Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 384
Filter
1.
Nat Commun ; 14(1): 7940, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040762

ABSTRACT

The C-C motif chemokine receptor 8 (CCR8) is a class A G-protein coupled receptor that has emerged as a promising therapeutic target in cancer. Targeting CCR8 with an antibody has appeared to be an attractive therapeutic approach, but the molecular basis for chemokine-mediated activation and antibody-mediated inhibition of CCR8 are not fully elucidated. Here, we obtain an antagonist antibody against human CCR8 and determine structures of CCR8 in complex with either the antibody or the endogenous agonist ligand CCL1. Our studies reveal characteristic antibody features allowing recognition of the CCR8 extracellular loops and CCL1-CCR8 interaction modes that are distinct from other chemokine receptor - ligand pairs. Informed by these structural insights, we demonstrate that CCL1 follows a two-step, two-site binding sequence to CCR8 and that antibody-mediated inhibition of CCL1 signaling can occur by preventing the second binding event. Together, our results provide a detailed structural and mechanistic framework of CCR8 activation and inhibition that expands our molecular understanding of chemokine - receptor interactions and offers insight into the development of therapeutic antibodies targeting chemokine GPCRs.


Subject(s)
Chemokines, CC , Receptors, Chemokine , Humans , Chemokines, CC/metabolism , Chemokines, CC/pharmacology , Receptors, CCR8/genetics , Ligands , Chemokine CCL1/metabolism , Receptors, Chemokine/genetics , Antibodies
2.
Radiat Res ; 200(3): 281-288, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37450610

ABSTRACT

Connexin26 (Cx26) plays an important role in ionizing radiation-induced damage, and CC chemokine ligand 27 (CCL27) regulates the skin immune response. However, the relationship between Cx26 and CCL27 in radiation-induced skin damage is unclear. After X-ray irradiation, clonogenic survival and micronucleus formation were assessed in immortalized human keratinocytes (HaCaT). Proteins in the mitogen activated protein kinase (MAPK) signaling pathway and CCL27-related proteins were detected by immunoblotting. HaCaTCx26-/- cells were constructed to verify the effects of Cx26 on CCL27 secretion. A mouse model was established to examine the expression of CCL27 and skin inflammation in vivo. The degree of skin injury induced by 6 MV of X rays was closely related to CCL27. The phosphorylation of ERK, p38 and NF-κB was significantly increased in irradiated cells. The secretion of CCL27 was significantly decreased in HaCaT wild-type cells relative to HaCaTCx26-/- cells. Whereas cell survival fractions decreased, and the micronuclei formation rate increased as a function of increasing X-ray dose in HaCaT cells, the opposite trend occurred in HaCaTCx26-/- cells. Our findings show that Cx26 likely plays a role in the activation of the MAPK and NF-κB/COX-2 signaling pathways and regulates the secretion of CCL27 in keratinocytes after X-ray radiation-induced skin damage.


Subject(s)
Chemokine CCL27 , Radiodermatitis , Animals , Humans , Mice , Chemokine CCL27/metabolism , Chemokine CCL27/pharmacology , Chemokines/metabolism , Chemokines, CC/metabolism , Chemokines, CC/pharmacology , Keratinocytes/metabolism , Ligands , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/pharmacology , NF-kappa B/metabolism , Radiodermatitis/etiology , Signal Transduction
3.
Cancer Immunol Immunother ; 72(4): 903-916, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36161509

ABSTRACT

Tumor-associated macrophages (TAMs) play an important role in tumor growth and metastasis. However, the involvement of TAMs infiltration in pulmonary osteosarcoma (OS) metastasis remains poorly understood. Therefore, the effect of OS cells on macrophages migration was investigated by in vivo and in vitro experiments to evaluate the infiltration and mechanism of TAMs in pulmonary OS metastases. The results showed that the zinc finger protein ZIM3 was upregulated in OS cells than in osteoblasts and activated the expression of CCL25, which subsequently promoted the migration of M2 macrophages. CCL25 or ZIM3 silencing in OS cells inhibited the infiltration of M2 macrophages and the formation of pulmonary metastatic nodules in a mouse model of pulmonary OS metastasis and prolonged the survival of the mice. Furthermore, bioinformatics analyses revealed that CCL25 and ZIM3 expressions are negatively correlated with the prognosis of OS patients. In conclusion, this study found that a large number of M2 TAMs were recruited into pulmonary metastatic nodules of OS through the activation of the ZIM3-CCL25 axis in OS cells, thereby facilitating OS metastasis. Therefore, the suppression of ZIM3-CCL25-induced recruitment of M2 TAMs to the metastatic sites might be considered as a therapeutic approach to inhibit the growth of pulmonary OS metastases.


