Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 59(10): 5932-41, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26169407

ABSTRACT

Treatment of Aspergillus fumigatus with echinocandins such as caspofungin inhibits the synthesis of cell wall ß-1,3-glucan, which triggers a compensatory stimulation of chitin synthesis. Activation of chitin synthesis can occur in response to sub-MICs of caspofungin and to CaCl2 and calcofluor white (CFW), agonists of the protein kinase C (PKC), and Ca(2+)-calcineurin signaling pathways. A. fumigatus mutants with the chs gene (encoding chitin synthase) deleted (ΔAfchs) were tested for their response to these agonists to determine the chitin synthase enzymes that were required for the compensatory upregulation of chitin synthesis. Only the ΔAfchsG mutant was hypersensitive to caspofungin, and all other ΔAfchs mutants tested remained capable of increasing their chitin content in response to treatment with CaCl2 and CFW and caspofungin. The resulting increase in cell wall chitin content correlated with reduced susceptibility to caspofungin in the wild type and all ΔAfchs mutants tested, with the exception of the ΔAfchsG mutant, which remained sensitive to caspofungin. In vitro exposure to the chitin synthase inhibitor, nikkomycin Z, along with caspofungin demonstrated synergistic efficacy that was again AfChsG dependent. Dynamic imaging using microfluidic perfusion chambers demonstrated that treatment with sub-MIC caspofungin resulted initially in hyphal tip lysis. However, thickened hyphae emerged that formed aberrant microcolonies in the continued presence of caspofungin. In addition, intrahyphal hyphae were formed in response to echinocandin treatment. These in vitro data demonstrate that A. fumigatus has the potential to survive echinocandin treatment in vivo by AfChsG-dependent upregulation of chitin synthesis. Chitin-rich cells may, therefore, persist in human tissues and act as the focus for breakthrough infections.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , Cell Wall/drug effects , Chitin/agonists , Echinocandins/pharmacology , Gene Expression Regulation, Fungal , Aminoglycosides/pharmacology , Aspergillus fumigatus/genetics , Aspergillus fumigatus/growth & development , Aspergillus fumigatus/metabolism , Benzenesulfonates/pharmacology , Calcineurin/genetics , Calcineurin/metabolism , Calcium Chloride/pharmacology , Calcium Signaling , Caspofungin , Cell Wall/metabolism , Chitin/biosynthesis , Chitin Synthase/antagonists & inhibitors , Chitin Synthase/deficiency , Chitin Synthase/genetics , Drug Synergism , Enzyme Inhibitors/pharmacology , Fluorescent Dyes/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hyphae/chemistry , Hyphae/drug effects , Hyphae/metabolism , Lipopeptides , Microbial Sensitivity Tests , Mutation , Protein Kinase C/genetics , Protein Kinase C/metabolism
2.
Antimicrob Agents Chemother ; 57(1): 146-54, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23089748

ABSTRACT

The echinocandin antifungal drugs inhibit synthesis of the major fungal cell wall polysaccharide ß(1,3)-glucan. Echinocandins have good efficacy against Candida albicans but reduced activity against other Candida species, in particular Candida parapsilosis and Candida guilliermondii. Treatment of Candida albicans with a sub-MIC level of caspofungin has been reported to cause a compensatory increase in chitin content and to select for sporadic echinocandin-resistant FKS1 point mutants that also have elevated cell wall chitin. Here we show that elevated chitin in response to caspofungin is a common response in various Candida species. Activation of chitin synthesis was observed in isolates of C. albicans, Candida tropicalis, C. parapsilosis, and C. guilliermondii and in some isolates of Candida krusei in response to caspofungin treatment. However, Candida glabrata isolates demonstrated no exposure-induced change in chitin content. Furthermore, isolates of C. albicans, C. krusei, C. parapsilosis, and C. guilliermondii which were stimulated to have higher chitin levels via activation of the calcineurin and protein kinase C (PKC) signaling pathways had reduced susceptibility to caspofungin. Isolates containing point mutations in the FKS1 gene generally had higher chitin levels and did not demonstrate a further compensatory increase in chitin content in response to caspofungin treatment. These results highlight the potential of increased chitin synthesis as a potential mechanism of tolerance to caspofungin for the major pathogenic Candida species.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Chitin/biosynthesis , Drug Resistance, Fungal/genetics , Echinocandins/pharmacology , Gene Expression Regulation, Fungal , Amino Acid Sequence , Calcineurin/genetics , Calcineurin/metabolism , Candida/genetics , Candida/isolation & purification , Candida/metabolism , Candidiasis/drug therapy , Candidiasis/microbiology , Caspofungin , Cell Wall/chemistry , Cell Wall/drug effects , Cell Wall/metabolism , Chitin/agonists , Drug Resistance, Fungal/drug effects , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/drug effects , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Humans , Lipopeptides , Molecular Sequence Data , Protein Kinase C/genetics , Protein Kinase C/metabolism , Sequence Alignment , Signal Transduction/drug effects , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL