Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 702
Filter
1.
Se Pu ; 42(5): 474-480, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736391

ABSTRACT

A method was established for the simultaneous detection of 12 prohibited veterinary drugs, including ß2-receptor agonists, nitrofuran metabolites, nitroimidazoles, chlorpromazine, and chloramphenicol, in pig urine. The sample was pretreated by enzymolysis, acid hydrolysis/derivatization, and liquid-liquid extraction combined with solid-phase extraction. Detection was performed using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Ammonium acetate solution (0.2 mol/L, 4.5 mL) and ß-glucuronidase/aryl sulfatase (40 µL) were added to the sample, which was subsequently enzymolized at 37 ℃ for 2 h. Then, 1.5 mL of 1.0 mol/L hydrochloric acid solution and 100 µL of 0.1 mol/L o-nitrobenzaldehyde solution were added to the sample. The mixture was incubated at 37 ℃ for 16 h, and the analytes were extracted with 8 mL of ethyl acetate by liquid-liquid extraction. The lower aqueous phase obtained after extraction was extracted and purified using a mixed cation-exchange solid-phase extraction column. The extracts were combined, the extraction solution was blow-dried with nitrogen, and the residue was redissolved for determination. The samples were analyzed under multiple-reaction monitoring mode with both positive and negative electrospray ionization, and quantified using an isotope internal standard method. The correlation coefficients (r) of the 12 compounds were >0.99. The limits of detection (LODs) and quantification (LOQs) of chloramphenicol were 0.05 and 0.1 µg/L, respectively, and the LODs and LOQs of the other compounds were 0.25 and 0.5 µg/L, respectively. The mean recoveries and RSDs at 1, 2, and 10 times the LOQ were 83.6%-115.3% and 2.20%-12.34%, respectively. The proposed method has the advantages of high sensitivity, good stability, and accurate quantification; thus, it is suitable for the simultaneous determination of the 12 prohibited veterinary drug residues in pig urine.


Subject(s)
Drug Residues , Tandem Mass Spectrometry , Veterinary Drugs , Animals , Tandem Mass Spectrometry/methods , Swine , Chromatography, High Pressure Liquid/methods , Veterinary Drugs/urine , Veterinary Drugs/analysis , Drug Residues/analysis , Chloramphenicol/urine , Chloramphenicol/analysis
2.
J Pharm Biomed Anal ; 245: 116165, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38701534

ABSTRACT

Due to antimicrobial resistance that occurs throughout the world, antibiotic-releasing hydrogel with at least two drugs that synergistically treat stubborn bacteria is preferable for infection prevention. Hydrogel can serve as a drug reservoir to gradually release drugs in a therapeutic window to effectively treat microorganisms with minimal side effects. The study and development of drug releasing hydrogels requires a reliable, straightforward, cost-effective, fast, and low labor-intensive drug detection technique. In this study, we validate the electrochemical technique and device setup for real-time determination of dual antibacterial drugs released from a hydrogel. Concentrations of two representative antibacterial drugs, tetracycline (TC) and chloramphenicol (CAP), were determined using square wave voltammetry (SWV) mode that yields the lower limit of detection at 2.5 µM for both drugs. Measurement accuracy and repeatability were verified by 36 known drug combination concentrations. Capability in long-term measurement was confirmed by the measurement stability which was found to last for at least 72 h. Stirring was revealed as one of the significant factors for accurate real-time detection. Real-time measurement was ultimately performed to demonstrate the determination of multiple drug releases from a drug releasing hydrogel and validated by high-performance liquid chromatography (HPLC). All the results support that the electrochemical technique with the proposed device design and setup can be used to accurately and simultaneously determine dual drugs that are released from a hydrogel in real-time.


Subject(s)
Anti-Bacterial Agents , Chloramphenicol , Drug Liberation , Electrochemical Techniques , Hydrogels , Tetracycline , Anti-Bacterial Agents/analysis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Hydrogels/chemistry , Tetracycline/analysis , Chloramphenicol/analysis , Limit of Detection , Chromatography, High Pressure Liquid/methods , Reproducibility of Results
3.
Anal Chim Acta ; 1306: 342598, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692791

ABSTRACT

BACKGROUND: Carbon-based nanozymes have recently received enormous concern, however, there is still a huge challenge for inexpensive and large-scale synthesis of magnetic carbon-based "Two-in-One" mimics with both peroxidase (POD)-like and laccase-like activities, especially their potential applications in multi-mode sensing of antibiotics and neurotransmitters in biofluids. Although some progresses have been made in this field, the feasibility of biomass-derived carbon materials with both POD-like and laccase-like activities by polyatomic doping strategy is still unclear. In addition, multi-mode sensing platform can provide a more reliable result because of the self-validation, self-correction and mutual agreement. Nevertheless, the use of magnetic carbon-based nanozyme sensors for the multi-mode detection of antibiotics and neurotransmitters have not been investigated. RESULTS: We herein report a shrimp shell-derived N, O-codoped porous carbon confined magnetic CuFe2O4 nanosphere with outstanding laccase-like and POD-like activities for triple-mode sensing of antibiotic d-penicillamine (D-PA) and chloramphenicol (CPL), as well as colorimetric detection of neurotransmitters in biofluids. The magnetic CuFe2O4/N, O-codoped porous carbon (MCNPC) armored mimetics was successfully fabricated using a combined in-situ coordination and high-temperature crystallization method. The synthesized MCNPC composite with superior POD-like activity can be used for colorimetric/temperature/smartphone-based triple-mode detection of D-PA and CPL in goat serum. Importantly, the MCNPC nanozyme can also be used for colorimetric analysis of dopamine and epinephrine in human urine. SIGNIFICANCE: This work not only offered a novel strategy to large-scale, cheap synthesize magnetic carbon-based "Two-in-One" armored mimetics, but also established the highly sensitive and selective platforms for triple-mode monitoring D-PA and CPL, as well as colorimetric analysis of neurotransmitters in biofluids without any tanglesome sample pretreatment.


Subject(s)
Anti-Bacterial Agents , Carbon , Copper , Neurotransmitter Agents , Carbon/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/urine , Anti-Bacterial Agents/blood , Neurotransmitter Agents/urine , Neurotransmitter Agents/analysis , Neurotransmitter Agents/blood , Porosity , Copper/chemistry , Humans , Nanospheres/chemistry , Colorimetry/methods , Ferric Compounds/chemistry , Biomimetic Materials/chemistry , Animals , Biosensing Techniques/methods , Chloramphenicol/analysis , Chloramphenicol/urine , Limit of Detection
4.
Anal Chim Acta ; 1307: 342631, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38719408

ABSTRACT

BACKGROUND: Simultaneous detection of food contaminants is crucial in addressing the collective health hazards arising from the presence of multiple contaminants. However, traditional multi-competitive surface-enhanced Raman scattering (SERS) aptasensors face difficulties in achieving simultaneous accurate detection of multiple target substances due to the uncontrollable SERS "hot spots". In this study, using chloramphenicol (CAP) and estradiol (E2) as two target substances, we introduced a novel approach that combines machine learning methods with a dual SERS aptasensor, enabling simultaneous high-sensitivity and accurate detection of both target substances. RESULTS: The strategy effectively minimizes the interference from characteristic Raman peaks commonly encountered in traditional multi-competitive SERS aptasensors. For this sensing system, the Au@4-MBA@Ag nanoparticles modified with sulfhydryl (SH)-CAP aptamer and Au@DTNB@Ag NPs modified with sulfhydryl (SH)-E2 aptamer were used as signal probes. Additionally, Fe3O4@Au nanoflowers integrated with SH-CAP aptamer complementary DNA and SH-E2 aptamer complementary DNA were used as capture probes, respectively. When compared to linear regression random forest, and support vector regression (SVR) models, the proposed artificial neural network (ANN) model exhibited superior precision, demonstrating R2 values of 0.963, 0.976, 0.991, and 0.970 for the training set, test set, validation set, and entire dataset, respectively. Validation with ten spectral groups reported an average error of 244 µg L-1. SIGNIFICANCE: The essence of our study lies in its capacity to address a persistent challenge encountered by traditional multiple competitive SERS aptasensors - the interference generated by uncontrollable SERS "hot spots" that hinders simultaneous quantification. The accuracy of the predictive model for simultaneous detection of two target substances was significantly improved using machine learning tools. This innovative technique offers promising avenues for the accurate and high-sensitive simultaneous detection of multiple food and environmental contaminants.


Subject(s)
Aptamers, Nucleotide , Gold , Machine Learning , Metal Nanoparticles , Silver , Spectrum Analysis, Raman , Aptamers, Nucleotide/chemistry , Silver/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Chloramphenicol/analysis , Estradiol/analysis , Biosensing Techniques/methods , Food Contamination/analysis , Limit of Detection
5.
Chemosphere ; 357: 141981, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626813

ABSTRACT

Metal-Organic Frameworks (MOFs) are extensively used as electrode material in various sensing applications due to their efficacious porous nature and tunable properties. However, pristine MOFs lack conductive attributes that hinder their wide usage in electrochemical applications. Electropolymerization of several aromatic monomers has been a widely used strategy for preparing conducting electrode materials for various sensing applications in the past decades. Herein, we report a similar approach by employing the electropolymerization method to create a functional polymer layer to enhance the sensitivity of an Aluminium Organic Framework (DUT-4) for the selective detection of Chloramphenicol (CAP) antibiotic in aqueous environment. The combined strategy using the conducting polymer layer with the porous Al MOF provides surpassing electrochemical performance for sensing CAP with regard to the very low detection limit (LOD = 39 nM) and exceptionally high sensitivity (11943 µA mM-1 cm-2). In addition, the fabricated sensor exhibited good selectivity, reproducibility and stability. The developed method was successfully evaluated in various real samples including lake water and river water for CAP detection with good recovery percentages even at lower concentrations.


Subject(s)
Aluminum , Chloramphenicol , Electrochemical Techniques , Limit of Detection , Metal-Organic Frameworks , Polymers , Water Pollutants, Chemical , Chloramphenicol/analysis , Metal-Organic Frameworks/chemistry , Water Pollutants, Chemical/analysis , Aluminum/analysis , Aluminum/chemistry , Polymers/chemistry , Electrochemical Techniques/methods , Reproducibility of Results , Anti-Bacterial Agents/analysis , Electrodes , Rivers/chemistry , Lakes/chemistry , Lakes/analysis
6.
J Hazard Mater ; 470: 134150, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38552394

ABSTRACT

The misuse and overuse of chloramphenicol poses severe threats to food safety and human health. In this work, we developed a magnetic solid-phase extraction (MSPE) pretreatment material coated with a multilayered metal-organic framework (MOF), Fe3O4 @ (ZIF-8)3, for the separation and enrichment of chloramphenicol from fish. Furthermore, we designed an artificial-intelligence-enhanced single microsphere immunosensor. The inherent ultra-high porosity of the MOF and the multilayer assembly strategy allowed for efficient chloramphenicol enrichment (4.51 mg/g within 20 min). Notably, Fe3O4 @ (ZIF-8)3 exhibits a 39.20% increase in adsorption capacity compared to Fe3O4 @ZIF-8. Leveraging the remarkable decoding abilities of artificial intelligence, we achieved the highly sensitive detection of chloramphenicol using a straightforward procedure without the need for specialized equipment, obtaining a notably low detection limit of 46.42 pM. Furthermore, the assay was successfully employed to detect chloramphenicol in fish samples with high accuracy. The developed immunosensor offers a robust point-of-care testing tool for safeguarding food safety and public health.


Subject(s)
Anti-Bacterial Agents , Chloramphenicol , Fishes , Food Contamination , Chloramphenicol/analysis , Animals , Food Contamination/analysis , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Metal-Organic Frameworks/chemistry , Limit of Detection , Immunoassay/methods , Adsorption , Solid Phase Extraction/methods , Artificial Intelligence , Biosensing Techniques/methods , Ferrosoferric Oxide/chemistry
7.
Talanta ; 273: 125857, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38490024

ABSTRACT

An electrochemical aptasensor was developed for the determination of chloramphenicol (CAP) in fresh foods and food products. The aptasensor was developed using Prussian blue (PB) and chitosan (CS) film. PB acts as a redox probe for detection and CS acts as a sorption material. The aptamer (Apt) was immobilized on a screen-printed carbon electrode (SPCE) modified with gold nanoparticles (AuNPs). Under optimum conditions, the linearity of the aptasensor was between 1.0 and 6.0 × 106 ng L-1 with a detection limit of 0.65 and a quantification limit of 2.15 ng L-1. The electrode could be regenerated up to 24 times without the use of chemicals. The aptasensor showed good repeatability (RSD <11.2%) and good reproducibility (RSD <7.7%). The proposed method successfully quantified CAP in milk, shrimp pond water and shrimp meat with good accuracy (recovery = 88.0 ± 0.6% to 100 ± 2%). The proposed aptasensor could be especially useful in agriculture to ensure the quality of food and the environment and could be used to determine other antibiotics.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Chitosan , Ferrocyanides , Metal Nanoparticles , Carbon , Gold , Limit of Detection , Chloramphenicol/analysis , Reproducibility of Results , Electrodes , Meat , Biosensing Techniques/methods , Electrochemical Techniques/methods
8.
Food Chem ; 444: 138637, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38341918

