASH, which could provide new potential therapies for patients with IBD and NASH.


Subject(s)
Computational Biology , Gene Regulatory Networks , Inflammatory Bowel Diseases , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Computational Biology/methods , Gene Expression Profiling , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Biomarkers , Transcriptome , Gene Expression Regulation
14.
J Transl Med ; 22(1): 524, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822345

ABSTRACT

BACKGROUND: Olfactory neuroblastoma is a rare malignancy of the anterior skull base typically treated with surgery and adjuvant radiation. Although outcomes are fair for low-grade disease, patients with high-grade, recurrent, or metastatic disease oftentimes respond poorly to standard treatment methods. We hypothesized that an in-depth evaluation of the olfactory neuroblastoma tumor immune microenvironment would identify mechanisms of immune evasion in high-grade olfactory neuroblastoma as well as rational targetable mechanisms for future translational immunotherapeutic approaches. METHODS: Multispectral immunofluorescence and RNAScope evaluation of the tumor immune microenvironment was performed on forty-seven clinically annotated olfactory neuroblastoma samples. A retrospective chart review was performed and clinical correlations assessed. RESULTS: A significant T cell infiltration was noted in olfactory neuroblastoma samples with a stromal predilection, presence of myeloid-derived suppressor cells, and sparse natural killer cells. A striking decrease was observed in MHC-I expression in high-grade olfactory neuroblastoma compared to low-grade disease, representing a mechanism of immune evasion in high-grade disease. Mechanistically, the immune effector stromal predilection appears driven by low tumor cell MHC class II (HLA-DR), CXCL9, and CXCL10 expression as those tumors with increased tumor cell expression of each of these mediators correlated with significant increases in T cell infiltration. CONCLUSION: These data suggest that immunotherapeutic strategies that augment tumor cell expression of MHC class II, CXCL9, and CXCL10 may improve parenchymal trafficking of immune effector cells in olfactory neuroblastoma and augment immunotherapeutic responses.


Subject(s)
Chemokine CXCL10 , Chemokine CXCL9 , Esthesioneuroblastoma, Olfactory , HLA-DR Antigens , Immunotherapy , Tumor Microenvironment , Humans , Esthesioneuroblastoma, Olfactory/therapy , Esthesioneuroblastoma, Olfactory/pathology , Esthesioneuroblastoma, Olfactory/immunology , Chemokine CXCL10/metabolism , Immunotherapy/methods , Female , Male , Middle Aged , Chemokine CXCL9/metabolism , Tumor Microenvironment/immunology , HLA-DR Antigens/metabolism , Aged , Nose Neoplasms/therapy , Nose Neoplasms/pathology , Nose Neoplasms/immunology , Adult , Gene Expression Regulation, Neoplastic
15.
Cytokine ; 179: 156618, 2024 07.
Article in English | MEDLINE | ID: mdl-38663252

ABSTRACT

BACKGROUND: Pleural biomarkers represent potential diagnostic tools for tuberculous pleural effusion (TPE) due to their advantages of low cost, short turnaround time, and less invasiveness. This study evaluated the diagnostic accuracy of two CXCR3 ligands, C-X-C motif chemokine ligand 9 (CXCL9) and CXCL11, for TPE. In addition, we investigated the cellular origins and biological roles of CXCL9 and CXCL11 in the development of TPE. METHODS: This double-blind study prospectively enrolled patients with undiagnosed pleural effusion from two centers (Hohhot and Changshu) in China. Pleural fluid on admission was obtained and levels of CXCL9 and CXCL11 were measured by an enzyme-linked immunosorbent assay (ELISA). The receiver operating characteristic (ROC) curve and the decision curve analysis (DCA) were used to evaluate their diagnostic accuracy and net benefit, respectively. THP-1 cell-derived macrophages were treated with Bacillus Calmette-Guérin (BCG), and quantitative real-time PCR (qRT-PCR) and ELISA were used to determine the mRNA and protein levels of CXCL9 and CXCL11. The chemoattractant activities of CXCL9 and CXCL11 for T helper (Th) cells were analyzed by a transwell assay. RESULTS: One hundred and fifty-three (20 TPEs and 133 non-TPEs) patients were enrolled in the Hohhot Center, and 58 (13 TPEs and 45 non-TPEs) were enrolled in the Changshu Center. In both centers, we observed increased CXCL9 and CXCL11 in TPE patients. The areas under the ROC curves (AUCs) of pleural CXCL9 and CXCL11 in the Hohhot Center were 0.70 (95 % CI: 0.55-0.85) and 0.68 (95 % CI: 0.52-0.84), respectively. In the Changshu Center, the AUCs of CXCL9 and CXCL11 were 0.96 (95 % CI: 0.92-1.00) and 0.97 (95 % CI: 0.94-1.00), respectively. The AUCs of CXCL9 and CXCL11 decreased with the advancement of age. The decision curves of CXCL9 and CXCL11 showed net benefits in both centers. CXCL9 and CXCL11 were upregulated in BCG-treated macrophages. Pleural fluid from TPE and conditioned medium from BCG-treated macrophages were chemotactic for Th cells. Anti-CXCL9 or CXCL11 neutralizing antibodies could partly block the chemotactic activity. CONCLUSIONS: Pleural CXCL9 and CXCL11 are potential diagnostic markers for TPE, but their diagnostic accuracy is compromised in elderly patients. CXCL9 and CXCL11 can promote the migration of peripheral Th cells, thus representing a therapeutic target for the treatment of TPE.


