Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
Strabismus ; 32(1): 23-29, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38509018

ABSTRACT

PURPOSE: This study is to describe the special clinical and genotypic features of a Chinese family with variant types of Duane retraction syndrome and to present our experience on managing these cases. METHODS: Four individuals from one family were reviewed by ophthalmologic examinations, in which two affected and two unaffected individuals were revealed. MRI scans were performed on the two patients. Relevant gene mutations were screened by the next-generation sequencing technology and confirmed by Sanger sequencing technology. RESULTS: The six-year-old proband presented with special clinical features of severe horizontal gaze dysfunction, exotropia and mild scoliosis. His mother showed significantly limited binocular abductions, with retraction of eyeballs in adduction. From MRI scans, abducens nerves were not observed in both patients and the oculomotor nerve was slightly thin in the proband. The proband and his mother shared the same CHN1 gene mutation site (c. 62A>G; p.Y21C). Strabismus surgery was performed on the proband to correct the primary gaze exotropia.(NM_001822: exon3 or NM_001025201: exon4: c. 62A>G; p.Y21C). CONCLUSIONS: A novel CHN1 gene mutation was revealed from a Chinese family with Duane retraction syndrome. Remarkably, the proband and his mother presented different clinical features of ocular motility disorder. Strabismus correction surgery and amblyopia training helped to improve the appearance and visual function of the proband.


Subject(s)
Duane Retraction Syndrome , Mutation , Pedigree , Adult , Child , Female , Humans , Male , Asian People/genetics , Chimerin 1/genetics , China , DNA Mutational Analysis , Duane Retraction Syndrome/genetics , Duane Retraction Syndrome/physiopathology , East Asian People , Exotropia/genetics , Exotropia/physiopathology , Magnetic Resonance Imaging
2.
J Transl Med ; 19(1): 295, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34238315

ABSTRACT

BACKGROUND: Metastasis and invasion are crucial in determining the mortality of cervical carcinoma (CC) patients. The epithelial-mesenchymal transition (EMT) is now a universal explanation for the mechanisms of tumor metastasis. Α-chimeric protein (α-chimaerin, CHN1) plays an important role in the regulation of signal transduction and development. However, the molecular regulatory relationships between CHN1 and CC progression in relation to EMT have not yet been identified. METHODS: The expression of CHN1 in CC tissues, adjacent tissues, and lymph node metastases from CC patients was detected by immunohistochemistry. Upregulation and knockdown of CHN1 were achieved by transfection of CC cells. The effect of CHN1 on cell proliferation was determined by CCK-8 and plate clone formation assays. Changes in migration and invasion capabilities were evaluated using scratch migration and transwell invasion assays. The effect of CHN1 overexpression and interference on xenograft tumor growth was determined by tumor weight and pathological analyses. The expression of EMT-related mRNAs was measured by qRT-PCR in transfected CC cells. EMT-related proteins and Akt/GSK-3ß/Snail signaling pathway-related proteins were also evaluated by western blotting. RESULTS: CHN1 was overexpressed in CC tissues and was associated with lymph node metastasis and low survival in CC patients. Overexpression of CHN1 promoted cell proliferation, migration, and invasion in CC cells. In contrast, silencing of CHN1 inhibited these phenomena. Overexpression of CHN1 promoted tumor formation in an in vivo xenograft tumor mouse model, with increased tumor volumes and weights. In addition, CHN1 induced the expression of EMT-related transcription factors, accompanied by the decreased expression of epithelial markers and increased expression of mesenchymal markers. The Akt/GSK-3ß/Snail signaling pathway was activated by overexpression of CHN1 in vitro, and activation of this pathway was inhibited by the signaling pathway inhibitor LY294002. CONCLUSION: These results suggest that CHN1 promotes the development and progression of cervical carcinoma via the Akt/GSK-3ß/Snail pathway by inducing EMT.


Subject(s)
Carcinoma , Epithelial-Mesenchymal Transition , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chimerin 1 , Gene Expression Regulation, Neoplastic , Glycogen Synthase Kinase 3 beta , Humans , Mice , Proto-Oncogene Proteins c-akt/metabolism , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
3.
J Neurosci ; 41(31): 6652-6672, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34168008

