Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.568
Filter
1.
J Matern Fetal Neonatal Med ; 37(1): 2354382, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38782738

ABSTRACT

OBJECTIVE: This retrospective follow-up study analyzes the effect of intrauterine postpartum hemorrhage (PPH) therapy on menstrual, reproductive, and mental health outcomes. METHODS: All women who delivered at a university hospital between 2016 and 2021 with PPH and who needed intrauterine therapy were included. A questionnaire on well-being, menses, fertility, and reproductive outcomes was mailed to the patients. Those who did not reply were surveyed by telephone. RESULTS: A total of 214 women treated with chitosan-covered gauze (group A) and 46 women treated with a balloon tamponade (group B) were recruited, and their short-term courses were analyzed. For long-term follow-up, 71 women of group A (33%) and 21 women of group B (46%) could be reached. A total of 89% of group A and 95% of group B had regular menstrual bleeding in the most recent 12 months; 27% (group A) and 29% (group B) were trying to conceive again, and all of them did so successfully. There were 12 deliveries, 3 ongoing pregnancies, 3 miscarriages, and 2 terminations of pregnancies (TOP) in group A and 4 deliveries, 1 miscarriage, and 2 TOPs in group B. More than half of our study participants was sorted into grade II or III of the Impact of Events Scale, indicating they experienced clinical impacts in the form of psychological sequelae. One-quarter of patients had symptoms of post-traumatic stress disorder. CONCLUSION: Chitosan gauze as well as balloon tamponade appear to have few adverse effects on subsequent menstrual and reproductive function. Women after PPH are at increased risk of long-term adverse psychological outcomes.


Subject(s)
Chitosan , Menstruation , Postpartum Hemorrhage , Uterine Balloon Tamponade , Humans , Female , Postpartum Hemorrhage/therapy , Postpartum Hemorrhage/epidemiology , Adult , Retrospective Studies , Uterine Balloon Tamponade/methods , Uterine Balloon Tamponade/instrumentation , Chitosan/administration & dosage , Chitosan/therapeutic use , Pregnancy , Menstruation/psychology , Follow-Up Studies , Mental Health , Young Adult
2.
Antiviral Res ; 226: 105900, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705200

ABSTRACT

BACKGROUND & AIMS: The spread of foot-and-mouth disease virus (FMDV) through aerosol droplets among cloven-hoofed ungulates in close contact is a major obstacle for successful animal husbandry. Therefore, the development of suitable mucosal vaccines, especially nasal vaccines, to block the virus at the initial site of infection is crucial. PATIENTS AND METHODS: Here, we constructed eukaryotic expression plasmids containing the T and B-cell epitopes (pTB) of FMDV in tandem with the molecular mucosal adjuvant Fms-like tyrosine kinase receptor 3 ligand (Flt3 ligand, FL) (pTB-FL). Then, the constructed plasmid was electrostatically attached to mannose-modified chitosan-coated poly(lactic-co-glycolic) acid (PLGA) nanospheres (MCS-PLGA-NPs) to obtain an active nasal vaccine targeting the mannose-receptor on the surface of antigen-presenting cells (APCs). RESULTS: The MCS-PLGA-NPs loaded with pTB-FL not only induced a local mucosal immune response, but also induced a systemic immune response in mice. More importantly, the nasal vaccine afforded an 80% protection rate against a highly virulent FMDV strain (AF72) when it was subcutaneously injected into the soles of the feet of guinea pigs. CONCLUSIONS: The nasal vaccine prepared in this study can effectively induce a cross-protective immune response against the challenge with FMDV of same serotype in animals and is promising as a potential FMDV vaccine.


Subject(s)
Administration, Intranasal , Chitosan , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Nanospheres , Polylactic Acid-Polyglycolic Acid Copolymer , Viral Vaccines , Animals , Chitosan/chemistry , Chitosan/administration & dosage , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease Virus/genetics , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease/immunology , Mice , Nanospheres/chemistry , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Mice, Inbred BALB C , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Nucleic Acids/administration & dosage , Immunity, Mucosal , Drug Delivery Systems
3.
Fish Shellfish Immunol ; 149: 109557, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608847

ABSTRACT

Immersion vaccination, albeit easier to administer than immunization by injection, sometimes has challenges with antigen uptake, resulting in sub-optimal protection. In this research, a new strategy to enhance antigen uptake of a heat-inactivated Vibrio harveyi vaccine in Asian seabass (Lates calcarifer) using oxygen nanobubble-enriched water (ONB) and positively charged chitosan (CS) was explored. Antigen uptake in fish gills was assessed, as was the antibody response and vaccine efficacy of four different combinations of vaccine with ONB and CS, and two control groups. Pre-mixing of ONB and CS before introducing the vaccine, referred to as (ONB + CS) + Vac, resulted in superior antigen uptake and anti-V. harveyi antibody (IgM) production in both serum and mucus compared to other formulas. The integration of an oral booster (4.22 × 108 CFU/g, at day 21-25) within a vaccine trial experiment set out to further evaluate how survival rates post exposure to V. harveyi might be improved. Antibody responses were measured over 42 days, and vaccine efficacy was assessed through an experimental challenge with V. harveyi. The expression of immune-related genes IL1ß, TNFα, CD4, CD8, IgT and antibody levels were assessed at 1, 3, and 7-day(s) post challenge (dpc). The results revealed that antibody levels in the group (ONB + CS) + Vac were consistently higher than the other groups post immersion immunization and oral booster, along with elevated expression of immune-related genes after challenge with V. harveyi. Ultimately, this group demonstrated a significantly higher relative percent survival (RPS) of 63 % ± 10.5 %, showcasing the potential of the ONB-CS-Vac complex as a promising immersion vaccination strategy for enhancing antigen uptake, stimulating immunological responses, and improving survival of Asian seabass against vibriosis.


Subject(s)
Bacterial Vaccines , Chitosan , Fish Diseases , Vaccination , Vibrio Infections , Vibrio , Animals , Vibrio/immunology , Fish Diseases/prevention & control , Fish Diseases/immunology , Chitosan/administration & dosage , Vibrio Infections/veterinary , Vibrio Infections/prevention & control , Vibrio Infections/immunology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Vaccination/veterinary , Oxygen , Bass/immunology , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage
4.
J Gen Virol ; 105(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38656455

ABSTRACT

Porcine epidemic diarrhea (PED) is a serious disease in piglets that leads to high mortality. An effective measure that provides higher IgA levels in the intestine and milk is required to decrease losses. Porcine epidemic diarrhea virus (PEDV) was dissolved in calcium alginate (Alg) and combined with chitosan (CS) via electrostatic interactions between cationic chitosan and anionic alginate to create a porous gel (Alg-CS+PEDV). The gel was used to immunize mice orally or in combination with subcutaneous injections of inactivated PEDV vaccine. At 12 and 24 days after immunization, levels of IgA and IgG in Alg-CS+PEDV were higher than with normal PEDV oral administration. At 24 days after immunization, the concentration of IFN-γ in Alg-CS+PEDV was higher than with normal PEDV oral administration. Furthermore, oral administration combining subcutaneous immunization induced higher levels of IgG and IgA than oral administration alone. Our study provides a new method for the preparation and administration of oral vaccines to achieve enhanced mucosal immunity against PEDV.


Subject(s)
Alginates , Antibodies, Viral , Chitosan , Immunity, Mucosal , Immunoglobulin A , Immunoglobulin G , Porcine epidemic diarrhea virus , Viral Vaccines , Animals , Administration, Oral , Porcine epidemic diarrhea virus/immunology , Alginates/administration & dosage , Chitosan/administration & dosage , Mice , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Antibodies, Viral/immunology , Immunoglobulin A/immunology , Immunoglobulin G/blood , Swine , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Female , Gels/administration & dosage , Mice, Inbred BALB C , Interferon-gamma/immunology , Glucuronic Acid/administration & dosage , Hexuronic Acids/administration & dosage
5.
Int J Pharm ; 656: 124096, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38583821

ABSTRACT

Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease that seriously threatens human life and health. Our previous study demonstrated the unique superiority of traditional Chinese medicine cryptotanshinone (CTS) combined with sustained pulmonary drug delivery for treating PF. In this study, we aimed to enhance the selectivity, targeting efficiency and sustained-release capability based on this delivery system. To this end, we developed and evaluated CTS-loaded modified liposomes-chitosan (CS) microspheres SM(CT-lipo) and liposome-exosome hybrid bionic vesicles-CS microspheres SM(LE). The prepared nano-in-micro particles system integrates the advantages of the carriers and complements each other. SM(CT-lipo) and SM(LE) achieved lung myofibroblast-specific targeting through CREKA peptide binding specifically to fibronectin (FN) and the homing effect of exosomes on parent cells, respectively, facilitating efficient delivery of anti-fibrosis drugs to lung lesions. Furthermore, compared with daily administration of conventional microspheres SM(NC) and positive control drug pirfenidone (PFD), inhaled administration of SM(CT-lipo) and SM(LE) every two days still attained similar efficacy, exhibiting excellent sustained drug release ability. In summary, our findings suggest that the developed SM(CT-lipo) and SM(LE) delivery strategies could achieve more accurate, efficient and safe therapy, providing novel insights into the treatment of chronic PF.


Subject(s)
Chitosan , Exosomes , Fibronectins , Liposomes , Pulmonary Fibrosis , Animals , Humans , Male , Administration, Inhalation , Antifibrotic Agents/administration & dosage , Antifibrotic Agents/chemistry , Chitosan/chemistry , Chitosan/administration & dosage , Delayed-Action Preparations , Drug Delivery Systems/methods , Drug Liberation , Exosomes/chemistry , Fibronectins/administration & dosage , Liposomes/chemistry , Lung/metabolism , Lung/drug effects , Microspheres , Phenanthrenes/administration & dosage , Phenanthrenes/chemistry , Phenanthrenes/pharmacokinetics , Pulmonary Fibrosis/drug therapy , Pyridones , Rats, Sprague-Dawley , Rats
6.
Neuropharmacology ; 253: 109969, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38688422

