Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Cell Rep ; 43(3): 113876, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38446669

ABSTRACT

Alphaviruses are mosquito-transmitted pathogens that induce high levels of viremia, which facilitates dissemination and vector transmission. One prevailing paradigm is that, after skin inoculation, alphavirus-infected resident dendritic cells migrate to the draining lymph node (DLN), facilitating further rounds of infection and dissemination. Here, we assess the contribution of infiltrating myeloid cells to alphavirus spread. We observe two phases of virus transport to the DLN, one that occurs starting at 1 h post infection and precedes viral replication, and a second that requires replication in the skin, enabling transit to the bloodstream. Depletion of Ly6C+ monocytes reduces local chikungunya (CHIKV) or Ross River virus (RRV) infection in the skin, diminishes the second phase of virus transport to the DLN, and delays spread to distal sites. Our data suggest that infiltrating monocytes facilitate alphavirus infection at the initial infection site, which promotes more rapid spread into circulation.


Subject(s)
Chikungunya Fever , Chikungunya virus , Animals , Monocytes/pathology , Mosquito Vectors , Chikungunya Fever/pathology , Myeloid Cells , Virus Replication
2.
Immunology ; 168(3): 444-458, 2023 03.
Article in English | MEDLINE | ID: mdl-36164989

ABSTRACT

Arthralgia is a hallmark of chikungunya virus (CHIKV) infection and can be very debilitating and associated with a robust local inflammatory response. Many pathophysiological aspects associated with the disease remain to be elucidated. Here, we describe a novel model of CHIKV infection in immunocompetent mice and evaluate the role of tumour necrosis factor in the pathogenesis of the disease. C57BL/6 wild type (WT) or TNF receptor 1 deficient (TNFR1-/- ) mice were inoculated with 1 × 106 PFU of CHIKV in the paw. Alternatively, etanercept was used to inhibit TNF in infected WT mice. Hypernociception, inflammatory and virological analysis were performed. Inoculation of CHIKV into WT mice induced persistent hypernociception. There was significant viral replication in target organs and local production of inflammatory mediators in early time-points after infection. CHIKV infection was associated with specific humoral IgM and IgG responses. In TNFR1-/- mice, there was a decrease in the hypernociception threshold, which was associated with a milder local inflammatory response in the paw but delayed viral clearance. Local or systemic treatment with etanercept reduced CHIKV-induced hypernociception. This is the first study to describe hypernociception, a clinical correlation of arthralgia, in immunocompetent mice infected with CHIKV. It also demonstrates the dual role of TNF in contributing to viral clearance but driving tissue damage and hypernociception. Inhibition of TNF may have therapeutic benefits but its role in viral clearance suggests that viral levels must be monitored in CHIKV-infected patients and that TNF inhibitors should ideally be used in combination with anti-viral drugs.


Subject(s)
Chikungunya Fever , Chikungunya virus , Animals , Mice , Chikungunya Fever/pathology , Receptors, Tumor Necrosis Factor, Type I , Etanercept , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha , Virus Replication , Arthralgia
3.
mBio ; 13(6): e0268722, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36377866

ABSTRACT

Ubiquitin regulatory X domain-containing proteins (UBXN) might be involved in diverse cellular processes. However, their in vivo physiological functions remain largely elusive. We recently showed that UBXN3B positively regulated stimulator-of-interferon-genes (STING)-mediated innate immune responses to DNA viruses. Herein, we reported the essential role of UBXN3B in the control of infection and immunopathogenesis of two arthritogenic RNA viruses, Chikungunya (CHIKV) and O'nyong'nyong (ONNV) viruses. Ubxn3b deficient (Ubxn3b-/-) mice presented higher viral loads, more severe foot swelling and immune infiltrates, and slower clearance of viruses and resolution of inflammation than the Ubxn3b+/+ littermates. While the serum cytokine levels were intact, the virus-specific immunoglobulin G and neutralizing antibody levels were lower in the Ubxn3b-/- mice. The Ubxn3b-/- mice had more neutrophils and macrophages, but much fewer B cells in the ipsilateral feet. Of note, this immune dysregulation was also observed in the spleens and blood of uninfected Ubxn3b-/- mice. UBXN3B restricted CHIKV replication in a cell-intrinsic manner but independent of type I IFN signaling. These results demonstrated a dual role of UBXN3B in the maintenance of immune homeostasis and control of RNA virus replication. IMPORTANCE The human genome encodes 13 ubiquitin regulatory X (UBX) domain-containing proteins (UBXN) that might participate in diverse cellular processes. However, their in vivo physiological functions remain largely elusive. Herein, we reported an essential role of UBXN3B in the control of infection and immunopathogenesis of arthritogenic alphaviruses, including Chikungunya virus (CHIKV), which causes acute and chronic crippling arthralgia, long-term neurological disorders, and poses a significant public health problem in the tropical and subtropical regions worldwide. However, there are no approved vaccines or specific antiviral drugs. This was partly due to a poor understanding of the protective and detrimental immune responses elicited by CHIKV. We showed that UBXN3B was critical for the control of CHIKV replication in a cell-intrinsic manner in the acute phase and persistent immunopathogenesis in the post-viremic stage. Mechanistically, UBXN3B was essential for the maintenance of hematopoietic homeostasis during viral infection and in steady-state.


Subject(s)
Chikungunya Fever , Chikungunya virus , Viruses , Humans , Animals , Mice , Chikungunya virus/genetics , Chikungunya Fever/pathology , Antiviral Agents/pharmacology , Ubiquitins , Virus Replication
4.
Tissue Eng Regen Med ; 19(4): 769-779, 2022 08.
Article in English | MEDLINE | ID: mdl-35532737

ABSTRACT

BACKGROUND: Re-emerging viral attacks are catastrophic for health and economy. It is crucial to grasp the viral life cycle, replication and mutation policies and attack strategies. It is also absolute to fathom the cost-efficient antiviral remedies earliest possible. METHODS: We propose to use a lab-grown organ (re-cellularized scaffold of sheep kidney) for viral culture and understand its interaction with extra-cellular matrices of the host tissue. RESULTS: Our findings showed that the chikungunya virus (CHIKV) could be better replicated in tissue-engineered bio models than cell culture. A decrease in ds-DNA levels emphasized that CHIKV propagates within the re-cellularized and cell culture models. There was an increase in the viral titres (pfu/ml) in re-cellularized scaffolds and control groups. The lipid peroxidation levels were increased as the infection was progressed in cell culture as well as re-cellularized and control groups. The onset and progress of the CHIKV attacks (cellular infection) lead to transmembrane domain fatty acid peroxidation and DNA breakdown, landing in cellular apoptosis. Simultaneously cell viability was inversely proportional to non-viability, and it decreased as the infection progressed in all infected groups. Histological findings and extracellular matrix evaluation showed the impairment in medullary, cortex regions due to propagation of CHIKV and plaques generations. CONCLUSION: This method will be a breakthrough for future virus culture, drug interaction and to study its effect on extracellular matrix alterations. This study will also allow us to investigate the correct role of any vaccine or antiviral drugs and their effects on re-engineered organ matrices before moving towards the animal models.


Subject(s)
Chikungunya Fever , Chikungunya virus , Animals , Chikungunya Fever/genetics , Chikungunya Fever/pathology , Chikungunya virus/genetics , Kidney , Sheep , Virus Replication
5.
Viruses ; 14(5)2022 05 05.
Article in English | MEDLINE | ID: mdl-35632709

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that recently re-emerged in many parts of the world causing large-scale outbreaks. CHIKV infection presents as a febrile illness known as chikungunya fever (CHIKF). Infection is self-limited and characterized mainly by severe joint pain and myalgia that can last for weeks or months; however, severe disease presentation can also occur in a minor proportion of infections. Among the atypical CHIKV manifestations that have been described, severe arthralgia and neurological complications, such as encephalitis, meningitis, and Guillain-Barré Syndrome, are now reported in many outbreaks. Moreover, death cases were also reported, placing CHIKV as a relevant public health disease. Virus evolution, globalization, and climate change may have contributed to CHIKV spread. In addition to this, the lack of preventive vaccines and approved antiviral treatments is turning CHIKV into a major global health threat. In this review, we discuss the current knowledge about CHIKV pathogenesis, with a focus on atypical disease manifestations, such as persistent arthralgia and neurologic disease presentation. We also bring an up-to-date review of the current CHIKV vaccine development. Altogether, these topics highlight some of the most recent advances in our understanding of CHIKV pathogenesis and also provide important insights into the current development and clinical trials of CHIKV potential vaccine candidates.


Subject(s)
Chikungunya Fever , Chikungunya virus , Arthralgia/virology , Chikungunya Fever/epidemiology , Chikungunya Fever/pathology , Chikungunya Fever/prevention & control , Chikungunya virus/genetics , Chikungunya virus/immunology , Humans , Vaccine Development , Viral Vaccines
6.
Lett Appl Microbiol ; 74(6): 992-1000, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35174520

ABSTRACT

Chikungunya is a fast-mutating virus causing Chikungunya virus disease (ChikvD) with a significant load of disability-adjusted life years (DALY) around the world. The outbreak of this virus is significantly higher in the tropical countries. Several experiments have identified crucial viral-host protein-protein interactions (PPIs) between Chikungunya Virus (Chikv) and the human host. However, no standard database that catalogs this PPI information exists. Here we develop a Chikv-Human PPI database, ChikvInt, to facilitate understanding ChikvD disease pathogenesis and the progress of vaccine studies. ChikvInt consists of 109 interactions and is available at www.chikvint.com.


Subject(s)
Chikungunya Fever , Chikungunya virus , Chikungunya Fever/pathology , Humans
7.
PLoS Negl Trop Dis ; 16(1): e0010149, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35100271

ABSTRACT

Chikungunya virus (CHIKV) is an emerging mosquito-transmitted alphavirus that leads to acute fever and chronic debilitating polyarthralgia. To date, the mechanism underlying chronic recurrent arthralgia is unknown. In the present study, newborn wild-type C57BL/6 mice were infected with CHIKV, and the virological and pathological features of CHIKV infection were analyzed over a period of 50 days. Acute viral infection was readily established by footpad inoculation of CHIKV at doses ranging from 10 plaque forming unit (PFU) to 106 PFU, during which inoculation dose-dependent viral RNA and skeletal muscle damage were detected in the foot tissues. However, persistent CHIKV was observed only when the mice were infected with a high dose of 106 PFU of CHIKV, in which low copy numbers (103-104) of viral positive strand RNA were continuously detectable in the feet from 29 to 50 dpi, along with a low level and progressive reduction in virus-specific CD8+ T cell responses. In contrast, viral negative strand RNA was detected at 50 dpi but not at 29 dpi and was accompanied by significant local skeletal muscle damage at 50 dpi when mild synovial hyperplasia appeared in the foot joints, although the damage was briefly repaired at 29 dpi. These results demonstrated that a high viral inoculation dose leads to viral persistence and progression to chronic tissue damage after recovery from acute infection. Taken together, these results provide a useful tool for elucidating the pathogenesis of persistent CHIKV infection and viral relapse-associated chronic arthritis.


Subject(s)
Arthralgia/virology , Arthritis/virology , Chikungunya Fever/pathology , Chikungunya virus/immunology , Myositis/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Arthralgia/pathology , Arthritis/pathology , CD8-Positive T-Lymphocytes/immunology , Chikungunya virus/genetics , DNA-Binding Proteins/immunology , Disease Models, Animal , Joints/pathology , Joints/virology , Mice , Mice, Inbred C57BL , Myositis/pathology , RNA, Viral/genetics , RNA, Viral/isolation & purification , Viral Load
8.
Rev Med Virol ; 32(3): e2287, 2022 05.
Article in English | MEDLINE | ID: mdl-34428335

ABSTRACT

Chikungunya virus (CHIKV) is one of the emerging viruses around the globe. It belongs to the family Togaviridae and genus Alphavirus and is an arthropod borne virus that transmits by the bite of an infected mosquito, mainly through Aedes aegypti and Aedes albopcitus. It is a spherical, enveloped virus with positive single stranded RNA genome. It was first discovered during 1952-53 in Tanganyika, after which outbreaks were documented in many regions of the world. CHIKV has two transmission cycles; an enzootic sylvatic cycle and an urban cycle. CHIKV genome contains 11,900 nucleotides and two open reading frames and shows great sequence variability. Molecular mechanisms of virus host-cell interactions and the pathogenesis of disease are not fully understood. The disease involves three phases; acute, post-acute and chronic with symptoms including high-grade fever, arthralgia, macupapular rashes and headache. There is no licensed vaccine or specific treatment for CHIKV infection. This lack of specific interventions combined with difficulties in making a precise diagnosis together make the disease difficult to manage. In this review we aim to present the current knowledge of global epidemiology, transmission, structure, various aspects of diagnosis as well as highlight potential antiviral drugs and vaccines against CHIKV.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Animals , Antiviral Agents , Chikungunya Fever/pathology , Chikungunya virus/genetics , Disease Outbreaks , Humans
9.
J Virol ; 96(4): e0158621, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34935436

ABSTRACT

Chikungunya virus (CHIKV) is a reemerging arthropod-borne alphavirus and a serious threat to human health. Therefore, efforts toward elucidating how this virus causes disease and the molecular mechanisms underlying steps of the viral replication cycle are crucial. Using an in vivo transmission system that allows intrahost evolution, we identified an emerging CHIKV variant carrying a mutation in the E1 glycoprotein (V156A) in the serum of mice and saliva of mosquitoes. E1 V156A has since emerged in humans during an outbreak in Brazil, cooccurring with a second mutation, E1 K211T, suggesting an important role for these residues in CHIKV biology. Given the emergence of these variants, we hypothesized that they function to promote CHIKV infectivity and subsequent disease. Here, we show that E1 V156A and E1 K211T modulate virus attachment and fusion and impact binding to heparin, a homolog of heparan sulfate, a key entry factor on host cells. These variants also exhibit differential neutralization by antiglycoprotein monoclonal antibodies, suggesting structural impacts on the particle that may be responsible for altered interactions at the host membrane. Finally, E1 V156A and E1 K211T exhibit increased titers in an adult arthritic mouse model and induce increased foot-swelling at the site of injection. Taken together, this work has revealed new roles for E1 where discrete regions of the glycoprotein are able to modulate cell attachment and swelling within the host. IMPORTANCE Alphaviruses represent a growing threat to human health worldwide. The reemerging alphavirus chikungunya virus (CHIKV) has rapidly spread to new geographic regions in the last several decades, causing overwhelming outbreaks of disease, yet there are no approved vaccines or therapeutics. The CHIKV glycoproteins are key determinants of CHIKV adaptation and virulence. In this study, we identify and characterize the emerging E1 glycoprotein variants, V156A and K211T, that have since emerged in nature. We demonstrate that E1 V156A and K211T function in virus attachment to cells, a role that until now has only been attributed to specific residues of the CHIKV E2 glycoprotein. We also demonstrate E1 V156A and K211T increase foot-swelling of the ipsilateral foot in mice infected with these variants. Observing that these variants and other pathogenic variants occur at the E1-E1 interspike interface, we highlight this structurally important region as critical for multiple steps during CHIKV infection. Together, these studies further define the function of E1 in CHIKV infection and can inform the development of therapeutic or preventative strategies.


Subject(s)
Chikungunya virus/physiology , Chikungunya virus/pathogenicity , Viral Envelope Proteins/metabolism , Virus Attachment , Aedes/virology , Animals , Antibodies, Monoclonal/immunology , Chikungunya Fever/pathology , Chikungunya Fever/transmission , Chikungunya Fever/virology , Chikungunya virus/genetics , Chikungunya virus/immunology , Disease Models, Animal , Heparin/metabolism , Humans , Inflammation , Mice , Mutation , Neutralization Tests , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Virus Internalization , Virus Replication
10.
PLoS One ; 16(9): e0255125, 2021.
Article in English | MEDLINE | ID: mdl-34492036

ABSTRACT

Chikungunya virus (CHIKV) is an arthropod-borne virus that causes large outbreaks world-wide leaving millions of people with severe and debilitating arthritis. Interestingly, clinical presentation of CHIKV arthritides have many overlapping features with rheumatoid arthritis including cellular and cytokine pathways that lead to disease development and progression. Currently, there are no specific treatments or vaccines available to treat CHIKV infections therefore advocating the need for the development of novel therapeutic strategies to treat CHIKV rheumatic disease. Herein, we provide an in-depth analysis of an efficacious new treatment for CHIKV arthritis with a semi-synthetic sulphated polysaccharide, Pentosan Polysulfate Sodium (PPS). Mice treated with PPS showed significant functional improvement as measured by grip strength and a reduction in hind limb foot swelling. Histological analysis of the affected joint showed local inflammation was reduced as seen by a decreased number of infiltrating immune cells. Additionally, joint cartilage was protected as demonstrated by increased proteoglycan staining. Using a multiplex-immunoassay system, we also showed that at peak disease, PPS treatment led to a systemic reduction of the chemokines CXCL1, CCL2 (MCP-1), CCL7 (MCP-3) and CCL12 (MCP-5) which may be associated with the reduction in cellular infiltrates. Further characterisation of the local effect of PPS in its action to reduce joint and muscle inflammation was performed using NanoString™ technology. Results showed that PPS altered the local expression of key functional genes characterised for their involvement in growth factor signalling and lymphocyte activation. Overall, this study shows that PPS is a promising treatment for alphaviral arthritis by reducing inflammation and protecting joint integrity.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Chikungunya Fever/drug therapy , Chikungunya virus/drug effects , Cytokines/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Pentosan Sulfuric Polyester/pharmacology , Animals , Anticoagulants/pharmacology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/virology , Chikungunya Fever/immunology , Chikungunya Fever/pathology , Chikungunya Fever/virology , Chikungunya virus/immunology , Chikungunya virus/isolation & purification , Disease Models, Animal , Female , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Inflammation/virology , Lymphocyte Activation/drug effects , Mice , Mice, Inbred C57BL
11.
Sci Rep ; 11(1): 18578, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535727

ABSTRACT

Chronic rheumatological manifestations similar to those of rheumatoid arthritis (RA) are described after chikungunya virus infection. We aimed to compare the relevance of joint counts and symptoms to clinical outcomes in RA and chronic chikungunya disease. Forty patients with chronic chikungunya arthralgia and 40 patients with RA were enrolled in a cross-sectional study. The association of tenderness and swelling, clinically assessed in 28 joints, and patient evaluations of pain and musculoskeletal stiffness with modified Health Assessment Questionnaire (HAQ) and quality of life (QoL) assessments were investigated. Tender and swollen joint counts, pain and stiffness scores were all associated with the HAQ disability index in RA (all r > 0.55, p ≤ 0.0002), but only stiffness was significantly associated with disability in chikungunya (r = 0.38, p = 0.02). Joint counts, pain and stiffness were also associated with most QoL domains in RA patients. In contrast, in chikungunya disease, tender joint counts were associated only with one QoL domain and swollen joints for none, while pain and stiffness were associated with several domains. Our results confirm the relevance of joint counts in RA, but suggest that in chronic chikungunya disease, joint counts have more limited value. Stiffness and pain score may be more important to quantify chikungunya arthritis impact.


Subject(s)
Arthritis, Rheumatoid/pathology , Arthritis/pathology , Chikungunya Fever/complications , Joints/pathology , Adult , Arthritis/virology , Chikungunya Fever/pathology , Chikungunya Fever/virology , Chikungunya virus/isolation & purification , Cross-Sectional Studies , Disability Evaluation , Disabled Persons , Female , Humans , Joints/virology , Middle Aged , Pain/etiology , Pain/pathology , Pain/virology , Quality of Life , Severity of Illness Index
13.
PLoS Negl Trop Dis ; 15(6): e0009427, 2021 06.
Article in English | MEDLINE | ID: mdl-34106915

ABSTRACT

Chikungunya virus (CHIKV) is an emerging, mosquito-borne alphavirus responsible for acute to chronic arthralgias and neuropathies. Although it originated in central Africa, recent reports of disease have come from many parts of the world, including the Americas. While limiting human CHIKV cases through mosquito control has been used, it has not been entirely successful. There are currently no licensed vaccines or treatments specific for CHIKV disease, thus more work is needed to develop effective countermeasures. Current animal research on CHIKV is often not representative of human disease. Most models use CHIKV needle inoculation via unnatural routes to create immediate viremia and localized clinical signs; these methods neglect the natural route of transmission (the mosquito vector bite) and the associated human immune response. Since mosquito saliva has been shown to have a profound effect on viral pathogenesis, we evaluated a novel model of infection that included the natural vector, Aedes species mosquitoes, transmitting CHIKV to mice containing components of the human immune system. Humanized mice infected by 3-6 mosquito bites showed signs of systemic infection, with demonstrable viremia (by qRT-PCR and immunofluorescent antibody assay), mild to moderate clinical signs (by observation, histology, and immunohistochemistry), and immune responses consistent with human infection (by flow cytometry and IgM ELISA). This model should give a better understanding of human CHIKV disease and allow for more realistic evaluations of mechanisms of pathogenesis, prophylaxis, and treatments.


Subject(s)
Aedes/virology , Chikungunya Fever/pathology , Chikungunya Fever/transmission , Chikungunya virus/isolation & purification , Insect Bites and Stings , Animals , Antibodies, Monoclonal, Humanized , Antibodies, Viral/blood , Chlorocebus aethiops , Immunoglobulin M/blood , Mice , Mosquito Vectors , Needles , RNA, Viral/blood , Serologic Tests , Vero Cells
14.
PLoS Negl Trop Dis ; 15(6): e0009401, 2021 06.
Article in English | MEDLINE | ID: mdl-34111121

ABSTRACT

BACKGROUND: Chikungunya fever is considered an abrupt onset arbovirus transmitted by mosquitoes, mainly Aedes aegypti and Aedes albopictus. The disease has a significant impact on the quality of life of affected persons, and many of its numerous symptoms have not yet been properly clarified, such as the manifestations that can occur in the oral cavity. The aim of this study was to identify the main oral manifestations related to chikungunya fever, as well as describe the demographic characteristics of patients, by conducting a systematic review of the literature. METHODS AND FINDINGS: Searches were performed in MEDLINE (PubMed), Embase (Elsevier), LILACS (VHL), Cochrane Library, Scopus, and CAPES electronic databases for theses and dissertations published up to January 16, 2021 without language and date restrictions. Additional manual searches of gray literature, reference list, and Google Scholar were carried out. We included 27 studies highlighting mainly oral manifestations that cause masticatory discomfort such as ulcers and oral thrush, gingival bleeding, pain and burning of the oral mucous membranes, temporomandibular joint (TMJ) arthralgia, opportunistic infections, and changes in taste. CONCLUSIONS: There seems to be a predominance of oral manifestations that cause discomfort when chewing, such as ulcerations in the acute phase of the disease, with complete remission within 3 to 10 days after the onset, apparently mostly affecting women and older persons. These oral manifestations can be compatible with basic viral infections related to inflammatory response and transitory immunosuppression.


Subject(s)
Chikungunya Fever/complications , Chikungunya Fever/pathology , Oral Ulcer/etiology , Oral Ulcer/pathology , Humans
15.
Virology ; 560: 34-42, 2021 08.
Article in English | MEDLINE | ID: mdl-34023723

ABSTRACT

Alphaviruses are positive sense, RNA viruses commonly transmitted by an arthropod vector to a mammalian or avian host. In recent years, a number of the Alphavirus members have reemerged as public health concerns. Transmission from mosquito vector to vertebrate hosts requires an understanding of the interaction between the virus and both vertebrate and insect hosts to develop rational intervention strategies. The current study uncovers a novel role for capsid protein during Chikungunya virus replication whereby the interaction with viral RNA in the E1 coding region regulates protein synthesis processes early in infection. Studies done in both the mammalian and mosquito cells indicate that interactions between viral RNA and capsid protein have functional consequences that are host species specific. Our data support a vertebrate-specific role for capsid:vRNA interaction in temporally regulating viral translation in a manner dependent on the PI3K-AKT-mTOR pathway.


Subject(s)
Capsid Proteins/metabolism , Chikungunya virus/growth & development , Protein Biosynthesis/genetics , RNA, Viral/metabolism , Virus Replication/physiology , Aedes/virology , Animals , Capsid/metabolism , Cell Line , Chikungunya Fever/pathology , Chikungunya virus/genetics , Cricetinae , Gene Expression Regulation, Viral/genetics , Mosquito Vectors/virology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Viral/genetics , TOR Serine-Threonine Kinases/metabolism
16.
Rev Med Virol ; 31(6): e2228, 2021 11.
Article in English | MEDLINE | ID: mdl-33694220

ABSTRACT

Chloroquine (CQ) and hydroxychloroquine (HCQ) have been used as antiviral agents for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection. We performed a systematic review to examine whether prior clinical studies that compared the effects of CQ and HCQ to a control for the treatment of non-SARS-CoV2 infection supported the use of these agents in the present SARS-CoV2 outbreak. PubMed, EMBASE, Scopus and Web of Science (PROSPERO CRD42020183429) were searched from inception through 2 April 2020 without language restrictions. Of 1766 retrieved reports, 18 studies met our inclusion criteria, including 17 prospective controlled studies and one retrospective study. CQ or HCQ were compared to control for the treatment of infectious mononucleosis (EBV, n = 4), warts (human papillomavirus, n = 2), chronic HIV infection (n = 6), acute chikungunya infection (n = 1), acute dengue virus infection (n = 2), chronic HCV (n = 2), and as preventive measures for influenza infection (n = 1). Survival was not evaluated in any study. For HIV, the virus that was most investigated, while two early studies suggested HCQ reduced viral levels, four subsequent ones did not, and in two of these CQ or HCQ increased viral levels and reduced CD4 counts. Overall, three studies concluded CQ or HCQ were effective; four concluded further research was needed to assess the treatments' effectiveness; and 11 concluded that treatment was ineffective or potentially harmful. Prior controlled clinical trials with CQ and HCQ for non-SARS-CoV2 viral infections do not support these agents' use for the SARS-CoV2 outbreak.


Subject(s)
Chikungunya Fever/drug therapy , Chloroquine/therapeutic use , HIV Infections/drug therapy , Hepatitis C, Chronic/drug therapy , Hydroxychloroquine/therapeutic use , Infectious Mononucleosis/drug therapy , Severe Dengue/drug therapy , Warts/drug therapy , Alphapapillomavirus/drug effects , Alphapapillomavirus/immunology , Alphapapillomavirus/pathogenicity , Antiviral Agents/therapeutic use , COVID-19/virology , Chikungunya Fever/immunology , Chikungunya Fever/pathology , Chikungunya Fever/virology , Chikungunya virus/drug effects , Chikungunya virus/immunology , Chikungunya virus/pathogenicity , Dengue Virus/drug effects , Dengue Virus/immunology , Dengue Virus/pathogenicity , HIV/drug effects , HIV/immunology , HIV/pathogenicity , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , Hepacivirus/drug effects , Hepacivirus/immunology , Hepacivirus/pathogenicity , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/pathology , Hepatitis C, Chronic/virology , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/pathogenicity , Humans , Infectious Mononucleosis/immunology , Infectious Mononucleosis/pathology , Infectious Mononucleosis/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Severe Dengue/immunology , Severe Dengue/pathology , Severe Dengue/virology , Treatment Outcome , Warts/immunology , Warts/pathology , Warts/virology , COVID-19 Drug Treatment
17.
PLoS Negl Trop Dis ; 15(3): e0009055, 2021 03.
Article in English | MEDLINE | ID: mdl-33661908

ABSTRACT

Throughout the last decade, chikungunya virus (CHIKV) and Zika virus (ZIKV) infections have spread globally, causing a spectrum of disease that ranges from self-limited febrile illness to permanent severe disability, congenital anomalies, and early death. Nevertheless, estimates of their aggregate health impact are absent from the literature and are currently omitted from the Global Burden of Disease (GBD) reports. We systematically reviewed published literature and surveillance records to evaluate the global burden caused by CHIKV and ZIKV between 2010 and 2019, to calculate estimates of their disability-adjusted life year (DALY) impact. Extracted data on acute, chronic, and perinatal outcomes were used to create annualized DALY estimates, following techniques outlined in the GBD framework. This study is registered with PROSPERO (CRD42020192502). Of 7,877 studies identified, 916 were screened in detail, and 21 were selected for inclusion. Available data indicate that CHIKV and ZIKV caused the average yearly loss of over 106,000 and 44,000 DALYs, respectively, between 2010 and 2019. Both viruses caused substantially more burden in the Americas than in any other World Health Organization (WHO) region. This unequal distribution is likely due to a combination of limited active surveillance reporting in other regions and the lack of immunity that left the previously unexposed populations of the Americas susceptible to severe outbreaks during the last decade. Long-term rheumatic sequelae provided the largest DALY component for CHIKV, whereas congenital Zika syndrome (CZS) contributed most significantly for ZIKV. Acute symptoms and early mortality accounted for relatively less of the overall burden. Suboptimal reporting and inconsistent diagnostics limit precision when determining arbovirus incidence and frequency of complications. Despite these limitations, it is clear from our assessment that CHIKV and ZIKV represent a significant cause of morbidity that is not included in current disease burden reports. These results suggest that transmission-blocking strategies, including vector control and vaccine development, remain crucial priorities in reducing global disease burden through prevention of potentially devastating arboviral outbreaks.


Subject(s)
Chikungunya Fever/epidemiology , Cost of Illness , Global Burden of Disease , Zika Virus Infection/epidemiology , Americas/epidemiology , Chikungunya Fever/drug therapy , Chikungunya Fever/pathology , Chikungunya virus/drug effects , Disease Outbreaks , Female , Humans , Incidence , Pregnancy , Treatment Outcome , Vector Borne Diseases/virology , Zika Virus/drug effects , Zika Virus Infection/drug therapy , Zika Virus Infection/pathology
18.
BMC Infect Dis ; 21(1): 179, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33593326

ABSTRACT

BACKGROUND: Perinatally chikungunya infected neonates have been reported to have high rates of post-infection neurologic sequelae, mainly cognitive problems. In older children and adults chikungunya does not appear to have sequelae, but data on postnatally infected infants are lacking. METHODS: We performed a prospective, non-controlled, observational study of infants infected before the age of 6 months with a severe chikungunya infection during the 2014-2015 epidemic in Curaçao, Dutch Antilles. Two years post-infection cognitive and motor - (BSID-III) and social emotional assessments (ITSEA) were performed. RESULTS: Of twenty-two infected infants, two died and two were lost to follow up. Eighteen children were seen at follow-up and included in the current study. Of these, 13 (72%) had abnormal scores on the BSID-III (cognitive/motor) or ITSEA. CONCLUSION: In the first study aimed at postnatally infected infants, using an uncontrolled design, we observed a very high percentage of developmental problems. Further studies are needed to assess causality, however until these data are available preventive measure during outbreaks should also include young infants. Those that have been infected in early infancy should receive follow up.