ABSTRACT

A precise sequence of axon guidance events is required for the development of the ocular motor system. Three cranial nerves grow toward, and connect with, six extraocular muscles in a stereotyped pattern, to control eye movements. The signaling protein alpha2-chimaerin (α2-CHN) plays a pivotal role in the formation of the ocular motor system; mutations in CHN1, encoding α2-CHN, cause the human eye movement disorder Duane Retraction Syndrome (DRS). Our research has demonstrated that the manipulation of α2-chn signaling in the zebrafish embryo leads to ocular motor axon wiring defects, although the signaling cascades regulated by α2-chn remain poorly understood. Here, we demonstrate that several cytoskeletal regulatory proteins-collapsin response mediator protein 2 (CRMP2; encoded by the gene dpysl2), stathmin1, and stathmin 2-bind to α2-CHN. dpysl2, stathmin1, and especially stathmin2 are expressed by ocular motor neurons. We find that the manipulation of dpysl2 and of stathmins in zebrafish larvae leads to defects in both the axon wiring of the ocular motor system and the optokinetic reflex, impairing horizontal eye movements. Knockdowns of these molecules in zebrafish larvae of either sex caused axon guidance phenotypes that included defasciculation and ectopic branching; in some cases, these phenotypes were reminiscent of DRS. chn1 knock-down phenotypes were rescued by the overexpression of CRMP2 and STMN1, suggesting that these proteins act in the same signaling pathway. These findings suggest that CRMP2 and stathmins signal downstream of α2-CHN to orchestrate ocular motor axon guidance and to control eye movements.SIGNIFICANCE STATEMENT The precise control of eye movements is crucial for the life of vertebrate animals, including humans. In humans, this control depends on the arrangement of nerve wiring of the ocular motor system, composed of three nerves and six muscles, a system that is conserved across vertebrate phyla. Mutations in the protein alpha2-chimaerin have previously been shown to cause eye movement disorders (squint) and axon wiring defects in humans. Our recent work has unraveled how alpha2-chimaerin coordinates axon guidance of the ocular motor system in animal models. In this article, we demonstrate key roles for the proteins CRMP2 and stathmin 1/2 in the signaling pathway orchestrated by alpha2-chimaerin, potentially giving insight into the etiology of eye movement disorders in humans.


Subject(s)
Axon Guidance/physiology , Chimerin 1/metabolism , Motor Neurons/metabolism , Nerve Tissue Proteins/metabolism , Oculomotor Muscles/innervation , Stathmin/metabolism , Zebrafish Proteins/metabolism , Animals , Chimerin 1/genetics , Duane Retraction Syndrome/genetics , Eye Movements , Signal Transduction/physiology , Zebrafish
4.
Bioengineered ; 12(1): 2874-2889, 2021 12.
Article in English | MEDLINE | ID: mdl-34152250

ABSTRACT

Gastric cancer (GC) is one of the most common causes of cancer-related deaths worldwide and the identification of additional therapeutic targets and biomarkers has become vital. The A1-chimaerin (CHN1) gene encodes a ras-related protein that can be activated or inactivated by binding to GTP or GDP. The present study aimed to assess the expression of CHN1 in GC tissue and cells, to explore its relationship with GC progression, and to discover the potential mechanisms underlying these associations. The ONCOMINE database and The Cancer Genome Atlas (TCGA) were used to determine the transcriptional levels of CHN1 in GC. Western blot and immunohistochemistry were used for detecting protein expression. Correlations between CHN1 levels and the clinical outcomes of GC patients were examined using Kaplan-Meier and Cox regression analyses. Moreover, the CIBERSORT algorithm was used to estimate immune cell infiltration. In GC patients, CHN1 transcription and CHN1 protein expression were upregulated, and a high expression of CHN1 was remarkably linked to poor survival in GC patients. CHN1 expression was associated with immune infiltrates and this gene showed potential involvement in multiple cancer-related pathways. Furthermore, the expression of CHN1 was correlated with the immunotherapeutic response. Finally, our results indicated that the pro-carcinogenic role of CHN1 may involve DNA methylation. To our knowledge, this is the first report characterizing CHN1 expression in GC. Our results show that high CHN1 levels could be used as a clinical biomarker for poor prognosis and that CHN1 inhibitors may have potential as anti-cancer drugs.


Subject(s)
Chimerin 1/genetics , Stomach Neoplasms/genetics , Biomarkers, Tumor/genetics , Computational Biology , DNA Methylation/genetics , Databases, Genetic , Gene Expression Regulation, Neoplastic/genetics , Humans , Prognosis , Stomach Neoplasms/diagnosis , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Up-Regulation/genetics
5.
Eur J Med Genet ; 64(4): 104188, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33667650

ABSTRACT

Duane retraction syndrome is a congenital eye movement disorder characterized by a failure of abducens nerve to develop normally, resulting in restriction or absence of abduction, adduction, or both, and narrowing of the palpebral fissure and retraction of the globe on attempted adduction. There is a genetic heterogeneity in Duane retraction syndrome (DURS). DURS maps to chromosome 8q13 in some patients, and pathogenic variants in CHN1 and MAFB genes are known to lead to DURS. We report here a child and his father with Duane retraction syndrome, associated to swallowing difficulties and unilateral trapeze aplasia. A whole exome sequencing revealed a heterozygous missense variant in CHN1 gene. This gene encodes GTPase-activating protein and is involved in the assembly of neuronal locomotor circuits. A patient with a 8q deletion has previously been described with a Duane retraction syndrome associated to trapeze aplasia. We provide an additional description to support the role in cranial nerves development of the CHN1 gene.