ABSTRACT

The use of Chloramphenicol (CAP), a potent antibiotic with broad-spectrum capabilities in food-producing animals has been restricted by the European Union and several other countries due to its severe side effects. Thus, CAP must be detected quickly and sensitively. In this investigation, the preparation of SrTiO3 nanoparticles was carried out utilizing a hydrothermal technique. The as-synthesized strontium titanate was decorated on the graphene oxide (SrTiO3/GO) using an ultrasonication method. An electrochemical sensor was developed by employing a modified electrode consisting of SrTiO3/GO, which can accurately detect CAP in food samples. The synergistic effect of SrTiO3 and GO could improve the peak current response. Remarkably, the SrTiO3/GO-modified glassy carbon electrode has a LOD and sensitivity of 6.08 µM nM and 2.771 µA·µM-1·cm-2, respectively. This modified electrode was evaluated in food samples and had an outstanding reaction with a high percentage of recovery, which makes it a potential electrocatalyst for CAP detection.


Subject(s)
Graphite , Honey , Metal Nanoparticles , Animals , Chloramphenicol/analysis , Honey/analysis , Graphite/chemistry , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Electrodes , Limit of Detection
9.
Chemosphere ; 352: 141455, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367872

ABSTRACT

The occurrence of antibiotic residues in the environment has received considerable attention because of their potential to select for bacterial resistance. The overuse of antibiotics in human medicine and animal production results in antibiotic residues entering the aquatic environment, but concentrations are currently not well determined. This study investigates the occurrence of antibiotics in groundwater in areas strongly related to agriculture and the antibiotic treatment of animals. A multiresidue method was validated according to EU Regulation 2021/808, to allow (semi-)quantitative analysis of 78 antibiotics from 10 different classes: ß-lactams, sulfonamides, tetracyclines, lincosamides, amphenicols, (fluoro)quinolones, macrolides, pleuromutilins, ansamycins and diaminopyrimidines using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). This method was used to test different storage conditions of these water samples during a stability study over a period of 2 weeks. Sulfonamides, lincosamides and pleuromutilins were the most stable. Degradation was most pronounced for ß-lactam antibiotics, macrolides and ansamycins. To maintain stability, storage of samples at -18 °C is preferred. With the validated method, antibiotic residues were detected in groundwater, sampled from regions associated with intensive livestock farming in Flanders (Belgium). Out of 50 samples, 14% contained at least one residue. Concentrations were low, ranging from < LOD to 0.03 µg/L. Chloramphenicol, oxolinic acid, tetracycline and sulfonamides (sulfadiazine, sulfadoxine, sulfamethazine and sulfisoxazole) were detected. This study presents a new method for the quantification of antibiotic residues, which was applied to investigate the presence of antibiotic residues in groundwater in Flanders.


Subject(s)
Drug Residues , Groundwater , Animals , Humans , Anti-Bacterial Agents/analysis , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Lactams, Macrocyclic/analysis , Sulfanilamide/analysis , Chloramphenicol/analysis , Sulfonamides/analysis , Lincosamides , Pleuromutilins , Macrolides/analysis , Drug Residues/analysis
10.
J AOAC Int ; 107(2): 267-276, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38039152

ABSTRACT

BACKGROUND: The consumption of foods containing amphenicols, a type of antibiotic, is a major concern for human health. A stable and accurate detection method can provide technical support for food-safety monitoring. OBJECTIVE: An effective and efficient method was established for determining amphenicols in animal-derived foods through the simultaneous use of solid-phase extraction (SPE) cleanup and ultrahigh-performance liquid chromatography/mass spectrometry (UPLC-MS/MS). METHOD: Samples were extracted using 1.0% ammoniated ethyl acetate solution, degreased with n-hexane, and then concentrated and cleaned using a C18 SPE column. Next, gradient elution was performed using methanol and 0.05% aqueous ammonia as the mobile phase, followed by separation using a C18 column. The target compound was detected using electrospray ionization, both in positive and negative modes, through multiple reaction monitoring, and quantified using an internal-standard method. RESULTS: The content of chloramphenicol (CAP), florfenicol (FF), and florfenicol amine (FFA) (content range: 0.2-8.0 µg/kg) as well as that of thiamphenicol (TAP; content range: 1.0-40.0 µg/kg) show a good linear relationship, with a correlation coefficient of r > 0.999. Furthermore, recoveries of 86.7-111.9% and relative standard deviations of <9.0% were achieved. The limits of detection and quantification are obtained as 0.03-0.33 and 0.1-1.0 µg/kg, respectively. CONCLUSIONS: The proposed method has excellent stability and accuracy, and can be successfully used for the qualitative and quantitative determination of amphenicols, i.e., CAP, TAP, FF, and FFA residues in 210 animal-derived food samples, of which FF and FFA were detected in four samples. HIGHLIGHTS: A stable and accurate method was successfully established for the simultaneous determination of CAP, TAP, FF, and FFA in animal-derived foods using UPLC-MS/MS. Effective sample pretreatment was established, lipids were removed using n-hexane, concentration and cleanup were achieved with the C18 SPE column, and matrix effects were effectively reduced, thus improving the method's accuracy and stability. The method was validated for eight common animal-source foods, including beef, lamb, pork, chicken, egg, milk, fish, and honey. This method has good applicability for CAP, TAP, FF, and FFA in animal-derived foods.


Subject(s)
Chloramphenicol , Hexanes , Tandem Mass Spectrometry , Thiamphenicol/analogs & derivatives , Cattle , Humans , Animals , Sheep , Chloramphenicol/analysis , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Solvents , Anti-Bacterial Agents/analysis , Chickens , Solid Phase Extraction
11.
J Fish Dis ; 47(2): e13884, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37929301

ABSTRACT

The mucus layers of fish serve as the main interface between the organism and the environment. They play an important biological and ecological role. The current study focuses on Nile tilapia epidermal mucus reared under different commercial feeds (coded A and B) and environments (biofloc technology and earthen pond systems). Crude protein levels in feed A and B were 30% and 28%, respectively. Water parameters in all culturing systems were suitable for tilapia throughout the study period. The antimicrobial potency of tilapia (n = 5 from each) epidermal mucus was tested in vitro against human and fish pathogenic strains viz. Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Francisella noatunensis, and Aeromonas hydrophila. To determine the antimicrobial activity, zones of inhibition (ZOI) were measured in millimetres and compared with two antibiotics (chloramphenicol and ciprofloxacin). SDS-PAGE analysis was performed on skin mucus samples of tilapia to determine protein quantity and size (molecular weight). Results of tilapia skin mucus (crude and aqueous) revealed a strong antibacterial effect against all the selected pathogenic strains. However, variation has been observed in the mucus potency and ZOI values between the biofloc and pond tilapia mucus. The crude mucus of tilapia fed on feed A and cultured in the pond exhibited strong antibacterial effects and high ZOI values compared to the mucus of biofloc tilapia, aqueous mucus extracts and positive control chloramphenicol (antibiotic). The SDS-PAGE results showed that the high molecular weight proteins were found in the collected epidermal mucus of BFT-B (240 kDa) and EP-B (230 kDa). Several peptides in fish skin mucus may play a crucial role in the protection of fish against disease-causing pathogens. Thus, it can be utilized in the human and veterinary sectors as an 'antimicrobial' for treating various bacterial infections.


Subject(s)
Anti-Infective Agents , Cichlids , Fish Diseases , Tilapia , Animals , Animal Feed/analysis , Anti-Bacterial Agents/pharmacology , Aquaculture/methods , Chloramphenicol/analysis , Diet/veterinary , Fish Diseases/prevention & control , Fish Diseases/microbiology , Mucus/chemistry , Ponds , Tilapia/microbiology
12.
J Pharm Biomed Anal ; 239: 115913, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38134703