Subject(s)
Chikungunya Fever/pathology , Nervous System Diseases/diagnosis , Chikungunya Fever/complications , Chikungunya Fever/epidemiology , Child Development , Disease Outbreaks , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Nervous System Diseases/etiology , Netherlands/epidemiology , Prospective Studies
19.
PLoS Negl Trop Dis ; 15(2): e0009115, 2021 02.
Article in English | MEDLINE | ID: mdl-33596205

ABSTRACT

Patients following infection by chikungunya virus (CHIKV) can suffer for months to years from arthralgia and arthritis. Interestingly, methotrexate (MTX) a major immune-regulatory drug has proved to be of clinical benefit. We have previously shown that CHIKV can persist in the joint of one patient 18 months post-infection and plausibly driving chronic joint inflammation but through ill-characterized mechanisms. We have pursued our investigations and report novel histological and in vitro data arguing for a plausible role of a COX-2-mediated inflammatory response post-CHIKV. In the joint, we found a robust COX-2 staining on endothelial cells, synovial fibroblasts and more prominently on multinucleated giant cells identified as CD11c+ osteoclasts known to be involved in bone destruction. The joint tissue was also strongly stained for CD3, CD8, CD45, CD14, CD68, CD31, CD34, MMP2, and VEGF (but not for NO synthase and two B cell markers). Dendritic cells were rarely detected. Primary human synovial fibroblasts were infected with CHIKV or stimulated either by the synthetic molecule polyriboinosinic:polyribocytidylic acid (PIC) to mimic chronic viral infection or cytokines. First, we found that PIC and CHIKV enhanced mRNA expression of COX-2. We further found that PIC but not CHIKV increased the mRNA levels of cPLA2α and of mPGES-1, two other central enzymes in PGE2 production. IFNß upregulated cPLA2α and COX-2 transcription levels but failed to modulated mPGES-1 mRNA expression. Moreover, PIC, CHIKV and IFNß decreased mRNA expression of the PGE2 degrading enzyme 15-PGDH. Interestingly, MTX failed to control the expression of all these enzymes. In sharp contrast, dexamethasone was able to control the capacity of pro-inflammatory cytokines, IL-1ß as well as TNFα, to stimulate mRNA levels of cPLA2α, COX-2 and mPGES-1. These original data argue for a concerted action of CHIKV (including viral RNA) and cytokines plausibly released from recruited leukocytes to drive a major COX-2-mediated PGE2 proinflammatory responses to induce viral arthritis.


Subject(s)
Arthralgia/metabolism , Chikungunya Fever/metabolism , Cyclooxygenase 2/metabolism , Inflammation/metabolism , Prostaglandins/metabolism , Arthralgia/pathology , Arthralgia/virology , Arthritis/virology , Chikungunya Fever/pathology , Chikungunya virus , Cytokines/metabolism , Dinoprostone/metabolism , Endothelial Cells/metabolism , Fibroblasts/metabolism , Humans , Interleukin-1beta , Methotrexate , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/metabolism
20.
Chem Phys Lipids ; 235: 105049, 2021 03.
Article in English | MEDLINE | ID: mdl-33422549

ABSTRACT

Chikungunya, a mosquito-borne disease that causes high fever and severe joint pain in humans, is a profound global threat because of its high rate of contagion and lack of antiviral interventions or vaccines for controlling the infection. The present study was aimed to investigate the antiviral activity of Stearylamine (SA) against Chikungunya virus (CHIKV) in both in vitro and in vivo. The antiviral activity of SA was determined by foci forming unit (FFU) assay, quantitative RT-PCR and cell-based immune-fluorescence assay (IFA). Further in vivo studies were carried out to see the effect of SA treatment in CHIKV infected C57BL/6 mice. The anti-CHIKV activity was evaluated using qRT-PCR in serum and muscle tissues at different time points and by histopathology. In vitro treatment with SA at a concentration of 50 µM showed a reduction of 1.23 ± 0.19 log10 FFU/mL at 16 h and 1.56 ± 0.12 log10 FFU/mL at 24 h posttreatment by FFU assay. qRT-PCR studies indicated that SA treatment at 50µM concentration showed a singnificant reduction of 1.6 ± 0.1 log10 and 1.27 ± 0.12 log10 RNA copies when compared with that of virus control at 16 and 24 h post incubation. Treatments in the C57BL/6 mice model revealed that SA at 20 mg/kg dose per day up to 3, 5 and 7 days, produced stronger inhibition against CHIKV indicating substantially decrease viral loads and inflammatory cell migration in comparison to a dose of 10 mg/kg. This first in vivo study clearly indicates that SA is effective by significantly reducing virus replication in serum and muscles. As a next-generation antiviral therapeutic, these promising results can be translated for the use of SA to rationalize and develop an ideal delivery system alone or in combination against CHIKV.


Subject(s)
Amines/pharmacology , Antiviral Agents/pharmacology , Chikungunya Fever/drug therapy , Chikungunya virus/drug effects , Amines/chemistry , Animals , Antiviral Agents/chemistry , Cell Survival/drug effects , Chikungunya Fever/pathology , Chikungunya Fever/virology , Chlorocebus aethiops , Dose-Response Relationship, Drug , Female , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Molecular Structure , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...