Subject(s)
Chimerin 1/genetics , Cranial Nerves/pathology , Duane Retraction Syndrome/genetics , Phenotype , Child , Cranial Nerves/physiopathology , Deglutition , Duane Retraction Syndrome/diagnostic imaging , Duane Retraction Syndrome/pathology , Humans , Male , Middle Aged , Mutation, Missense , Pedigree
6.
Sci Rep ; 10(1): 16225, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004823

ABSTRACT

Duane retraction syndrome (DRS) is a neuromuscular dysfunction of the eyes. Although many causative genes of DRS have been identified in Europe and the United States, few reports have been published in regard to Chinese DRS. The aim of the present study was to explore the genetic defect of DRS in a Chinese family. Exome sequencing was used to identify the disease-causing gene for the two affected family members. Ophthalmic and physical examinations, as well as genetic screenings for variants in chimerin 1 (CHN1), were performed for all family members. Functional analyses of a CHN1 variant in 293T cells included a Rac-GTP activation assay, α2-chimaerin translocation assay, and co-immunoprecipitation assay. Genetic analysis revealed a NM_001822.7: c.637T > G variant in the CHN1 gene, which resulted in the substitution of a highly conserved C1 domain with valine at codon 213 (NP_001813.1: p.(Phe213Val)) (ClinVar Accession Number: SCV001335305). In-silico analysis revealed that the p.(Phe213Val) substitution affected the protein stability and connections among the amino acids of CHN1 in terms of its tertiary protein structure. Functional studies indicated that the p.(Phe213Val) substitution reduced Rac-GTP activity and enhanced membrane translocation in response to phorbol-myristoyl acetate (PMA). Together with previous studies, our present findings demonstrate that CHN1 may be an important causative gene for different ethnicities with DRS.


Subject(s)
Asian People/genetics , Chimerin 1/genetics , Duane Retraction Syndrome/genetics , Mutation, Missense , Adolescent , Adult , Child , Duane Retraction Syndrome/pathology , Family , Female , Humans , Male , Middle Aged , Pedigree , Young Adult
7.
BMC Cancer ; 20(1): 1029, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33109127

ABSTRACT

BACKGROUND: Cervical cancer is the leading cause of cancer-related death in women worldwide. However, the mechanisms mediating the development and progression of cervical cancer are unclear. In this study, we aimed to elucidate the roles of microRNAs and a1-chimaerin (CHN1) protein in cervical cancer progression. METHODS: The expression of miR-205 and CHN1 protein was investigated by in situ hybridisation and immunohistochemistry. We predicted the target genes of miR-205 using software prediction and dual luciferase assays. The expression of mRNAs and proteins was tested by qRT-PCR and western blotting respectively. The ability of cell growth, migration and invasion was evaluated by CCK-8 and transwell. Cell apoptosis was analysed by flow cytometry analysis. RESULTS: We found that miR-205 and CHN1 were highly expressed in human cervical cancer tissue compared with paired normal cervical tissues. The CHN1 gene was shown to be targeted by miR-205 in HeLa cells. Interestingly, transfection with miR-205 mimic upregulated CHN1 mRNA and protein, while miR-205 inhibitor downregulated CHN1 in high-risk and human papilloma virus (HPV)-negative human cervical cancer cells in vitro,. These data suggested that miR-205 positively regulated the expression of CHN1. Furthermore, the miR-205 mimic promoted cell growth, apoptosis, migration, and invasion in high-risk and HPV-negative cervical cancer cells, while the miR-205 inhibitor blocked these biological processes. Knockdown of CHN1 obviously reduced the aggressive cellular behaviours induced by upregulation of miR-205, suggesting that miR-205 positively regulated CHN1 to mediate these cell behaviours during the development of cervical cancer. Furthermore, CHN1 was correlated with lymph node metastasis in clinical specimens. CONCLUSIONS: Our findings showed that miR-205 positively regulated CHN1 to mediate cell growth, apoptosis, migration, and invasion during cervical cancer development, particularly for high-risk HPV-type cervical cancer. These findings suggested that dysregulation of miR-205 and subsequent abnormalities in CHN1 expression promoted the oncogenic potential of human cervical cancer.