Subject(s)
Bone Neoplasms , Lung Neoplasms , Osteosarcoma , Animals , Mice , Macrophages/metabolism , Cell Line, Tumor , Prognosis , Lung Neoplasms/drug therapy , Osteosarcoma/genetics , Osteosarcoma/drug therapy , Bone Neoplasms/genetics , Tumor Microenvironment , Chemokines, CC/metabolism , Chemokines, CC/pharmacology , Chemokines, CC/therapeutic use
4.
J Nanobiotechnology ; 19(1): 83, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33766057

ABSTRACT

BACKGROUND: Chemokine therapy with C-C motif chemokine ligand 25 (CCL25) is currently under investigation as a promising approach to treat articular cartilage degeneration. We developed a delayed release mechanism based on Poly (lactic-co-glycolic acid) (PLGA) microparticle encapsulation for intraarticular injections to ensure prolonged release of therapeutic dosages. However, CCL25 plays an important role in immune cell regulation and inflammatory processes like T-cell homing and chronic tissue inflammation. Therefore, the potential of CCL25 to activate immune cells must be assessed more thoroughly before further translation into clinical practice. The aim of this study was to evaluate the reaction of different immune cell subsets upon stimulation with different dosages of CCL25 in comparison to CCL25 released from PLGA particles. RESULTS: Immune cell subsets were treated for up to 5 days with CCL25 and subsequently analyzed regarding their cytokine secretion, surface marker expression, polarization, and migratory behavior. The CCL25 receptor C-C chemokine receptor type 9 (CCR9) was expressed to a different extent on all immune cell subsets. Direct stimulation of peripheral blood mononuclear cells (PBMCs) with high dosages of CCL25 resulted in strong increases in the secretion of monocyte chemoattractant protein-1 (MCP-1), interleukin-8 (IL-8), interleukin-1ß (IL-1ß), tumor-necrosis-factor-α (TNF-α) and interferon-γ (IFN-γ), upregulation of human leukocyte antigen-DR (HLA-DR) on monocytes and CD4+ T-cells, as well as immune cell migration along a CCL25 gradient. Immune cell stimulation with the supernatants from CCL25 loaded PLGA microparticles caused moderate increases in MCP-1, IL-8, and IL-1ß levels, but no changes in surface marker expression or migration. Both CCL25-loaded and unloaded PLGA microparticles induced an increase in IL-8 and MCP-1 release in PBMCs and macrophages, and a slight shift of the surface marker profile towards the direction of M2-macrophage polarization. CONCLUSIONS: While supernatants of CCL25 loaded PLGA microparticles did not provoke strong inflammatory reactions, direct stimulation with CCL25 shows the critical potential to induce global inflammatory activation of human leukocytes at certain concentrations. These findings underline the importance of a safe and reliable release system in a therapeutic setup. Failure of the delivery system could result in strong local and systemic inflammatory reactions that could potentially negate the benefits of chemokine therapy.


Subject(s)
Chemokines, CC/pharmacology , Chemokines, CC/therapeutic use , Delayed-Action Preparations/pharmacology , Delayed-Action Preparations/therapeutic use , Inflammation/drug therapy , Chemokine CCL2/metabolism , Chemokines/pharmacology , Chemokines/therapeutic use , Humans , Interferon-gamma , Interleukin-1beta/metabolism , Interleukin-8/metabolism , Leukocytes, Mononuclear , Ligands , Macrophages/metabolism , Monocytes , Polylactic Acid-Polyglycolic Acid Copolymer , Receptors, CCR/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
Article in English | MEDLINE | ID: mdl-32423961

ABSTRACT

Candida albicans is a commensal organism that causes life-threatening or life-altering opportunistic infections. Treatment of Candida infections is limited by the paucity of antifungal drug classes. Naturally occurring antimicrobial peptides are promising agents for drug development. CCL28 is a CC chemokine that is abundant in saliva and has in vitro antimicrobial activity. In this study, we examine the in vivo Candida killing capacity of CCL28 in oropharyngeal candidiasis as well as the spectrum and mechanism of anti-Candida activity. In the mouse model of oropharyngeal candidiasis, application of wild-type CCL28 reduces oral fungal burden in severely immunodeficient mice without causing excessive inflammation or altering tissue neutrophil recruitment. CCL28 is effective against multiple clinical strains of C. albicans Polyamine protein transporters are not required for CCL28 anti-Candida activity. Both structured and unstructured CCL28 proteins show rapid and sustained fungicidal activity that is superior to that of clinical antifungal agents. Application of wild-type CCL28 to C. albicans results in membrane disruption as measured by solute movement, enzyme leakage, and induction of negative Gaussian curvature on model membranes. Membrane disruption is reduced in CCL28 lacking the functional C-terminal tail. Our results strongly suggest that CCL28 can exert antifungal activity in part via membrane permeation and has potential for development as an anti-Candida therapeutic agent without inflammatory side effects.


Subject(s)
Antifungal Agents , Candidiasis, Oral , Chemokines, CC/pharmacology , Animals , Antifungal Agents/pharmacology , Candida albicans , Candidiasis, Oral/drug therapy , Chemokines , Mice , Microbial Sensitivity Tests
6.
Cells ; 9(3)2020 03 17.
Article in English | MEDLINE | ID: mdl-32192004

ABSTRACT

Natural killer (NK) cells are among the first innate immune cells to arrive at sites of tissue inflammation and regulate the immune response to infection and tumors by the release of cytokines including interferon (IFN)γ. In vitro exposure to the innate cytokines interleukin 15 (IL-15) and IL-12/IL-18 enhances NK cell IFNγ production which, beyond 16 h of culture, was shown to depend on metabolic switching to glycolysis. NK effector responses are, however, rapid by comparison. Therefore, we sought to evaluate the importance of glycolysis for shorter-term IFNγ production, considering glucose deprivation and hypoxia as adverse tissue inflammation associated conditions. Treatments with IL-15 for 6 and 16 h were equally effective in priming early IFNγ production in human NK cells in response to secondary IL-12/IL-18 stimulation. Short-term priming was not associated with glycolytic switching but induced the release of IFNγ and, additionally, CCL3, CCL4 and CCL5 from both normoxic and hypoxic NK cells in an equally efficient and, unexpectedly, glucose independent manner. We conclude that release of IFNγ and CC chemokines in the early innate immune response is a metabolically autonomous NK effector program.


Subject(s)
Chemokines, CC/pharmacology , Cytokines/metabolism , Glucose/metabolism , Interferon-gamma/metabolism , Killer Cells, Natural/metabolism , Humans , Hypoxia/metabolism , Immunity, Innate/physiology , Inflammation/metabolism , Interferon-gamma/biosynthesis , Killer Cells, Natural/immunology , Signal Transduction/physiology
7.
Sci Adv ; 6(5): eaax4690, 2020 01.
Article in English | MEDLINE | ID: mdl-32064335

ABSTRACT

CCR9+ T cells have an increased potential to be activated and therefore may mediate strong antitumor responses. Here, we found, however, that CCL25, the only chemokine for CCR9+ cells, is not expressed in human or murine triple-negative breast cancers (TNBCs), raising a hypothesis that intratumoral delivery of CCL25 may enhance antitumor immunotherapy in TNBCs. We first determined whether this approach can enhance CD47-targeted immunotherapy using a tumor acidity-responsive nanoparticle delivery system (NP-siCD47/CCL25) to sequentially release CCL25 protein and CD47 small interfering RNA in tumor. NP-siCD47/CCL25 significantly increased infiltration of CCR9+CD8+ T cells and down-regulated CD47 expression in tumor, resulting in inhibition of tumor growth and metastasis through a T cell-dependent immunity. Furthermore, the antitumor effect of NP-siCD47/CCL25 was synergistically enhanced when used in combination with programmed cell death protein-1/programmed death ligand-1 blockades. This study offers a strategy to enhance immunotherapy by promoting CCR9+CD8+ T cell tumor infiltration.


Subject(s)
CD47 Antigen/genetics , Chemokines, CC/pharmacology , RNA, Small Interfering/pharmacology , Receptors, CCR/genetics , Triple Negative Breast Neoplasms/drug therapy , Animals , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Chemokines, CC/antagonists & inhibitors , Chemokines, CC/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunotherapy , Mice , Nanoparticles/chemistry , Neoplasm Metastasis , RNA, Small Interfering/genetics , Receptors, CCR/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology
8.
J Clin Invest ; 129(12): 5381-5399, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31487270

ABSTRACT

Oral squamous cell carcinoma (OSCC) frequently invades the maxillary or mandibular bone, and this bone invasion is closely associated with poor prognosis and survival. Here, we show that CCL28 functions as a negative regulator of OSCC bone invasion. CCL28 inhibited invasion and epithelial-mesenchymal transition (EMT), and its inhibition of EMT was characterized by induced E-cadherin expression and reduced nuclear localization of ß-catenin in OSCC cells with detectable RUNX3 expression levels. CCL28 signaling via CCR10 increased retinoic acid receptor-ß (RARß) expression by reducing the interaction between RARα and HDAC1. In addition, CCL28 reduced RANKL production in OSCC and osteoblastic cells and blocked RANKL-induced osteoclastogenesis in osteoclast precursors. Intraperitoneally administered CCL28 inhibited tumor growth and osteolysis in mouse calvaria and tibia inoculated with OSCC cells. RARß expression was also increased in tumor tissues. In patients with OSCC, low CCL28, CCR10, and RARß expression levels were highly correlated with bone invasion. Patients with OSCC who had higher expression of CCL28, CCR10, or RARß had significantly better overall survival. These findings suggest that CCL28, CCR10, and RARß are useful markers for the prediction and treatment of OSCC bone invasion. Furthermore, CCL28 upregulation in OSCC cells or CCL28 treatment can be a therapeutic strategy for OSCC bone invasion.