ABSTRACT

Determination of pharmaceutical active molecules in the biological matrices is crucial in various fields of clinical and pharmaceutical chemistry, e.g., in pharmacokinetic studies, developing new drugs, or therapeutic drug monitoring. Chloramphenicol (CP) is used for treating bacterial infections, and it's one of the first antibiotics synthetically manufactured on a large scale. Fabric phase sorptive extraction (FPSE) was used to determine Chloramphenicol antibiotic residues in milk samples by means of validated HPLC-DAD instrumentation. Cellulose fabric phases modified with polyethylene glycol-block-polypropylene glycol-block-polyethylene glycol triblock copolymer was synthesized using sol-gel synthesis approach (Sol-gel PEG-PPG-PEG) and used for batch-type fabric phase extractions. Experimental variables of the FPSE method for antibiotic molecules were investigated and optimized systematically. The HPLC analysis of chloramphenicol was performed using a C18 column, isocratic elution of trifluoroacetic acid (0.1%), methanol, and acetonitrile (17:53:30) with a flow rate of 1.0 mL/min. The linear range for the proposed method for chloramphenicol (r2 > 0.9982) was obtained in the range of 25.0-1000.0 ng/mL. The limit of detections (LOD) is 8.3 ng/mL, while RSDs% are below 4.1%. Finally, the developed method based on FPSE-HPLC-DAD was applied to milk samples to quantitatively determine antibiotic residues.


Subject(s)
Chloramphenicol , Milk , Animals , Chloramphenicol/analysis , Milk/chemistry , Anti-Bacterial Agents/analysis , Chromatography, High Pressure Liquid/methods , Polyethylene Glycols/analysis
13.
J Water Health ; 21(11): 1703-1715, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38017600

ABSTRACT

Illegal mining has overshadowed pharmaceutical pollution even though exposure to pharmaceutical waste is high. Consumption of fish potentially polluted with pharmaceuticals from the rivers continues with little concern or potential threat it poses. In the present study, the residues of one antibiotic (Chloramphenicol), five hormones (progesterone, 17-beta Estradiol, Estrone, 17a-Ethynylestradiol, and one), three environmental contaminants (4-para-nonylphenol, 4-tert-octylphenol, and Bisphenol A), one barbiturate (Primidone) and one analgesic (Diclofenac sodium salt), were investigated from fish samples from the rivers Pra, Narkwa, and the Volta. The results show a high concentration of drugs in River Pra in comparison to those in Rivers Narkwa and Volta. The hazard quotients (HQs) for the environmental contaminants were all above 1, except Bisphenol A. Furthermore, the HQs from this study suggest that consumers of fish from any of the three rivers stand a hazard risk of Chloramphenicol (19), 17a-Ethynylestradiol (4), Estrone (1.366), Diclofenac sodium salt (3.29), Progesterone (4.598), 4-tert-octylphenol (87.2), and 4-para-nonylphenol (7.252), but negligible risk against E2 (0.687), Primidone (0.014), Testosterone (0.16), and Bisphenol A (0.642). Of the fish species studied, the highest concentration of all pharmaceuticals put together is found in Clarias gariepinus, Labeo senegalensis, and Chrysichthys nigrodigitatus in that order.


Subject(s)
Catfishes , Water Pollutants, Chemical , Animals , Estrone , Progesterone/analysis , Ghana , Primidone/analysis , Diclofenac , Pharmaceutical Preparations , Risk Assessment , Chloramphenicol/analysis , Water , Water Pollutants, Chemical/analysis , Rivers/chemistry , Environmental Monitoring/methods
14.
Biosensors (Basel) ; 13(6)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37367025

ABSTRACT

Aptamers are an excellent choice for the selective detection of small molecules. However, the previously reported aptamer for chloramphenicol suffers from low affinity, probably as a result of steric hindrance due to its bulky nature (80 nucleotides) leading to lower sensitivity in analytical assays. The present work was aimed at improving this binding affinity by truncating the aptamer without compromising its stability and three-dimensional folding. Shorter aptamer sequences were designed by systematically removing bases from each or both ends of the original aptamer. Thermodynamic factors were evaluated computationally to provide insight into the stability and folding patterns of the modified aptamers. Binding affinities were evaluated using bio-layer interferometry. Among the eleven sequences generated, one aptamer was selected based on its low dissociation constant, length, and regression of model fitting with association and dissociation curves. The dissociation constant could be lowered by 86.93% by truncating 30 bases from the 3' end of the previously reported aptamer. The selected aptamer was used for the detection of chloramphenicol in honey samples, based on a visible color change upon the aggregation of gold nanospheres caused by aptamer desorption. The detection limit could be reduced 32.87 times (1.673 pg mL-1) using the modified length aptamer, indicating its improved affinity as well as its suitability in real-sample analysis for the ultrasensitive detection of chloramphenicol.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Honey , Metal Nanoparticles , Chloramphenicol/analysis , Chloramphenicol/chemistry , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Honey/analysis , Biosensing Techniques/methods
15.
J Environ Manage ; 342: 118143, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37196621