Subject(s)
Chimerin 1/genetics , Lymphatic Metastasis/genetics , MicroRNAs/genetics , Up-Regulation , Uterine Cervical Neoplasms/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chimerin 1/metabolism , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HeLa Cells , Humans , Uterine Cervical Neoplasms/metabolism
8.
Nat Commun ; 10(1): 5313, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31757963

ABSTRACT

Memory consolidation theory suggests that once memory formation has been completed, memory is maintained at a stable strength and is incapable of further enhancement. However, the current study reveals that even long after formation, contextual fear memory could be further enhanced. Such unexpected enhancement is possible because memory is dynamically maintained at an intermediate level that allows for bidirectional regulation. Here we find that both Rac1 activation and expression of α2-chimaerin are stimulated by single-trial contextual fear conditioning. Such sustained Rac1 activity mediates reversible forgetting, and α2-chimaerin acts as a memory molecule that reverses forgetting to sustain memory through inhibition of Rac1 activity during the maintenance stage. Therefore, the balance between activated Rac1 and expressed α2-chimaerin defines dynamic long-term memory maintenance. Our findings demonstrate that consolidated memory maintains capacity for bidirectional regulation.


Subject(s)
Chimerin 1/genetics , Conditioning, Classical/physiology , Hippocampus/metabolism , Memory, Long-Term/physiology , Neurons/metabolism , Neuropeptides/metabolism , rac1 GTP-Binding Protein/metabolism , Animals , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , Carbazoles/pharmacology , Chimerin 1/metabolism , Fear , Gene Knockdown Techniques , Hippocampus/drug effects , Long-Term Potentiation/genetics , Male , Memory Consolidation , Memory, Long-Term/drug effects , Mice , Neurons/drug effects , Neuropeptides/antagonists & inhibitors , Optogenetics , Pyrimidines/pharmacology , rac1 GTP-Binding Protein/antagonists & inhibitors
9.
Dev Dyn ; 247(9): 1043-1056, 2018 09.
Article in English | MEDLINE | ID: mdl-30016580

ABSTRACT

BACKGROUND: The development of a functioning nervous system requires precise assembly of neuronal connections, which can be achieved by the guidance of axonal growth cones to their proper targets. How axons are guided by signals transmitted to the cytoskeleton through cell surface-expressed guidance receptors remains unclear. We investigated the function of Nck2 adaptor protein as an essential guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory into the limb. RESULTS: Nck2 mRNA and protein are preferentially expressed in the medial subgroups of chick LMC neurons during axon trajectory into the limb. Nck2 loss- and gain-of-function in LMC neurons using in ovo electroporation perturb LMC axon trajectory selection demonstrating an essential role of Nck2 in motor axon guidance. We also showed that Nck2 knockdown and overexpression perturb the growth preference of LMC neurites against ephrins in vitro and Eph-mediated redirection of LMC axons in vivo. Finally, the significant changes of LMC neurite growth preference against ephrins in the context of Nck2 and α2-chimaerin loss- and gain-of-function implicated Nck2 function to modulate α2-chimaerin activity. CONCLUSIONS: Here, we showed that Nck2 is required for Eph-mediated axon trajectory selection from spinal motor neurons through possible interaction with α2-chimaerin. Developmental Dynamics 247:1043-1056, 2018. © 2018 Wiley Periodicals, Inc.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Axon Guidance/physiology , Extremities/physiology , Growth Cones/physiology , Motor Neurons/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Chick Embryo , Chimerin 1/metabolism , Ephrins/physiology , Extremities/embryology , Neurites , Receptors, Eph Family/metabolism
10.
J AAPOS ; 21(6): 472-475.e2, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29031989

ABSTRACT

PURPOSE: To investigate CHN1 (chimerin 1) gene mutations in patients with isolated nonsyndromic Duane syndrome and accompanying positive familial history, bilaterality, or various systemic disorders. METHODS: Patients with Duane retraction syndrome (DRS) and a positive family history of congenital ocular motility disturbance or bilateral involvement or accompanying any congenital disorder(s) seen consecutively at a single center from 2013 to 2016 were enrolled. All subjects underwent full ophthalmologic examination, including refraction, best-corrected visual acuity, ocular alignment and motility, globe retraction, and biomicroscopic or fundus evaluation. DNA samples were investigated by direct sequencing of the coding regions of the CHN1 gene. RESULTS: A total of 30 patients (15 males) were included (mean age, 11.8 ± 10.4 years; range, 2-45 years): 8 cases presented with bilateral DRS; 22, with unilateral DRS. Family history of ocular motility abnormality was positive in 16 patients. Eleven cases had an additional congenital disorder. In 2 patients, 2 different mutations were detected in the CHN1 gene: p.E313K (c.937G>A) and p.N224S (c.671A>G). CONCLUSIONS: CHN1 mutations were identified in 2 bilateral cases and in 1 parent of 1 affected case. One mutation is novel and occurred with additional vertical gaze abnormalities. Additional genetic studies evaluating chimerin 1 (CHN1) and its role in the development of the ocular motor axis are needed to provide new data about these mutations and phenotypic variations.