Subject(s)
Bone and Bones/pathology , Chemokines, CC/pharmacology , Mouth Neoplasms/pathology , Receptors, Retinoic Acid/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Animals , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Histone Deacetylase 1/physiology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Neoplasm Invasiveness , Osteoclasts/cytology , RANK Ligand/physiology , Receptors, CCR10/physiology , Retinoic Acid Receptor alpha/physiology
9.
Physiol Behav ; 208: 112581, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31220516

ABSTRACT

FAM19A2/TAFA-2, a member of the chemokine CC family, shares 31% sequence identity with MIP-1α, which is known to elevate body temperature and reduce food intake. A single administration of 250 pM of FAM19A2/TAFA-2 to the third ventricle of mice just before the initiation of dark period increased food intake and meal number significantly, but reduced meal size during the dark period. The respiratory exchange rate and energy expenditure were increased significantly during the dark period, while the ambulatory count and vertical activity were not affected. These data suggest that FAM19A2/TAFA-2 participates in the regulation of food intake and metabolic activities.


Subject(s)
Activation, Metabolic/physiology , Chemokines, CC/physiology , Eating/physiology , Activation, Metabolic/drug effects , Animals , Body Temperature/drug effects , Body Temperature/physiology , Chemokines, CC/administration & dosage , Chemokines, CC/pharmacology , Circadian Rhythm , Eating/drug effects , Infusions, Intraventricular , Male , Mice
10.
J Orthop Res ; 37(8): 1723-1729, 2019 08.
Article in English | MEDLINE | ID: mdl-30977553

ABSTRACT

There is evidence that the application of mesenchymal stromal cells (MSCs) counteracts osteoarthritis (OA) progression. However, the prospect of extracting and expanding these cells might be limited. The aim of this study was to investigate whether hyaluronic acid (HA) supplemented with MSC-recruiting chemokine C-C motif ligand 25 (CCL25) can influence the natural course of spontaneous OA in the guinea pig. CCL25 concentration in synovial fluid (SF) was quantified with enzyme-linked immunosorbent assay. Boyden chamber cell migration assay was used to test CCL25-mediated migration of guinea pig MSC. Forty-nine 11-month-old male guinea pigs were divided into seven groups. The main treatments consisted of five intra-articular injections of HA in pure form and in combination with three doses of CCL25 (63, 693, and 6,993 pg) given at a weekly interval. The severity of cartilage damage was assessed by using a modified Mankin score. The measured average physiological concentration of CCL25 in SF of animals is 85 ± 39 pg/ml. MSC showed a 3.2-fold increase in cell migration at 1,000 nM CCL25 in vitro demonstrating the biological migratory activity of CCL25 on these cells. In vivo, treatment with HA alone did not reduce OA progression. Similarly, OA scores were not found significantly reduced after treatment with 63 pg CCL25 + HA. However, when compared to pure HA, treatment with 693 pg CCL25 + HA and 6,993 pg CCL25 + HA significantly reduced the OA score from 10.1 to 7.4 (-28%) and 8.4 (-20%), respectively. These data suggest that intra-articular injections of HA supplemented with CCL25 attenuates OA. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1723-1729, 2019.


Subject(s)
Arthritis, Experimental/drug therapy , Chemokines, CC/therapeutic use , Hyaluronic Acid/therapeutic use , Osteoarthritis, Knee/drug therapy , Viscosupplements/therapeutic use , Animals , Cartilage, Articular/drug effects , Cell Movement/drug effects , Chemokines, CC/metabolism , Chemokines, CC/pharmacology , Drug Evaluation, Preclinical , Guinea Pigs , Hyaluronic Acid/pharmacology , Injections, Intra-Articular , Male , Mesenchymal Stem Cells/drug effects , Synovial Fluid/metabolism , Viscosupplements/pharmacology
11.
Stem Cells ; 37(3): 407-416, 2019 03.
Article in English | MEDLINE | ID: mdl-30485583