ABSTRACT

This study aimed to develop polysorbate 80-coated chitosan nanoparticles (PS80/CS NPs) as a delivery system for improved brain targeting of α-Melanocyte Stimulating Hormone analog (NDP-MSH). Chitosan nanoparticles loaded with NDP-MSH were surface-modified with polysorbate 80 ([NDP-MSH]-PS80/CS NP), which formed a flattened layer on their surface. Nanoparticle preparation involved ionic gelation, followed by characterization using scanning electron microscopy (SEM) for morphology, dynamic light scattering (DLS) for colloidal properties, and ATR-FTIR spectroscopy for structure. Intraperitoneal injection of FITC-PS80/CS NPs and [NDP-MSH]-PS80/CS NP in rats demonstrated their ability to cross the blood-brain barrier, reach the brain, and accumulate in CA1 neurons of the dorsal hippocampus within 2 h. Two experimental models of neuroinflammation were employed with Male Wistar rats: a short-term model involving high-fat diet (HFD) consumption for 5 days followed by an immune stimulus with LPS, and a long-term model involving HFD consumption for 8 weeks. In both models, [NDP-MSH]-PS80/CS NPs could reverse the decreased expression of contextual fear memory induced by the diets. These findings suggest that [NDP-MSH]-PS80/CS NPs offer a promising strategy to overcome the limitations of NDP-MSH regarding pharmacokinetics and enzymatic stability. By facilitating NDP-MSH delivery to the hippocampus, these nanoparticles can potentially mitigate the cognitive impairments associated with HFD consumption and neuroinflammation.


Subject(s)
Brain , Chitosan , Cognitive Dysfunction , Diet, High-Fat , Nanoparticles , Polysorbates , Rats, Wistar , alpha-MSH , Animals , Chitosan/administration & dosage , Chitosan/chemistry , Male , alpha-MSH/administration & dosage , alpha-MSH/analogs & derivatives , Polysorbates/chemistry , Polysorbates/administration & dosage , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Nanoparticles/administration & dosage , Diet, High-Fat/adverse effects , Brain/metabolism , Brain/drug effects , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Rats
7.
Int Immunopharmacol ; 132: 112019, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38599099

ABSTRACT

OBJECTIVE: The current study aimed to assess the modulating effect of IL-2 encapsulated chitosan-nanoparticles (CSNPs) on the function of Treg cells through induction of type 1 diabetes (T1D). Treg cell function was monitored by the forkhead box P3 (FoxP3) and transforming growth factor beta (TGFß) levels, correlating them with blood glucose and serum insulin levels. MATERIALS AND METHODS: In this case-control study, a low dose of IL-2 (free and chitosan-loaded) was injected into a diabetic mice group. The levels of FoxP3 and TGF-ß 1 were assessed using Enzyme-Linked Immunosorbent Assay. In addition, blood glucose and serum insulin levels were determined. RESULTS: The mean glucose level decreased significantly after free rIL-2 or rIL-2 / CSNPs treatment. Meanwhile, the mean serum insulin level was significantly increased after treatment with free rIL-2 or rIL-2/CSNPs. The mean levels of FoxP3 and TGFß 1 were significantly increased with either free rIL-2 or rIL-2/CSNPs compared to the T1D untreated group (P < 0.001). In the treated mice group receiving free CSNPs, there was a significant negative correlation between glucose and insulin levels. Moreover, FoxP3 & TGFß 1 levels had a significant positive correlation. In treated mice groups with free rIL-2 and IL-2 CSNPs, there was a significant positive correlation between FoxP3 and glucose levels. A significant negative correlation was found after conducting a correlation between insulin level and FoxP3 in the T1D/ rIL-2 / CSNPs group. CONCLUSIONS: Low-dose IL-2 selectively modulates FoxP3 + Tregs, and TGFß 1 increases their levels. These results demonstrated that IL-2-free and chitosan-loaded nanoparticles can be therapeutic agents in T1D.


Subject(s)
Blood Glucose , Chitosan , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Forkhead Transcription Factors , Insulin , Interleukin-2 , Nanoparticles , T-Lymphocytes, Regulatory , Animals , Chitosan/chemistry , Chitosan/administration & dosage , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Interleukin-2/metabolism , Interleukin-2/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/immunology , Blood Glucose/drug effects , Mice , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/blood , Forkhead Transcription Factors/metabolism , Insulin/blood , Male , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/blood , Streptozocin , Humans
8.
Poult Sci ; 103(5): 103569, 2024 May.
Article in English | MEDLINE | ID: mdl-38447310

ABSTRACT

Non-typhoidal Salmonella infection is a significant health and economic burden in poultry industry. Developing an oral vaccine to induce robust mucosal immunity in the intestines of birds, especially cross protection against different Salmonella serotypes is challenging. Therefore, a potent oral vaccine platform that can mitigate different serotypes of Salmonella is warranted for the poultry industry. We reported earlier that the Salmonella enteritidis (SE) immunogenic outer membrane proteins (OMPs) and flagellin (FLA) entrapped in mannose chitosan nanoparticles (OMPs-FLA-mCS NPs) administered prime-boost (d-3 and 3-wk later) by oral inoculation elicits mucosal immunity and reduces challenge SE colonization by over 1 log10 CFU in birds. In this study, we sought to evaluate whether the SE antigens containing OMPs-FLA-mCS NPs vaccine induces cross-protection against Salmonella typhimurium (ST) in broilers. Our data indicated that the OMPs-FLA-mCS NPs vaccine induced higher cross-protective antibody responses compared to commercial Poulvac ST vaccine (contains a modified-live ST bacterium). Particularly, OMPs-FLA-mCS-NP vaccine elicited OMPs and FLA antigens specific increased production of secretory IgA and IgY antibodies in samples collected at both post-vaccination and post-challenge timepoints compared to commercial vaccine group. Notably, the vaccine reduced the challenge ST bacterial load by 0.8 log10 CFU in the cecal content, which was comparable to the outcome of Poulvac ST vaccination. In conclusion, our data suggested that orally administered OMPs-FLA-mCS-NP SE vaccine elicited cross protective mucosal immune responses against ST colonization in broilers. Thus, this candidate vaccine could be a viable option replacing the existing both live and killed Salmonella vaccines for birds.