Subject(s)
Chemokine CXCL11 , Chemokine CXCL9 , Pleural Effusion , Receptors, CXCR3 , Tuberculosis, Pleural , Humans , Chemokine CXCL9/metabolism , Chemokine CXCL11/metabolism , Male , Female , Middle Aged , Pleural Effusion/metabolism , Pleural Effusion/diagnosis , Receptors, CXCR3/metabolism , Tuberculosis, Pleural/diagnosis , Tuberculosis, Pleural/metabolism , Adult , Ligands , Double-Blind Method , THP-1 Cells , Biomarkers/metabolism , Macrophages/metabolism , Prospective Studies , Aged , ROC Curve
16.
Cancer Sci ; 115(7): 2196-2208, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38655660

ABSTRACT

Although microwave ablation (MWA) is an important curative therapy in colorectal cancer liver metastasis, recurrence still occurs clinically. Our previous studies have shown that the expression of programmed cell death 1 ligand 1 (PD-L1) is upregulated following MWA, suggesting that MWA combined with anti-PD-L1 treatment can serve as a promising clinical therapeutic strategy against cancer. Using MWA-treated preclinical mice models, MWA combined with αPD-L1 treatment decreased tumor growth and prolonged overall survival (OS). Furthermore, through flow cytometry and single-cell RNA sequencing analysis, we determined that the MWA plus αPD-L1 therapy significantly suppressed CD8+ T cell exhaustion and enhanced their effector function. A significant increase in γ-interferon (IFN-γ) stimulated transcription factors, specifically Irf8, was observed. This enhancement facilitated the polarization of tumor-associated macrophages (TAM1s and TAM2s) through the nuclear factor-κB/JAK-STAT1 signaling pathway. Furthermore, the combination therapy stimulated the production of CXC motif chemokine ligand (CXCL9) by TAM1s and tumor cells, potentially increasing the chemotaxis of CD8 T cells and Th1 cells. Knocking out Cxcl9 in MC38 tumor cells or using CXCL9 blockade enhanced tumor growth of untreated tumors and shortened OS. Taken together, our study showed that blocking the IFN-γ-Cxcl9-CD8+ T axis promoted tumor progression and discovered a potential involvement of IRF8-regulated TAMs in preventing T cell exhaustion. Collectively, we identified that the combination of MWA with anti-PD-L1 treatment holds promise as a therapeutic strategy to rejuvenate the immune response against tumors. This merits further exploration in clinical studies.