ABSTRACT

Understanding the mechanisms regulating recruitment of human skeletal (stromal or mesenchymal) stem cells (hMSC) to sites of tissue injury is a prerequisite for their successful use in cell replacement therapy. Chemokine-like protein TAFA2 is a recently discovered neurokine involved in neuronal cell migration and neurite outgrowth. Here, we demonstrate a possible role for TAFA2 in regulating recruitment of hMSC to bone fracture sites. TAFA2 increased the in vitro trans-well migration and motility of hMSC in a dose-dependent fashion and induced significant morphological changes including formation of lamellipodia as revealed by high-content-image analysis at single-cell level. Mechanistic studies revealed that TAFA2 enhanced hMSC migration through activation of the Rac1-p38 pathway. In addition, TAFA2 enhanced hMSC proliferation, whereas differentiation of hMSC toward osteoblast and adipocyte lineages was not altered. in vivo studies demonstrated transient upregulation of TAFA2 gene expression during the inflammatory phase of fracture healing in a closed femoral fracture model in mice, and a similar pattern was observed in serum levels of TAFA2 in patients after hip fracture. Finally, interleukin-1ß was found as an upstream regulator of TAFA2 expression. Our findings demonstrate that TAFA2 enhances hMSC migration and recruitment and thus is relevant for regenerative medicine applications. Stem Cells 2019;37:407-416.


Subject(s)
Cell Movement/drug effects , Chemokines, CC/pharmacology , MAP Kinase Signaling System/drug effects , Mesenchymal Stem Cells/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , rac1 GTP-Binding Protein/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Chemokines, CC/metabolism , Disease Models, Animal , Hip Fractures/metabolism , Hip Fractures/pathology , Humans , Mesenchymal Stem Cells/pathology , Mice , Neuropeptides/metabolism , Osteoblasts/metabolism , Osteoblasts/pathology
12.
Regen Med ; 13(7): 833-844, 2018 10.
Article in English | MEDLINE | ID: mdl-30284497

ABSTRACT

Due to its chemoattraction potential on mesenchymal stromal cells of the CCL25/CCR9 axis, local application of CCL25 to severely damaged tissues may be a promising approach for regenerative therapies. Analysis of the given data revealed that CCL25/CCR9 signaling has a crucial role in regulation of an adult immune homeostasis. CCR9 expression variations resulted in dysfunctional immune response in colitis, rheumatoid arthritis and endometriosis. Regarding oncology, different neoplastic tissues exploit CCL25-dependent CCR9 signaling for either local proliferation or migration processes. The CCR9 pathway likely can trigger crosstalk between the Akt and NOTCH pathway and thus participate in the regulation of the neoplastic behavior. In conclusion, the designated application-tissue requires precise molecular analysis of possible CCR9 expression due to its proto-oncogenic characteristics.


Subject(s)
Chemokines, CC/pharmacology , Chemotactic Factors/pharmacology , Mesenchymal Stem Cells/cytology , Regenerative Medicine/methods , Cell Proliferation , Chemokines, CC/metabolism , Chemokines, CC/physiology , Humans , Mesenchymal Stem Cell Transplantation , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/pathology , Receptors, CCR/metabolism , Receptors, CCR/physiology , Signal Transduction , Tissue Engineering/methods , Wound Healing
13.
Cancer Biol Ther ; 19(6): 475-483, 2018 06 03.
Article in English | MEDLINE | ID: mdl-29400599

ABSTRACT

Dendritic cell-cytokine-induced killer (DC-CIK) cell therapy has been experimentally implemented for enhancing anti-tumoral immunity in patients with hepatocellular carcinoma (HCC) undergoing postoperative transcatheter arterial chemoembolization (POTACE). We performed a retrospective study to evaluate the clinical efficacies of DC-CIK cell therapy and its correlations with several immune factors of the primary tumors. The overall survival time of HCC patients with HBV infection in the study group (POTACE plus DC-CIK cell therapy) was significantly longer than that of the control group (POTACE alone). The expression level of PD-L1 but not the tumor-infiltrated CD8 and CD4 T cells in the tumor tissues showed significant negative correlations with relapse-free survival (RFS) and overall survival (OS), which was also an independent prognostic factor for the five-years' suvival of patients with HCC receiving POTACE treatment. Furthermore, our study validated that PD-L1 expression was significantly inversely correlated with the survival time of HCC patients receiving POTACE plus DC-CIK cell therapy treatment. More importantly, DC-CIK cell therapy provided the best clinical benefits to HCC patients with the low PD-L1 expression receiving POTACE, which indicate that PD-L1 expression level can serve as a pivotal predictor for the therapeutic efficacy of DC-CIK cell therapy for HCC patients receiving POTACE treatment.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell- and Tissue-Based Therapy/methods , Chemoembolization, Therapeutic/methods , Chemokines, CC/therapeutic use , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/pathology , Chemokines, CC/pharmacology , Female , Humans , Liver Neoplasms/pathology , Male , Middle Aged , Postoperative Period , Prognosis , Retrospective Studies
14.
Acta Biomater ; 69: 290-300, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29408710