Subject(s)
Chickens , Chitosan , Cross Protection , Nanoparticles , Poultry Diseases , Salmonella Infections, Animal , Salmonella Vaccines , Salmonella enteritidis , Salmonella typhimurium , Animals , Chickens/immunology , Salmonella enteritidis/immunology , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Salmonella Infections, Animal/prevention & control , Salmonella Infections, Animal/immunology , Chitosan/administration & dosage , Chitosan/pharmacology , Salmonella Vaccines/immunology , Salmonella Vaccines/administration & dosage , Nanoparticles/administration & dosage , Salmonella typhimurium/immunology , Administration, Oral , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
9.
Int J Biol Macromol ; 266(Pt 1): 131175, 2024 May.
Article in English | MEDLINE | ID: mdl-38552696

ABSTRACT

Myocardial ischemia-reperfusion injury (MIRI) significantly contributes to the high incidence of complications and mortality associated with acute myocardial infarction. Recently, injectable electroconductive hydrogels (IECHs) have emerged as promising tools for replicating the mechanical, electroconductive, and physiological characteristics of cardiac tissue. Herein, we aimed to develop a novel IECH by incorporating irbesartan as a drug delivery system (DDS) for cardiac repair. Our approach involved merging a conductive poly-thiophene derivative (PEDOT: PSS) with an injectable dual-network adhesive hydrogel (DNAH) comprising a catechol-branched polyacrylamide network and a chitosan-hyaluronic acid covalent network. The resulting P-DNAH hydrogel, benefitting from a high conducting polymer content, a chemically crosslinked network, a robust dissipative matrix, and dynamic oxidation of catechol to quinone exhibited superior mechanical strength, desirable conductivity, and robust wet-adhesiveness. In vitro experiments with the P-DNAH hydrogel carrying irbesartan (P-DNAH-I) demonstrated excellent biocompatibility by cck-8 kit on H9C2 cells and a rapid initial release of irbesartan. Upon injection into the infarcted hearts of MIRI mouse models, the P-DNAH-I hydrogel effectively inhibited the inflammatory response and reduced the infarct size. In conclusion, our results suggest that the P-DNAH hydrogel, possessing suitable mechanical properties and electroconductivity, serves as an ideal IECH for DDS, delivering irbesartan to promote heart repair.


Subject(s)
Acrylic Resins , Chitosan , Hydrogels , Myocardial Reperfusion Injury , Irbesartan/administration & dosage , Myocardial Reperfusion Injury/drug therapy , Chitosan/administration & dosage , Chitosan/chemistry , Acrylic Resins/administration & dosage , Acrylic Resins/chemistry , Hydrogels/administration & dosage , Hydrogels/chemistry , Hydrogels/toxicity , Electric Conductivity , Elasticity , Injections , Cell Line , Animals , Rats , Disease Models, Animal , Mice , Male , Mice, Inbred C57BL , Cell Survival/drug effects
10.
J Control Release ; 360: 705-717, 2023 08.
Article in English | MEDLINE | ID: mdl-37423525

ABSTRACT

Developing a highly effective nano-drug delivery system with sufficient drug permeability and retention in tumors is still a major challenge for oncotherapy. Herein, a tumor microenvironment responsive, aggregable nanocarriers embedded hydrogel (Endo-CMC@hydrogel) was developed to inhibit the tumoral angiogenesis and hypoxia for enhanced radiotherapy. The antiangiogenic drug (recombinant human endostatin, Endo) loaded carboxymethyl chitosan nanoparticles (Endo-CMC NPs) was wrapped by 3D hydrogel to comprise the Endo-CMC@hydrogel. After peritumoral injection, the Endo-CMC NPs were released, invaded deeply into the solid tumor, and cross-linked with intratumoral calcium ions. The cross-linking process enabled these Endo-CMC NPs to form larger particles, leading to long retention in tumor tissue to minimize premature clearance. This Endo-CMC@hydrogel, integrating the abilities of good tumoral penetration, long retention of anti-drug, and alleviation of hypoxia in tumor tissue, greatly improved the therapeutic effect of radiotherapy. This work provides a proof-of-concept of tumor microenvironment-responding and an aggregable nano-drug delivery system as promising antitumor drug carriers for effective tumor therapy.


Subject(s)
Antineoplastic Agents , Chitosan , Nanoparticles , Humans , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Chitosan/administration & dosage , Drug Carriers , Hydrogels , Nanoparticle Drug Delivery System
11.
J Control Release ; 350: 803-814, 2022 10.
Article in English | MEDLINE | ID: mdl-36087802

ABSTRACT

Postsurgical treatment is of great importance to combat tumor recurrence and metastasis. Anti-CD47 antibodies (aCD47) can block the CD47-signal regulatory protein-alpha (CD47-SIRPα) pathway to restore immunity. Here, an in-situ gel implantation was engineered by crosslinking chitosan (CS) and pullulan (Pul) for postsurgical treatment. A highly selected chemotherapeutic, cyclopamine (Cyc), encapsulated in liposomes (Cyc-Lip) was co-loaded with aCD47 in gels for chemoimmunotherapy. Importantly, a sequential drug release kinetics can be achieved. Nanotherapeutics were confirmed to be released prior to aCD47 in a burst-release manner, which was benefit for immediately killing residual tumor cells followed by releasing tumor antigens. Meanwhile, aCD47 was released in a sustained-release manner to restore macrophage functions and exert anti-tumor immune responses. Afterwards, the efficacy of in-situ chemoimmunotherapy was confirmed on 4T1 mouse breast cancer models, which could not only efficiently augment anti-tumor effect to inhibit tumor recurrence but also establish a long-term immune memory to combat tumor metastasis.


Subject(s)
Anticarcinogenic Agents , Immunotherapy , Neoplasms , Postoperative Care , Animals , Anticarcinogenic Agents/administration & dosage , Antigens, Neoplasm , Chitosan/administration & dosage , Delayed-Action Preparations , Immunotherapy/methods , Mice , Neoplasm Recurrence, Local/prevention & control , Neoplasms/pathology , Neoplasms/surgery
12.
Arq. Ciênc. Vet. Zool. UNIPAR (Online) ; 25(2): e6378, jul-dez. 2022.
Article in Portuguese | LILACS, VETINDEX | ID: biblio-1399609

ABSTRACT

Os resíduos provenientes da aquicultura são derivados da ração e da excreção dos peixes e podem estar sedimentados, suspensos ou dissolvidos, ocasionando elevados valores de DBO, DQO, nitrogênio e fósforo. A produção de camarões no Brasil tem gerado elevadas quantidades de resíduos sólidos, tendo em vista que os exoesqueletos dos camarões correspondem a cerca de 40% do seu peso total, resultando num forte impacto ambiental. Diversas pesquisas envolvendo a quitina estão sendo desenvolvidas na área de tratamento de água, devido principalmente a sua capacidade de formar filme, sendo utilizada em sistemas filtrantes. Este polissacarídeo também pode ser utilizado como agente floculante no tratamento de efluentes, como adsorvente na clarificação de óleos, e principalmente na produção de quitosana. Atualmente a quitosana possui aplicações multidimensionais, desde áreas como a nutrição humana, biotecnologia, ciência dos materiais, indústria farmacêutica, agricultura, terapia genética e proteção ambiental. A quitosana é muito eficiente na remoção de poluentes em diferentes concentrações. Apresenta alta capacidade e grande velocidade de adsorção, boa eficiência e seletividade tanto em soluções que possuem altas ou baixas concentrações. O uso da biotecnologia, através do processo de adsorção utilizando adsorventes naturais e baratos, como a quitina e quitosana, minimiza os impactos ambientais da aquicultura tanto em relação aos provocados pelo lançamento de efluentes no meio ambiente quanto aos causados pelo descarte inadequado dos resíduos do processamento de camarões.(AU)


Aquaculture residues are derived from fish feed and excretion and may be sedimented, suspended or dissolved, resulting in high BOD, COD, nitrogen and phosphorus values. Shrimp production in Brazil has generated high amounts of solid waste, since shrimp exoskeletons account for about 40% of their total weight, resulting in a strong environmental impact. Several researches involving chitin are being developed in the area of water treatment, mainly due to its ability to form film, being used in filter systems. This polysaccharide can also be used as a flocculating agent in the treatment of effluents, as an adsorbent in the clarification of oils, and especially in the production of chitosan. Currently, chitosan has multidimensional applications, from areas such as human nutrition, biotechnology, materials science, pharmaceutical industry, agriculture, gene therapy and environmental protection. Chitosan is very efficient in the removal of pollutants at different concentrations. It presents high capacity and high adsorption velocity, good efficiency and selectivity both in solutions that have high or low concentrations. The use of biotechnology, through the adsorption process using natural and cheap adsorbents such as chitin and chitosan, minimizes the environmental impacts of aquaculture both in relation to those caused by the release of effluents into the environment and those caused by the inappropriate disposal of processing residues of shrimps.(AU)


Los residuos procedentes de la acuicultura se derivan de la ración y de la excreción de los peces y pueden estar sedimentados, suspendidos o disueltos, ocasionando elevados valores de DBO, DQO, nitrógeno y fósforo. La producción de camarones en Brasil ha generado grandes cantidades de residuos sólidos, teniendo en cuenta que los exoesqueletos de los camarones corresponden a cerca del 40% de su peso total, resultando en un fuerte impacto ambiental. Varias investigaciones involucrando la quitina se están desarrollando en el área de tratamiento de agua, debido principalmente a su capacidad de formar película, siendo utilizada en sistemas filtrantes. Este polisacárido también puede ser utilizado como agente floculante en el tratamiento de efluentes, como adsorbente en la clarificación de aceites, y principalmente en la producción de quitosana. Actualmente la quitosana posee aplicaciones multidimensionales, desde áreas como la nutrición humana, biotecnología, ciencia de los materiales, industria farmacéutica, agricultura, terapia genética y protección ambiental. La quitosana es muy eficiente en la eliminación de contaminantes en diferentes concentraciones. Presenta alta capacidad y gran velocidad de adsorción, buena eficiencia y selectividad tanto en soluciones que poseen altas o bajas concentraciones. El uso de la biotecnología, a través del proceso de adsorción utilizando adsorbentes naturales y baratos, como la quitina y quitosana, minimiza los impactos ambientales de la acuicultura tanto en relación a los provocados por el lanzamiento de efluentes en el medio ambiente en cuanto a los causados por el descarte inadecuado de los residuos del procesamiento de camarones.(AU)


Subject(s)
Chitin/administration & dosage , Adsorption/drug effects , Chitosan/administration & dosage , Wastewater/chemistry , Biopolymers/analysis , Aquaculture , Eutrophication/physiology , Ammonia/chemistry
13.
Carbohydr Polym ; 282: 119108, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35123744

ABSTRACT

A bioinspired chitosan/vitamin E conjugate (Ch/VES, 1:4) was synthesized, optimized based on chitosan's molecular weight (15, 300 kDa), and was assembled to entrap oxaliplatin (OXPt). 1H NMR, infrared spectroscopy, chromatography, X-ray photoelectron spectroscopy, X-ray diffraction, drug release, hemolysis, and stability studies were performed to characterize OXPt@Ch/VES micelles. The therapeutic efficacy of the micelles was tested in vitro in ER+/PR+/HER2- and triple-negative sensitive/resistant breast cancer cells, MCF-7 and MDA-MB-231 via cellular uptake, cytotoxicity, nuclear staining, DNA fragmentation, mitochondrial membrane potential, ROS generation, apoptosis, and cell cycle assays and in vivo using 4T1(Luc)-tumor-bearing mice. OXPt@Ch/VES Ms exhibited decreased IC50 towards MCF-7, MDA-MB-231 (sensitive/resistant) than OXPt. OXPt@Ch/VES Ms caused extensive DNA damage, mitochondrial depolarization, apoptosis, and cell-growth arrest (G2/M). OXPt@Ch/VES Ms treatment retarded tumor growth significantly, prolonged survival, and decreased nephrotoxicity than OXPt. The OXPt@Ch/VES Ms could serve as a potential nanomedicine to overcome conventional OXPt-mediated drug resistance/nephrotoxicity in breast cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , Breast Neoplasms/drug therapy , Chitosan/administration & dosage , Drug Carriers/administration & dosage , Oxaliplatin/administration & dosage , alpha-Tocopherol/administration & dosage , Animals , Antineoplastic Agents/pharmacokinetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Chitosan/pharmacokinetics , Drug Carriers/pharmacokinetics , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Erythrocytes/drug effects , Female , Hemolysis/drug effects , Humans , Male , Mice, Inbred BALB C , Micelles , Oxaliplatin/pharmacokinetics , Rats, Wistar , Reactive Oxygen Species/metabolism , alpha-Tocopherol/pharmacokinetics
14.
Carbohydr Polym ; 282: 119111, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35123746

ABSTRACT

Novel bio-based nanocomposites were developed as carriers for loading and sustained-release of vanillin (Van.) and cinnamaldehyde (Cinn.) antioxidants. The composites were obtained by intercalation of chitosan (CS) into sodium montmorillonite (CS/Mt), incorporation of chitosan with polyaniline (CS/PANI) and chitosan/polyaniline/exfoliated montmorillonite (CS/PANI/Mt). The structure and morphology of composites were characterized by FTIR, XRD, SEM and TEM. The release data of Van. and Cinn. from CS and CS/Mt obeyed well zero-order equation. However, Higuchi and Korsmeyer-Peppas models fitted well the release data from CS/PANI and CS/Mt composites. Their antifungal activity was examined towards Fusarium oxysporum and Pythium debaryanum. In vitro assay, CS, Cinn., Van., CS/PANI and CS/PANI/Cinn., have a strong inhibitory effect on the linear growth of the target pathogens, even at lower concentrations. Greenhouse assay indicated that seedling treatment by the loaded CS/PANI/Cinn and CS/Mt/Cinn. reduced both disease index and disease incidence parameters of both pathogens and possessed seedlings growth promoting potential of tomato compared to untreated-infected controls.


Subject(s)
Acrolein/analogs & derivatives , Antioxidants/administration & dosage , Benzaldehydes/administration & dosage , Biological Control Agents/administration & dosage , Chitosan/administration & dosage , Fusarium/drug effects , Nanocomposites/administration & dosage , Plant Diseases/prevention & control , Pythium/drug effects , Solanum lycopersicum/microbiology , Acrolein/administration & dosage , Acrolein/chemistry , Adsorption , Aniline Compounds/administration & dosage , Aniline Compounds/chemistry , Antioxidants/chemistry , Bentonite/administration & dosage , Bentonite/chemistry , Benzaldehydes/chemistry , Biological Control Agents/chemistry , Chitosan/chemistry , Drug Liberation , Fusarium/growth & development , Solanum lycopersicum/growth & development , Nanocomposites/chemistry , Plant Roots/growth & development , Plant Roots/microbiology , Pythium/growth & development
15.
Carbohydr Polym ; 282: 119087, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35123755

ABSTRACT

The efficient triggering of prodrug release has become a challengeable task for stimuli-responsive nanomedicine utilized in cancer therapy due to the subtle differences between normal and tumor tissues and heterogeneity. In this work, a dual ROS-responsive nanocarriers with the ability to self-regulate the ROS level was constructed, which could gradually respond to the endogenous ROS to achieve effective, hierarchical and specific drug release in cancer cells. In brief, DOX was conjugated with MSNs via thioketal bonds and loaded with ß-Lapachone. TPP modified chitosan was then coated to fabricate nanocarriers for mitochondria-specific delivery. The resultant nanocarriers respond to the endogenous ROS and release Lap specifically in cancer cells. Subsequently, the released Lap self-regulated the ROS level, resulting in the specific DOX release and mitochondrial damage in situ, enhancing synergistic oxidation-chemotherapy. The tumor inhibition Ratio was achieved to 78.49%. The multi-functional platform provides a novel remote drug delivery system in vivo.


Subject(s)
Antineoplastic Agents/administration & dosage , Doxorubicin/administration & dosage , Drug Carriers/administration & dosage , Nanoparticles/administration & dosage , Naphthoquinones/administration & dosage , Neoplasms/drug therapy , Oxidative Stress , Prodrugs/administration & dosage , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell Line, Tumor , Chitosan/administration & dosage , Chitosan/chemistry , Chitosan/pharmacokinetics , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Liberation , Female , Humans , Mice, Inbred BALB C , Mitochondria/physiology , Nanoparticles/chemistry , Naphthoquinones/chemistry , Naphthoquinones/pharmacokinetics , Neoplasms/metabolism , Neoplasms/pathology , Organophosphorus Compounds/administration & dosage , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacokinetics , Oxidation-Reduction , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Reactive Oxygen Species/metabolism , Silicon Dioxide/administration & dosage , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacokinetics , Tumor Burden/drug effects
16.
Carbohydr Polym ; 278: 118969, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34973784

ABSTRACT

We prepared a new injectable thermogel to enhance the efficiency of inner ear delivery of dexamethasone (DEX). Hexanoyl glycol chitosan (HGC) was synthesized and evaluated as an amphiphilic thermogel (Tgel ~ 32 °C) for use as a solubilizing agent as well as an injectable carrier for intratympanic delivery of the hydrophilic and hydrophobic forms of DEX. Various thermogel formulations with different drug types and concentrations were prepared, and their physicochemical and thermogelling properties were characterized by 1H NMR, ATR-FTIR, and rheometer. They exhibited versatile release kinetics from several hours to more than 2 weeks, depending on drug type and concentration. Our formulations further showed good residual stability for more than 21 days without any cytotoxicity or inflammation in the middle and inner ear and could deliver a considerably high drug concentration into the inner ear. Therefore, HGC thermogel has great potential as an effective and safe formulation for inner ear drug delivery.


Subject(s)
Chitosan/chemistry , Dexamethasone/pharmacology , Drug Delivery Systems , Ear, Inner/drug effects , Temperature , Animals , Chitosan/administration & dosage , Chitosan/chemical synthesis , Dexamethasone/administration & dosage , Dexamethasone/chemistry , Drug Carriers/administration & dosage , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Compounding , Gels/administration & dosage , Gels/chemical synthesis , Gels/chemistry , Guinea Pigs , Male , Molecular Structure
17.
Bioengineered ; 13(1): 1388-1398, 2022 01.
Article in English | MEDLINE | ID: mdl-35000526

ABSTRACT

Diabetes mellitus (DM) can be implicated in the perturbations of vascular integrity and the dysfunction of angiogenesis. Chitosan has the advantage of promoting the vascular endothelial cell proliferation. However, the molecular mechanism of action in the promotion of wound healing by chitosan derivatives is still debated. In the current study, DM with chronic wound (CW) model rats were prepared and treated with chitosan. Vascular endothelial cells isolated from granulation tissues were conducted by RNA sequencing. Two thousand three hundred and sixteen genes were up-regulated, while 1,864 genes were down-regulated after chitosan treatment compared to CW group. Here, we observed that caveolin 1 (CAV1) was highly expressed induced by chitosan. Furthermore, we observed that CAV1 knockdown could compromise the activation of Wnt pathway by reduction of ß-catenin in rat aortic endothelial cells (RAOECs) and brain endothelium four cells (RBE4s). Moreover, we determined a direct interaction between CAV1 and ß-catenin by IP assay. The C-terminus of CAV1 and ß-catenin (24 to 586 amino acids) contributed to the interaction of these two proteins. Finally, the protein docking analysis indicated that the fragments of ß-catenin (253-261 'FYAITTLHN' and 292-303 'KFLAITTDCLQI') might have affected the structure by CAV1 and facilitated the resistance to degradation. Taken together, our study demonstrates that chitosan can up-regulate CAV1 expression, and CAV1 can interact with ß-catenin for promotion of canonical Wnt signaling pathway activity. Our results deepens the molecular mechanism of the Wnt pathway in vascular endothelial cells and is beneficial to developing new targets to assist in enhancing the pharmacological effect of chitosan on wound healing and angiogenesis against DM.