Subject(s)
B7-H1 Antigen , CD8-Positive T-Lymphocytes , Chemokine CXCL9 , Immune Checkpoint Inhibitors , Microwaves , Animals , Mice , Chemokine CXCL9/metabolism , Chemokine CXCL9/genetics , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Microwaves/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , Combined Modality Therapy , Mice, Inbred C57BL , Humans , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Signal Transduction , Female , Tumor Microenvironment/immunology , Interferon-gamma/metabolism , STAT1 Transcription Factor/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/therapy
17.
Sci Rep ; 14(1): 8196, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589444

ABSTRACT

In atherosclerotic lesions, monocyte-derived macrophages are major source of interferon gamma (IFN-γ), a pleotropic cytokine known to regulate the expression of numerous genes, including the antiviral gene RSAD2. While RSAD2 was reported to be expressed in endothelial cells of human carotid lesions, its significance for the development of atherosclerosis remains utterly unknown. Here, we harnessed publicly available human carotid atherosclerotic data to explore RSAD2 in lesions and employed siRNA-mediated gene-knockdown to investigate its function in IFN-γ-stimulated human aortic smooth muscle cells (hAoSMCs). Silencing RSAD2 in IFN-γ-stimulated hAoSMCs resulted in reduced expression and secretion of key CXCR3-chemokines, CXCL9, CXCL10, and CXCL11. Conditioned medium from RSAD2-deficient hAoSMCs exhibited diminished monocyte attraction in vitro compared to conditioned medium from control cells. Furthermore, RSAD2 transcript was elevated in carotid lesions where it was expressed by several different cell types, including endothelial cells, macrophages and smooth muscle cells. Interestingly, RSAD2 displayed significant correlations with CXCL10 (r = 0.45, p = 0.010) and CXCL11 (r = 0.53, p = 0.002) in human carotid lesions. Combining our findings, we uncover a novel role for RSAD2 in hAoSMCs, which could potentially contribute to monocyte recruitment in the context of atherosclerosis.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/genetics , Interferons , Endothelial Cells/metabolism , Culture Media, Conditioned/pharmacology , Chemokines/genetics , Chemokines/metabolism , Chemokine CXCL11/genetics , Chemokine CXCL11/metabolism , Chemokine CXCL9/metabolism , Interferon-gamma/pharmacology , Interferon-gamma/metabolism , Atherosclerosis/genetics , Myocytes, Smooth Muscle/metabolism , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism , Viperin Protein
18.
Front Immunol ; 15: 1378591, 2024.
Article in English | MEDLINE | ID: mdl-38686377

ABSTRACT

Introduction: Pulmonary diseases represent a significant burden to patients and the healthcare system and are one of the leading causes of mortality worldwide. Particularly, the COVID-19 pandemic has had a profound global impact, affecting public health, economies, and daily life. While the peak of the crisis has subsided, the global number of reported COVID-19 cases remains significantly high, according to medical agencies around the world. Furthermore, despite the success of vaccines in reducing the number of deaths caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there remains a gap in the treatment of the disease, especially in addressing uncontrolled inflammation. The massive recruitment of leukocytes to lung tissue and alveoli is a hallmark factor in COVID-19, being essential for effectively responding to the pulmonary insult but also linked to inflammation and lung damage. In this context, mice models are a crucial tool, offering valuable insights into both the pathogenesis of the disease and potential therapeutic approaches. Methods: Here, we investigated the anti-inflammatory effect of the glycosaminoglycan (GAG)-binding chemokine fragment CXCL9(74-103), a molecule that potentially decreases neutrophil transmigration by competing with chemokines for GAG-binding sites, in two models of pneumonia caused by coronavirus infection. Results: In a murine model of betacoronavirus MHV-3 infection, the treatment with CXCL9(74-103) decreased the accumulation of total leukocytes, mainly neutrophils, to the alveolar space and improved several parameters of lung dysfunction 3 days after infection. Additionally, this treatment also reduced the lung damage. In the SARS-CoV-2 model in K18-hACE2-mice, CXCL9(74-103) significantly improved the clinical manifestations of the disease, reducing pulmonary damage and decreasing viral titers in the lungs. Discussion: These findings indicate that CXCL9(74-103) resulted in highly favorable outcomes in controlling pneumonia caused by coronavirus, as it effectively diminishes the clinical consequences of the infections and reduces both local and systemic inflammation.