Subject(s)
Chimerin 1/genetics , Duane Retraction Syndrome/genetics , Mutation, Missense , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Duane Retraction Syndrome/diagnosis , Duane Retraction Syndrome/physiopathology , Eye Movements/physiology , Female , Humans , Male , Middle Aged , Refraction, Ocular/physiology , Sequence Analysis, DNA , Visual Acuity/physiology , Young Adult
11.
J Neurosci ; 37(32): 7682-7699, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28747385

ABSTRACT

In the developing CNS, the midline barrier, which comprises guidance molecule-expressing midline glial somata and processes, plays a pivotal role in midline axon guidance. Accumulating evidence has revealed the molecular mechanisms by which the midline barrier ensures proper midline guidance for axons. In contrast, the mechanisms for establishing the midline barrier remain obscure. Here, we report that Rac-specific GTPase-activating protein (RacGAP) α-chimaerin is required for both axonal repulsion at and establishment of the midline barrier in the spinal cord. We generated cortex-specific and spinal-cord-specific α-chimaerin gene (Chn1) knock-out mice (Cx-Chn1KO and Sp-Chn1KO mice, respectively) and found that both showed aberrant corticospinal tract (CST) axon midline crossing in the spinal cord. Strikingly, Sp-Chn1KO mice had breaks (holes) in the ephrinB3(+) spinal midline barrier and EphA4(+) CST axons aberrantly crossed the midline through these holes. During normal embryonic development, EphA4(+) spinal cells are located in juxta-midline areas but are excluded from the midline. In contrast, in Chn1KO embryos, several EphA4(+) cells were aberrantly relocated into the midline and the midline barrier was broken around these cells. Similarly, the spinal cord midline of Epha4KO mice was invaded by juxta-midline EphA4 cells (i.e., Epha4 promoter-active cells) during the embryonic stage and holes were formed in the midline barrier. Juxta-midline EphA4 cells in the spinal cord expressed α-chimaerin. We propose that spinal α-chimaerin aids in establishing an intact spinal midline barrier by mediating juxta-midline EphA4(+) cell repulsion, thus preventing these cells from breaking into the ephrinB3(+) midline barrier.SIGNIFICANCE STATEMENT The midline barrier plays a critical role in midline axon guidance, which is fundamental to the formation of neural circuits that are responsible for proper left-right coordination of the body. Studies have revealed some of the mechanisms underlying how the midline barrier navigates axons. In contrast, the establishment of the midline barrier during embryonic development remains unclear. In this study, we determined that α-chimaerin is required for the formation of an intact midline barrier. Spinal-cord-specific α-chimaerin knock-out mice had spinal midline barriers with numerous breaks (holes), through which corticospinal axons aberrantly crossed the midline. We propose that α-chimaerin protects the midline barrier by mediating cell-repulsive signaling in juxta-midline cells, which prevents these cells from invading the midline.


Subject(s)
Axon Guidance/physiology , Axons/metabolism , Chimerin 1/metabolism , Pyramidal Tracts/metabolism , Spinal Cord/metabolism , rac GTP-Binding Proteins/deficiency , Animals , Animals, Newborn , Chimerin 1/genetics , Mice , Mice, Knockout , Mice, Transgenic , Pyramidal Tracts/embryology , Pyramidal Tracts/growth & development , Spinal Cord/embryology , Spinal Cord/growth & development , rac GTP-Binding Proteins/genetics
12.
J Clin Invest ; 127(5): 1664-1682, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28346224

ABSTRACT

Duane retraction syndrome (DRS) is the most common form of congenital paralytic strabismus in humans and can result from α2-chimaerin (CHN1) missense mutations. We report a knockin α2-chimaerin mouse (Chn1KI/KI) that models DRS. Whole embryo imaging of Chn1KI/KI mice revealed stalled abducens nerve growth and selective trochlear and first cervical spinal nerve guidance abnormalities. Stalled abducens nerve bundles did not reach the orbit, resulting in secondary aberrant misinnervation of the lateral rectus muscle by the oculomotor nerve. By contrast, Chn1KO/KO mice did not have DRS, and embryos displayed abducens nerve wandering distinct from the Chn1KI/KI phenotype. Murine embryos lacking EPH receptor A4 (Epha4KO/KO), which is upstream of α2-chimaerin in corticospinal neurons, exhibited similar abducens wandering that paralleled previously reported gait alterations in Chn1KO/KO and Epha4KO/KO adult mice. Findings from Chn1KI/KI Epha4KO/KO mice demonstrated that mutant α2-chimaerin and EphA4 have different genetic interactions in distinct motor neuron pools: abducens neurons use bidirectional ephrin signaling via mutant α2-chimaerin to direct growth, while cervical spinal neurons use only ephrin forward signaling, and trochlear neurons do not use ephrin signaling. These findings reveal a role for ephrin bidirectional signaling upstream of mutant α2-chimaerin in DRS, which may contribute to the selective vulnerability of abducens motor neurons in this disorder.


Subject(s)
Chimerin 1/metabolism , Duane Retraction Syndrome/metabolism , Embryo, Mammalian/metabolism , Motor Neurons/metabolism , Receptor, EphA4/metabolism , Signal Transduction , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Chimerin 1/genetics , Duane Retraction Syndrome/genetics , Humans , Mice , Mice, Knockout , Motor Neurons/pathology , Receptor, EphA4/genetics , Spinal Cord/metabolism , Spinal Cord/pathology
13.
Mol Cell Neurosci ; 75: 14-26, 2016 09.
Article in English | MEDLINE | ID: mdl-27297944

ABSTRACT

Dendritic spines are fine neuronal processes where spatially restricted input can induce activity-dependent changes in one spine, while leaving neighboring spines unmodified. Morphological spine plasticity is critical for synaptic transmission and is thought to underlie processes like learning and memory. Significantly, defects in dendritic spine stability and morphology are common pathogenic features found in several neurodevelopmental and neuropsychiatric disorders. The remodeling of spines relies on proteins that modulate the underlying cytoskeleton, which is primarily composed of filamentous (F)-actin. The Rho-GTPase Rac1 is a major regulator of F-actin and is essential for the development and plasticity of dendrites and spines. However, the key molecules and mechanisms that regulate Rac1-dependent pathways at spines and synapses are not well understood. We have identified the Rac1-GTPase activating protein, α2-chimaerin, as a critical negative regulator of Rac1 in hippocampal neurons. The loss of α2-chimaerin significantly increases the levels of active Rac1 and induces the formation of aberrant polymorphic dendritic spines. Further, disruption of α2-chimaerin signaling simplifies dendritic arbor complexity and increases the presence of dendritic spines that appear poly-innervated. Our data suggests that α2-chimaerin serves as a "brake" to constrain Rac1-dependent signaling to ensure that the mature morphology of spines is maintained in response to network activity.


Subject(s)
Chimerin 1/metabolism , Dendritic Spines/metabolism , Neurogenesis , Actin Cytoskeleton/metabolism , Animals , Cells, Cultured , Chimerin 1/genetics , Dendritic Spines/physiology , Hippocampus/cytology , Hippocampus/metabolism , Long-Term Potentiation , Mice , Mice, Inbred C57BL , Neuropeptides/metabolism , rac1 GTP-Binding Protein/metabolism
14.
Cancer Prev Res (Phila) ; 9(7): 558-66, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27072986

ABSTRACT

The 5-year survival rate of esophageal cancer is less than 10% in developing countries, where more than 90% of these cancers are esophageal squamous cell carcinomas (ESCC). Endoscopic screening is undertaken in high incidence areas. Biomarker analysis could reduce the subjectivity associated with histologic assessment of dysplasia and thus improve diagnostic accuracy. The aims of this study were therefore to identify biomarkers for esophageal squamous dysplasia and carcinoma. A publicly available dataset was used to identify genes with differential expression in ESCC compared with normal esophagus. Each gene was ranked by a support vector machine separation score. Expression profiles were examined, before validation by qPCR and IHC. We found that 800 genes were overexpressed in ESCC compared with normal esophagus (P < 10(-5)). Of the top 50 genes, 33 were expressed in ESCC epithelium and not in normal esophagus epithelium or stroma using the Protein Atlas website. These were taken to qPCR validation, and 20 genes were significantly overexpressed in ESCC compared with normal esophagus (P < 0.05). TNFAIP3 and CHN1 showed differential expression with IHC. TNFAIP3 expression increased gradually through normal esophagus, mild, moderate and severe dysplasia, and SCC (P < 0.0001). CHN1 staining was rarely present in the top third of normal esophagus epithelium and extended progressively towards the surface in mild, moderate, and severe dysplasia, and SCC (P < 0.0001). Two novel promising biomarkers for ESCC were identified, TNFAIP3 and CHN1. CHN1 and TNFAIP3 may improve diagnostic accuracy of screening methods for ESCC. Cancer Prev Res; 9(7); 558-66. ©2016 AACR.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma, Squamous Cell/diagnosis , Chimerin 1/biosynthesis , Esophageal Neoplasms/diagnosis , Precancerous Conditions/diagnosis , Tumor Necrosis Factor alpha-Induced Protein 3/biosynthesis , Esophageal Squamous Cell Carcinoma , Gene Expression Profiling , Humans , Transcriptome
15.
Clin Lab ; 61(10): 1409-14, 2015.
Article in English | MEDLINE | ID: mdl-26642701