Subject(s)
Caveolin 1/genetics , Chitosan/administration & dosage , Diabetes Complications/drug therapy , Wnt Signaling Pathway/drug effects , Wound Healing/drug effects , beta Catenin/metabolism , Animals , Binding Sites , Caveolin 1/chemistry , Caveolin 1/metabolism , Cell Line , Chitosan/pharmacology , Diabetes Complications/genetics , Diabetes Complications/metabolism , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation/drug effects , Indenes , Male , Molecular Docking Simulation , Protein Binding , Rats , Sequence Analysis, RNA , Sulfonamides , beta Catenin/chemistry , beta Catenin/genetics
18.
Carbohydr Polym ; 277: 118836, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34893253

ABSTRACT

This work reports a rational design of injectable thermosensitive chitosan systems for cell encapsulation and delivery. Using mixtures of two phosphate salts, beta-glycerophosphate and ammonium hydrogen phosphate, we demonstrate that the pH and the osmolarity can be adjusted separately by varying the molar ratios between the salts and the d-glucosamine monomers. We found the existence of a critical temperature above which gelation time decays following a power-law. This gelation kinetics can be finely tuned through the pH and salt-glucosamine ratios. Formulations having physiological pH and osmolarity were produced for chitosan concentrations ranging from 0.4 to 0.9 wt%. They remain liquid for more than 2 h at 20 °C and form a macroporous gel within 2 min at 37 °C. In vitro encapsulation of pre-osteoblastic cells and gingival fibroblasts showed homogeneous cell distribution and good cell viability up to 24 h. Such an approach provides a valuable platform to design thermosensitive cell-laden systems.


Subject(s)
Cell Encapsulation , Chitosan/chemistry , Drug Delivery Systems , Hydrogels/chemistry , Temperature , 3T3 Cells , Animals , Chitosan/administration & dosage , Hydrogels/administration & dosage , Hydrogen-Ion Concentration , Mice , Molecular Structure
19.
Carbohydr Polym ; 277: 118891, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34893293

ABSTRACT

When organic polymer-based drug nanocarriers become concentrated in macrophages, their influence on macrophage polarization has been rarely reported. This study prepared chitosan-based nanoparticles (CNs, 181.5 nm, +14.83 mV) and detected their impacts on macrophage reprogram. RT-PCR results showed in M1-like RAW264.7 cells (Mφ1), CNs decreased CD86 and iNOS expressions by 53.8% and 57.1%, and increased Arg-1 and IL-10 by 642.9% and 102.1%; in M2-like cells (Mφ2), CNs reduced Arg-1 and MR expressions by 70.7% and 93.0%, but increased CD86, iNOS and TNF-α by 290.4%, 86.2% and 728.6%; these results, consistent with cytokine secretions and surface CD86/CD206 expressions, showed CNs polarized Mφ1 and Mφ2 toward opposite type so as to improve the macrophage polarization homeostasis. In CCl4-induced mouse liver injury model, CNs reduced the hepatic Mφ1/Mφ2 ratio from 1.1 (model group) to 0.3, and then reduced the serum AST and ALT level by 42.3% and 39.0%; in mouse model of hepatocellular carcinoma, CNs decreased the number of CD163-positive cells and increased CD86-positive ones in tumor, and subsequently inhibited the tumor growth and metastasis. This study suggests CNs can improve the phenotype homeostasis of macrophages and subsequently promote the treatment of certain diseases such as liver injury and tumor.


Subject(s)
Antineoplastic Agents/pharmacology , Chitosan/pharmacology , Macrophages/drug effects , Nanoparticles/chemistry , Animals , Antineoplastic Agents/chemistry , Cells, Cultured , Chitosan/administration & dosage , Chitosan/chemistry , Homeostasis/drug effects , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Macrophage Activation/drug effects , Macrophages/metabolism , Mice , Particle Size , Phenotype , RAW 264.7 Cells
20.
Carbohydr Polym ; 275: 118760, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34742449

ABSTRACT

The morphology of the drug delivery systems (DDSs) has been recognized to play an important role in their phagocytosis, cellular interaction and distribution. However, it is a technical challenge to simply prepare the non-spherical nanoscaled DDSs. Here, a facile strategy was developed to fabricate the pH/hypoxia dual-responsive nanowires by adding the maleic acid (MAH) and PEG modified chitosan (PEG-SS-CS-MAH) into aqueous solution of DOX. Compared with the PEG-SS-CS-MAH/DOX nanoparticles (NPs) by adding DOX into the PEG-SS-CS-MAH solution, the PEG-SS-CS-MAH/DOX nanowires (NWs) possessed a higher drug loading capacity of 58% and better pH/hypoxia dual-triggered DOX release performance with higher drug release in the simulated tumor intracellular microenvironment but a much lower premature drug leakage in the simulated normal physiological medium. As a result, higher in vitro anti-tumor efficacy was achieved with the PEG-SS-CS-MAH/DOX NWs, demonstrating their promising potential for tumor chemotherapy.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Cell Hypoxia/drug effects , Chitosan/chemistry , Doxorubicin/pharmacology , Drug Delivery Systems , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Chitosan/administration & dosage , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Drug Liberation , Drug Screening Assays, Antitumor , Flow Cytometry , Hep G2 Cells , Humans , Hydrogen-Ion Concentration , Molecular Structure , Nanoparticles/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...