ABSTRACT

The performance of an electric-integrated vertical flow constructed wetland (E-VFCW) for chloramphenicol (CAP) removal, changes in microbial community structure, and the fate of antibiotic resistance genes (ARGs) were evaluated. CAP removal in the E-VFCW system was 92.73% ± 0.78% (planted) and 90.80% ± 0.61% (unplanted), both were higher than the control system which was 68.17% ± 1.27%. The contribution of anaerobic cathodic chambers in CAP removal was higher than the aerobic anodic chambers. Plant physiochemical indicators in the reactor revealed electrical stimulation increased oxidase activity. Electrical stimulation enhanced the enrichment of ARGs in the electrode layer of the E-VFCW system (except floR). Plant ARGs and intI1 levels were higher in the E-VFCW than in the control system, suggesting electrical stimulation induces plants to absorb ARGs, reducing ARGs in the wetland. The distribution of intI1 and sul1 genes in plants suggests that horizontal transfer may be the main mechanism dispersing ARGs in plants. High throughput sequencing analysis revealed electrical stimulation selectively enriched CAP degrading functional bacteria (Geobacter and Trichlorobacter). Quantitative correlation analysis between bacterial communities and ARGs confirmed the abundance of ARGs relates to the distribution of potential hosts and mobile genetic elements (intI1). E-VFCW is effective in treating antibiotic wastewater, however ARGs potentially accumulate.


Subject(s)
Chloramphenicol , Wetlands , Chloramphenicol/pharmacology , Chloramphenicol/analysis , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Wastewater , Bacteria/genetics
16.
J Hazard Mater ; 451: 131207, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36931217

ABSTRACT

Chloramphenicol (CAP) has a high concentration and detection frequency in aquatic environments due to its insufficient degradation in traditional biological wastewater treatment processes. In this study, bioelectrochemical assistant-constructed wetland systems (BES-CWs) were developed as advanced processes for efficient CAP removal, in which the degradation and transfer of CAP and the fate of antibiotic resistance genes (ARGs) were evaluated. The CAP removal efficiency could reach as high as 90.2%, while the removed CAP can be partially adsorbed and bioaccumulated in plants, significantly affecting plant growth. The vertical gene transfer and horizontal gene transfer increased the abundance of ARGs under high voltage and CAP concentrations. Microbial community analysis showed that CAP pressure and electrical stimulation selected the functional bacteria to increase CAP removal and antibiotic resistance. CAP degradation species carrying ARGs could increase their opposition to the biotoxicity of CAP and maintain system performance. In addition, ARGs are transferred into the plant and upward, which can potentially enter the food chain. This study provides an essential reference for enhancing antibiotic degradation and offers fundamental support for the underlying mechanism and ARG proliferation during antibiotic biodegradation.


Subject(s)
Anti-Bacterial Agents , Wastewater , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Waste Disposal, Fluid , Wetlands , Genes, Bacterial , Chloramphenicol/analysis , Drug Resistance, Microbial/genetics
17.
Biosensors (Basel) ; 13(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36671951

ABSTRACT

Currently, accurate quantification of antibiotics is a prerequisite for health care and environmental governance. The present work demonstrated a novel and effective electrochemical strategy for chloramphenicol (CAP) detection using carbon-doped hexagonal boron nitride (C-BN) as the sensing medium. The C-BN nanosheets were synthesized by a molten-salt method and fully characterized using various techniques. The electrochemical performances of C-BN nanosheets were studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results showed that the electrocatalytic activity of h-BN was significantly enhanced by carbon doping. Carbon doping can provide abundant active sites and improve electrical conductivity. Therefore, a C-BN-modified glassy carbon electrode (C-BN/GCE) was employed to determine CAP by differential pulse voltammetry (DPV). The sensor showed convincing analytical performance, such as a wide concentration range (0.1 µM-200 µM, 200 µM-700 µM) and low limit of detection (LOD, 0.035 µM). In addition, the proposed method had high selectivity and desired stability, and can be applied for CAP detection in actual samples. It is believed that defect-engineered h-BN nanomaterials possess a wide range of applications in electrochemical sensors.