ABSTRACT

BACKGROUND: Chemerin is an important risk factor of insulin resistance. Non-alcoholic fatty liver has typical characteristics of insulin resistance. The aim of this study was to explore the potential role of chemerin in NAFLD. METHODS: 45 subjects included 22 control subjects (A group) and 23 subjects diagnosed with non-alcoholic fatty liver disease (B group) participated in the study. 23 patients in the NAFLD group received oral daily metformin at a dose of 20 mg/kg/day for 24 weeks follow-up. Chemerin and insulin resistance markers were determined at baseline and 24 weeks. RESULTS: The levels of WHR, BMI, FINS, HOMA-IR, TG, ALT, AST, and Chemerin in B group were significantly higher than A group. After 24 weeks of metformin treatment, the levels of WHR, AST, ALT, TG, chemerin and HOMA-IR were significantly reduced (p < 0.05) and other indexes were not changed significantly. Correlation analysis indicated that serum chemerin concentrations were positively correlated with BMI, WHR, HOMA-IR, FINS, TG, ALT, and AST levels. Logistic regression analysis showed chemerin, TG, and ALT were independent variables associated with NAFLD. CONCLUSIONS: These findings showed a significant increase of chemerin level in NAFLD patients. Metformin treatment can improve NAFLD and decrease the level of chemerin. Chemerin, TG, and ALT were independent variables associated with NAFLD.


Subject(s)
Chimerin 1/metabolism , Metformin/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Administration, Oral , Adult , Biomarkers/metabolism , Blood Pressure , Drug Synergism , Female , Humans , Hypoglycemic Agents/therapeutic use , Insulin/chemistry , Insulin Resistance , Logistic Models , Male , Middle Aged , Risk Factors
16.
J Neurosci ; 35(40): 13728-44, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26446225

ABSTRACT

Morphological characteristics of dendritic spines form the basis of cognitive ability. However, molecular mechanisms involved in fine-tuning of spine morphology during development are not fully understood. Moreover, it is unclear whether, and to what extent, these developmental mechanisms determine the normal adult spine morphological features. Here, we provide evidence that α2-isoform of Rac-specific GTPase-activating protein α-chimaerin (α2-chimaerin) is involved in spine morphological refinement during late postnatal period, and furthermore show that this developmental α2-chimaerin function affects adult spine morphologies. We used a series of mice with global and conditional knock-out of α-chimaerin isoforms (α1-chimaerin and α2-chimaerin). α2-Chimaerin disruption, but not α1-chimaerin disruption, in the mouse results in an increased size (and density) of spines in the hippocampus. In contrast, overexpression of α2-chimaerin in developing hippocampal neurons induces a decrease of spine size. Disruption of α2-chimaerin suppressed EphA-mediated spine morphogenesis in cultured developing hippocampal neurons. α2-Chimaerin disruption that begins during the juvenile stage results in an increased size of spines in the hippocampus. Meanwhile, spine morphologies are unaltered when α2-chimaerin is deleted only in adulthood. Consistent with these spine morphological results, disruption of α2-chimaerin beginning in the juvenile stage led to an increase in contextual fear learning in adulthood; whereas contextual learning was recently shown to be unaffected when α2-chimaerin was deleted only in adulthood. Together, these results suggest that α2-chimaerin signaling in developmental stages contributes to determination of the morphological features of adult spines and establishment of normal cognitive ability. SIGNIFICANCE STATEMENT: Recent studies of neurodevelopmental disorders in humans and their animal models have led to an attractive hypothesis that spine morphogenesis during development forms the basis of adult cognition. In particular, the roles of Rac and its regulators, such as Rac-specific GTPase-activating proteins (RacGAPs) and Rac guanine nucleotide exchange factors, are a topic of focus in spine morphogenesis and cognitive ability. Using a series of mice with global and conditional knock-out (KO) of RacGAP α-chimaerin isoforms (α1-chimaerin and α2-chimaerin), we provide compelling evidence demonstrating that α2-chimaerin is involved in spine morphological refinement during late postnatal development and that this developmental α2-chimaerin function affects adult spine morphologies. Furthermore, our results clearly showed that α2-chimaerin signaling during late postnatal development contributes to normal cognitive ability in adult mice.


Subject(s)
Chimerin 1/metabolism , Dendritic Spines/physiology , GTPase-Activating Proteins/metabolism , Gene Expression Regulation, Developmental/genetics , Signal Transduction/physiology , Action Potentials/genetics , Age Factors , Animals , Animals, Newborn , Chimerin 1/genetics , Conditioning, Psychological/physiology , Ephrin-A3/metabolism , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Fear , GTPase-Activating Proteins/genetics , Hippocampus/cytology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Transgenic , Neurons/ultrastructure , Signal Transduction/genetics
17.
Neurosci Lett ; 591: 19-24, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25676811

ABSTRACT

Alpha1-chimaerin is a GTPase-activating protein (GAP) for Rac1, a member of the Rho small GTPase family, whose action leads to the inactivation of Rac1. Rac1 activity is upregulated in Alzheimer's disease, but little is known about the role of α1-chimaerin. In this study, we investigated the expression and localization of α1-chimaerin mRNA in postmortem human brains from patients with Alzheimer's disease and control subjects. In situ hybridization studies demonstrated that α1-chimaerin was expressed by neurons in the neo-cortex of the temporal lobe and the hippocampus of both controls and Alzheimer's disease cases, with the signal intensity dramatically decreased in patients with Alzheimer's disease. Real-time PCR analysis confirmed a significant reduction of α1-chimaerin mRNA expression in the temporal cortex of Alzheimer's disease cases. In contrast, α2-chimaerin mRNA levels showed no significant difference between the groups. The present study showed reduced α1-chimaerin expression in the brain of Alzheimer's disease cases, suggesting a role in the upregulation of Rac1 activity during the disease process.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Chimerin 1/metabolism , RNA, Messenger/metabolism , Aged , Aged, 80 and over , Case-Control Studies , Chimerin 1/genetics , Female , Hippocampus/metabolism , Humans , Male , Middle Aged , Pyramidal Cells/metabolism , Temporal Lobe/metabolism
18.
J Neurosci ; 35(6): 2344-57, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25673830

ABSTRACT

Axonal guidance involves extrinsic molecular cues that bind growth cone receptors and signal to the cytoskeleton through divergent pathways. Some signaling intermediates are deployed downstream of molecularly distinct axon guidance receptor families, but the scope of this overlap is unclear, as is the impact of embryonic axon guidance fidelity on adult nervous system function. Here, we demonstrate that the Rho-GTPase-activating protein α2-chimaerin is specifically required for EphA and not EphB receptor signaling in mouse and chick spinal motor axons. Reflecting this specificity, the loss of α2-chimaerin function disrupts the limb trajectory of extensor-muscle-innervating motor axons the guidance of which depends on EphA signaling. These embryonic defects affect coordinated contraction of antagonistic flexor-extensor muscles in the adult, indicating that accurate embryonic motor axon guidance is critical for optimal neuromuscular function. Together, our observations provide the first functional evidence of an Eph receptor-class-specific intracellular signaling protein that is required for appropriate neuromuscular connectivity.


Subject(s)
Axons/physiology , Chimerin 1/genetics , Chimerin 1/physiology , Motor Neurons/physiology , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Receptors, Eph Family/physiology , Animals , Behavior, Animal/physiology , Chick Embryo , Gait/physiology , Male , Mice , Motor Activity/physiology , Muscle Contraction/physiology , Postural Balance/physiology , rho GTP-Binding Proteins/metabolism
20.
Cell Rep ; 8(5): 1257-64, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25159148

ABSTRACT

A major concern in neuroscience is how cognitive ability in adulthood is affected and regulated by developmental mechanisms. The molecular bases of cognitive development are not well understood. We provide evidence for the involvement of the α2 isoform of Rac-specific guanosine triphosphatase (GTPase)-activating protein (RacGAP) α-chimaerin (chimerin) in this process. We generated and analyzed mice with global and conditional knockouts of α-chimaerin and its isoforms (α1-chimaerin and α2-chimaerin) and found that α-chimaerin plays a wide variety of roles in brain function and that the roles of α1-chimaerin and α2-chimaerin are distinct. Deletion of α2-chimaerin, but not α1-chimaerin, beginning during early development results in an increase in contextual fear learning in adult mice, whereas learning is not altered when α2-chimaerin is deleted only in adulthood. Our findings suggest that α2-chimaerin acts during development to establish normal cognitive ability in adulthood.


Subject(s)
Brain/growth & development , Chimerin 1/metabolism , Cognition , Animals , Brain/metabolism , Brain/physiology , Chimerin 1/genetics , Conditioning, Classical , Fear , Mice , Mice, Inbred C57BL , Protein Isoforms/genetics , Protein Isoforms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...