ABSTRACT

Chemokines are guiding cues for directional trafficking of mesenchymal stem cells (MSC) upon injury and local chemokine delivery at injury sites is an up-to-date strategy to potentiate and prolong recruitment of MSC. In this study we present the chemokine CCL25, also referred to as thymus-expressed chemokine, to mobilize human MSC along positive but not along negative gradients. We hence proceeded to design a biodegradable and injectable release device for CCL25 on the basis of poly(lactic-co-glycolic acid) (PLGA). The conducted studies had the objective to optimize PLGA microparticle fabrication by varying selected formulation parameters, such as polymer type, microparticle size and interior phase composition. We found that microparticles of DV,50∼75 µm and fabricated using end-capped polymers, BSA as carrier protein and vortex mixing to produce the primary emulsion yielded high chemokine loading and delayed CCL25 release. To determine bioactivity, we investigated CCL25 released during the microparticle erosion phase and showed that deacidification of the release medium was required to induce significant MSC mobilization. The designed PLGA microparticles represent an effective and convenient off-the-shelf delivery tool for the delayed release of CCL25. However, continuative in vivo proof-of-concept studies are required to demonstrate enhanced recruitment of MSC and/or therapeutical effects in response to CCL25 release microparticles. STATEMENT OF SIGNIFICANCE: With the discovery of chemokines, particularly CXCL12, as stimulators of stem cell migration, the development of devices that release CXCL12 has proceeded quickly in the last few years. In this manuscript we introduce CCL25 as chemokine to induce mobilization of human MSC. This study proceeds to demonstrate how selection of key formulation parameters of CCL25 loading into PLGA microparticles exerts considerable influence on CCL25 release. This is important for a broad range of efforts in in situ tissue engineering where the candidate chemokine and the delivery device need to be selected carefully. The use of such a cell-free CCL25 release device may provide a new therapeutic option in regenerative medicine.


Subject(s)
Chemokines, CC , Hematopoietic Stem Cell Mobilization/methods , Mesenchymal Stem Cells/metabolism , Chemokines, CC/chemistry , Chemokines, CC/pharmacokinetics , Chemokines, CC/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Humans , Mesenchymal Stem Cells/cytology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacokinetics , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology
15.
Int J Mol Sci ; 18(7)2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28726743

ABSTRACT

Despite effective treatment for those living with Human Immunodeficiency Virus (HIV), there are still two million new infections each year. Protein-based HIV entry inhibitors, being highly effective and specific, could be used to protect people from initial infection. One of the most promising of these for clinical use is 5P12-RANTES, a variant of the chemokine RANTES/CCL5. The N-terminal amino acid of 5P12-RANTES is glutamine (Gln; called Q0), a residue that is prone to spontaneous cyclization when at the N-terminus of a protein. It is not known how this cyclization affects the potency of the inhibitor or whether cyclization is necessary for the function of the protein, although the N-terminal region of RANTES has been shown to be critical for receptor interactions, with even small changes having a large effect. We have studied the kinetics of cyclization of 5P12-RANTES as well as N-terminal variations of the protein that either produce an identical cyclized terminus (Glu0) or that cannot similarly cyclize (Asn0, Phe0, Ile0, and Leu0). We find that the half life for N-terminal cyclization of Gln is roughly 20 h at pH 7.3 at 37 °C. However, our results show that cyclization is not necessary for the potency of this protein and that several replacement terminal amino acids produce nearly-equally potent HIV inhibitors while remaining CC chemokine receptor 5 (CCR5) antagonists. This work has ramifications for the production of active 5P12-RANTES for use in the clinic, while also opening the possibility of developing other inhibitors by varying the N-terminus of the protein.


Subject(s)
Chemokines, CC/chemistry , Chemokines, CC/pharmacology , HIV Fusion Inhibitors/chemistry , HIV Fusion Inhibitors/pharmacology , Amino Acid Motifs , Animals , CHO Cells , Cell Line , Cricetulus , Cyclization , HIV-1/drug effects , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Molecular Structure , Structure-Activity Relationship , Virus Internalization/drug effects
16.
J Cell Physiol ; 232(11): 2996-3005, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28387445