Subject(s)
Chloramphenicol , Conservation of Natural Resources , Chloramphenicol/analysis , Electrochemical Techniques/methods , Environmental Policy , Carbon/chemistry , Electrodes , Limit of Detection
18.
Food Chem ; 410: 135434, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36641911

ABSTRACT

Chloramphenicol (CAP) is a widely used antibiotic for the treatment of sick animals owing to its potent action and low cost. However, the accumulation of CAP in the human body can cause irreversible aplastic anemia and hematopoietic toxicity. Accordingly, development of various analytical techniques for the rapid detection of CAP in animal products and the related processed foods is necessary. Among these analytical techniques, electrochemical and optical sensors offer many advantages for CAP detection, including high sensitivity, simple operation and fast analysis speed. In this review, we summarize recent application of carbon nanomaterials, metal nanoparticles, metal oxide nanoparticles and metal organic framework in the development of electrochemical and optical sensors for CAP detection (2010-2022). Based on the advantages and disadvantages of nanomaterials, electrochemical and optical sensors are summarized in this review. The preparation and synthesis of electrochemical and optical sensors and nanomaterials in the field of rapid detection are prospected.


Subject(s)
Metal Nanoparticles , Nanostructures , Humans , Animals , Chloramphenicol/analysis , Anti-Bacterial Agents/analysis , Food , Electrochemical Techniques/methods
19.
Anal Chim Acta ; 1243: 340841, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36697183

ABSTRACT

Chloramphenicol (CAP) is a harmful antibiotic that inevitably enters our food chain through natural or manmade means. Its ineradicable residue pollutes soils and water, accumulates in plants and animal products, and eventually affects human health. An ultrasensitive method for detecting and monitoring CAP is therefore urgently required. Herein, we report an ultrafast extraction and amperometry detection method based on a graphite-sulfate-modified electrode for detecting CAP in soil, water, and food samples. The graphite sulfate is prepared by the oxidation method and its structural properties are comprehensively investigated. The developed sensor electrode showed a wider linear range of 0.3-32.0 µg kg-1 and an ultralow detection limit of 0.1 µg kg-1, both of which meet the European Commission Reg 1871/2019 reference points for action. The method works well with both meat and plant samples, achieving CAP recoveries ranging from 90.8 to 99.1% even at low concentrations. Moreover, the sensor electrode shows more than 95% selectivity toward CAP detection in the soil, water, and food matrices. The developed method exhibits good repeatability and reproducibility in the analysis of real samples.


Subject(s)
Anti-Bacterial Agents , Graphite , Animals , Humans , Anti-Bacterial Agents/analysis , Chloramphenicol/analysis , Graphite/chemistry , Water/analysis , Reproducibility of Results , Soil , Limit of Detection
20.
Food Chem ; 408: 135174, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36535184

ABSTRACT

In this presented work, an artificial deoxyribozyme was employed as the substitute for horseradish peroxidase (or alkaline phosphatase) in ELISA for generating amplified signals. The feasibility of the proposed deoxyribozyme-based ELISA (DLISA) was demonstrated in the detection of a forbidden veterinary drug, chloramphenicol. And its efficiency was praised since that ultrahigh sensitivity was accomplished with a detection limit of 0.1 ng/L. The wide linear range from 0.000001 µg/mL to 1.0 µg/mL, as well as good recoveries from 86 % to 104 % in whole milk samples showed its excellent practical performances. Besides, the DLISA was worth popularizing due to the easy connection of antibody and DNAzyme through a facile functionalization process of gold nanoparticles. These advantages showed the possibility of DLISA for developing commercial kits, and the utilization of flexible DNA fluorescent probes in DLISA would inspire more work on innovations.


Subject(s)
DNA, Catalytic , Metal Nanoparticles , Animals , Chloramphenicol/analysis , Immunosorbents/analysis , Gold/analysis , Milk/chemistry , RNA , Enzyme-Linked Immunosorbent Assay , Limit of Detection , Immunoassay
SELECTION OF CITATIONS
SEARCH DETAIL
...