Subject(s)
COVID-19 , Chemokine CXCL9 , Disease Models, Animal , Glycosaminoglycans , Lung , SARS-CoV-2 , Animals , Mice , COVID-19/immunology , SARS-CoV-2/immunology , Glycosaminoglycans/metabolism , Chemokine CXCL9/metabolism , Lung/pathology , Lung/virology , Lung/immunology , Lung/metabolism , Inflammation/immunology , Humans , COVID-19 Drug Treatment , Mice, Inbred C57BL , Female
19.
Biomed Pharmacother ; 173: 116427, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484558

ABSTRACT

Uncertainty exists regarding the mechanisms by which hypoxia-inducible factors (HIFs) control CD8+T-cell migration into tumor microenvironments. Here, we found that HIF-1α knockdown or overexpression resulted in increased or decreased CXCL9, -10, and -11 expression in vitro, respectively. Gene Set Variation Analysis revealed that elevated HIF-1α levels correlated with a poor prognosis, severe pathological stage, and an absence of CD8+ T cells in the tumor microenvironment in colorectal cancer (CRC) patients. HIF-1α was inversely associated with pathways beneficial to anti-tumor immunotherapy and cytokine/chemokine function. In vivo, inhibiting HIF-1α or its upstream regulator BIRC2 significantly suppressed tumor growth and promoted CD8+ T-cell infiltration. CXCR3 neutralizing antibodies reversed these effects, implicating the involvement of CXCL9, -10, and -11/CXCR3 axis. The presence of HIF-1α weakened the upregulation of CXCL9, -10, and -11 by bleomycin and doxorubicin. Combining HIF-1α inhibition with bleomycin promoted CD8+ T-cell infiltration and tumor suppression in vivo. Moreover, doxorubicin could upregulate CXCL9, -10 and -11 by suppressing HIF-1α. Our findings highlight the potential of HIF-1α inhibition to improve CRC microenvironments and increase chemotherapy sensitivity.


Subject(s)
Colorectal Neoplasms , Drug Resistance, Neoplasm , Hypoxia-Inducible Factor 1, alpha Subunit , Humans , Bleomycin , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Cytokines , Doxorubicin/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Tumor Microenvironment
20.
J Allergy Clin Immunol ; 153(6): 1736-1742, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38395084

ABSTRACT

BACKGROUND: Inborn errors of immunity offer important insights into mucosal immunity. In autoimmune polyendocrine syndrome type-1 (APS-1), chronic mucocutaneous candidiasis has been ascribed to neutralizing IL-17 autoantibodies. Recent evidence implicates excessive T-cell IFN-γ secretion and ensuing epithelial barrier disruption in predisposition to candidiasis, but these results remain to be replicated. Whether IL-17 paucity, increased type I inflammation, or their combination underlies susceptibility to chronic mucocutaneus candidiasis in APS-1 is debated. OBJECTIVE: Our aim was to characterize the immunologic features in the cervicovaginal mucosa of females with APS-1. METHODS: Vaginal fluid was collected with a flocked swab from 17 females with APS-1 and 18 controls, and cytokine composition was analyzed using Luminex (Luminex Corporation, Austin, Tex). Cervical cell samples were obtained with a cervix brush from 6 patients and 6 healthy controls and subjected to transcriptome analysis. RESULTS: The vaginal fluid samples from patients with APS-1 had IFN-γ concentrations comparable to those of the controls (2.6 vs 2.4 pg/mL) but high concentrations of the TH1 chemokines CXCL9 and CXCL10 (1094 vs 110 pg/mL [P < .001] and 4033 vs 273 pg/mL [P = .001], respectively), whereas the IL-17 levels in the samples from the 2 groups were comparable (28 vs 8.8 pg/mL). RNA sequencing of the cervical cells revealed upregulation of pathways related to mucosal inflammation and cell death in the patients with APS-1. CONCLUSION: Excessive TH1 cell response appears to underlie disruption of the mucosal immune responses in the genital tract of patients with APS-1 and may contribute to susceptibility to candidiasis in the genital tract as well.


Subject(s)
Cervix Uteri , Polyendocrinopathies, Autoimmune , Vagina , Humans , Female , Vagina/immunology , Polyendocrinopathies, Autoimmune/immunology , Adult , Cervix Uteri/immunology , Cervix Uteri/pathology , Middle Aged , Cytokines/metabolism , Cytokines/immunology , Inflammation/immunology , Interleukin-17/immunology , Interleukin-17/metabolism , Chemokine CXCL9/immunology , Chemokine CXCL9/metabolism , Young Adult , Interferon-gamma/immunology , Interferon-gamma/metabolism , Candidiasis, Chronic Mucocutaneous/immunology , Candidiasis, Chronic Mucocutaneous/genetics , Mucous Membrane/immunology
SELECTION OF CITATIONS
SEARCH DETAIL