ABSTRACT

The focus of this study was to determine which chemokine receptors are present on oral fibroblasts and whether these receptors influence proliferation, migration, and/or the release of wound healing mediators. This information may provide insight into the superior wound healing characteristics of the oral mucosa. The gingiva fibroblasts expressed 12 different chemokine receptors (CCR3, CCR4, CCR6, CCR9, CCR10, CXCR1, CXCR2, CXCR4, CXCR5, CXCR7, CX3CR1, and XCR1), as analyzed by flow cytometry. Fourteen corresponding chemokines (CCL5, CCL15, CCL20, CCL22, CCL25, CCL27, CCL28, CXCL1, CXCL8, CXCL11, CXCL12, CXCL13, CX3CL1, and XCL1) were used to study the activation of these receptors on gingiva fibroblasts. Twelve of these fourteen chemokines stimulated gingiva fibroblast migration (all except for CXCL8 and CXCL12). Five of the chemokines stimulated proliferation (CCL5/CCR3, CCL15/CCR3, CCL22/CCR4, CCL28/CCR3/CCR10, and XCL1/XCR1). Furthermore, CCL28/CCR3/CCR10 and CCL22/CCR4 stimulation increased IL-6 secretion and CCL28/CCR3/CCR10 together with CCL27/CCR10 upregulated HGF secretion. Moreover, TIMP-1 secretion was reduced by CCL15/CCR3. In conclusion, this in-vitro study identifies chemokine receptor-ligand pairs which may be used in future targeted wound healing strategies. In particular, we identified the chemokine receptors CCR3 and CCR4, and the mucosa specific chemokine CCL28, as having an predominant role in oral wound healing by increasing human gingiva fibroblast proliferation, migration, and the secretion of IL-6 and HGF and reducing the secretion of TIMP-1.


Subject(s)
Chemokines, CC/pharmacology , Fibroblasts/drug effects , Gingiva/drug effects , Receptors, CCR3/agonists , Receptors, CCR4/agonists , Wound Healing/drug effects , Cell Line, Transformed , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Fibroblasts/metabolism , Fibroblasts/pathology , Gingiva/metabolism , Gingiva/pathology , Hepatocyte Growth Factor/metabolism , Humans , Interleukin-6/metabolism , Ligands , Receptors, CCR3/metabolism , Receptors, CCR4/metabolism , Signal Transduction/drug effects , Tissue Inhibitor of Metalloproteinase-1/metabolism
17.
PLoS One ; 11(6): e0157092, 2016.
Article in English | MEDLINE | ID: mdl-27275606

ABSTRACT

Antimicrobial chemokines (AMCs) are a recently described family of host defense peptides that play an important role in protecting a wide variety of organisms from bacterial infection. Very little is known about the bacterial targets of AMCs or factors that influence bacterial susceptibility to AMCs. In an effort to understand how bacterial pathogens resist killing by AMCs, we screened Yersinia pseudotuberculosis transposon mutants for those with increased binding to the AMCs CCL28 and CCL25. Mutants exhibiting increased binding to AMCs were subjected to AMC killing assays, which revealed their increased sensitivity to chemokine-mediated cell death. The majority of the mutants exhibiting increased binding to AMCs contained transposon insertions in genes related to lipopolysaccharide biosynthesis. A particularly strong effect on susceptibility to AMC mediated killing was observed by disruption of the hldD/waaF/waaC operon, necessary for ADP-L-glycero-D-manno-heptose synthesis and a complete lipopolysaccharide core oligosaccharide. Periodate oxidation of surface carbohydrates also enhanced AMC binding, whereas enzymatic removal of surface proteins significantly reduced binding. These results suggest that the structure of Y. pseudotuberculosis LPS greatly affects the antimicrobial activity of AMCs by shielding a protein ligand on the bacterial cell surface.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Chemokines, CC/pharmacology , Drug Resistance, Bacterial , Lipopolysaccharides , Operon , Yersinia pseudotuberculosis , Humans , Lipopolysaccharides/biosynthesis , Lipopolysaccharides/genetics , Yersinia pseudotuberculosis/enzymology , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/growth & development , Yersinia pseudotuberculosis Infections/genetics , Yersinia pseudotuberculosis Infections/metabolism
18.
Arch Oral Biol ; 66: 77-85, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26921718

ABSTRACT

OBJECTIVE: P. gingivalis is a gram-negative anaerobic bacterium and a major periodontal pathogen. LPS produced by P. gingivalis promotes osteoclast formation. TECK is a CC chemokine whose expression is increased in gingival epithelial cells exposed to P. gingivalis LPS. In this study, we investigated the effect of TECK in osteoclastogenesis induced by P. gingivalis LPS. DESIGNS: Real time reverse transcriptase polymerase chain reaction (RTPCR) analysis and western blotting were performed to confirm TECK in MG63, human osteoblast cell line and primary murine osteoblasts and CCR9 in RAW 264.7 cells and murine bone marrow macrophages (BMMs) as osteoclast precursors. P. gingivalis LPS-treated BMMs and Raw 264.7 cells were cultured with or without TECK or TECK antibody to examine the effect of TECK on osteoclast formation. Cocultures with murine osteoblasts and bone marrow cells were also treated with or without TECK or TECK antibody. Luciferase assay and western blotting were used to determine whether TECK-CCR9 induced osteoclastogenesis was mediated through NFATc1 or NF-kB signaling. RESULTS: TECK was shown to be expressed by osteoblasts, and its receptor, CCR9, by osteoclast precursors. TECK increased P. gingivalis LPS-induced osteoclast numbers in an in vitro osteoclast formation assay using osteoclast precursors. The enhanced osteoclast formation by TECK was mediated by NFATc1, but not by NF-kB signaling. CONCLUSION: TECK may be a novel regulator of osteoclast formation induced by P. gingivalis LPS in periodontitis.


Subject(s)
Chemokines, CC/pharmacology , Lipopolysaccharides/pharmacology , NFATC Transcription Factors/metabolism , Osteoclasts/drug effects , Porphyromonas gingivalis/physiology , Animals , Bone Marrow Cells/drug effects , Cell Differentiation/drug effects , Cell Line , Chemokines, CC/biosynthesis , Gingiva/cytology , Gingiva/metabolism , Humans , Macrophages/drug effects , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism , Osteoclasts/microbiology , Osteogenesis , Porphyromonas gingivalis/drug effects , RAW 264.7 Cells , Receptors, CCR/biosynthesis , Recombinant Proteins/pharmacology , Signal Transduction/drug effects
19.
Biomed Pharmacother ; 78: 301-307, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26898455

ABSTRACT

BACKGROUND: MicroRNAs are believed to influence breast cancer cell tumorgenicity by interacting with the production of tumor associated macrophages. At this stage, this hypothesis lacks sufficient empirical evidence. Our study is an investigation of the effects of let-7a on the function of human breast cancer cell lines that had undergone chemokine ligand 18 (CCL18) stimulation. METHODS: Two breast cancer cell lines MDA-MB-231 and MCF-7 were transfected with let-7a mimics with or without CCL18 simulation. The expression level of let-7a was evaluated with qRT-PCR. Our study examined cell proliferation, migration and cell cycles following let-7a treatment. The predicted target of let-7a was identified and confirmed in vitro by a dual luciferase reporter system. The associations between let-7a, CCL18 and target gene expression were evaluated using RT-PCR and the Western blotting method. RESULTS: The downregulated expression level of let-7a was observed in both breast cancer cell lines. When compared to the control and CCL18 stimulation groups, cell proliferation and migration in MDA-MB-231 and MCF-7 cells were significantly inhibited by let-7a. Furthermore, the cell cycle was dramatically blocked at the G2/M phase. The luciferase reporter identified Lin28 as the direct binding target of let-7a in both breast cancer cell lines. CONCLUSION: Upregulation of let-7a carries the potential to reverse CCL18 induced cell proliferation and migration alteration in breast cancer cells by regulating Lin28 expression. Our results provided evidence which suggests the use of let-7a as a therapeutic agent in the treatment of breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Chemokines, CC/pharmacology , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction/drug effects , Base Sequence , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , G2 Phase/drug effects , Humans , MicroRNAs/genetics , Mitosis/drug effects , Molecular Sequence Data , Neoplasm Metastasis , Reproducibility of Results , Tumor Stem Cell Assay , raf Kinases/metabolism
20.
Protein Expr Purif ; 119: 1-10, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26506568

ABSTRACT

In the continued absence of an effective anti-HIV vaccine, approximately 2 million new HIV infections occur every year, with over 95% of these in developing countries. Calls have been made for the development of anti-HIV drugs that can be formulated for topical use to prevent HIV transmission during sexual intercourse. Because these drugs are principally destined for use in low-resource regions, achieving production costs that are as low as possible is an absolute requirement. 5P12-RANTES, an analog of the human chemokine protein RANTES/CCL5, is a highly potent HIV entry inhibitor which acts by achieving potent blockade of the principal HIV coreceptor, CCR5. Here we describe the development and optimization of a scalable low-cost production process for 5P12-RANTES based on expression in Pichia pastoris. At pilot (150 L) scale, this cGMP compliant process yielded 30 g of clinical grade 5P12-RANTES. As well as providing sufficient material for the first stage of clinical development, this process represents an important step towards achieving production of 5P12-RANTES at a cost and scale appropriate to meet needs for topical HIV prevention worldwide.


Subject(s)
Anti-HIV Agents/metabolism , Chemokines, CC/biosynthesis , HIV Infections/drug therapy , HIV/drug effects , Pichia , Anti-HIV Agents/isolation & purification , Anti-HIV Agents/pharmacology , Bioreactors/economics , Bioreactors/standards , Chemokines, CC/isolation & purification , Chemokines, CC/pharmacology , Chromatography, High Pressure Liquid , Chromatography, Ion Exchange , Fermentation , Humans , Inhibitory Concentration 50 , Pilot Projects , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...