Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791551

ABSTRACT

Rotavirus is the main cause of acute diarrhea in children up to five years of age. In this regard, probiotics are commonly used to treat or prevent gastroenteritis including viral infections. The anti-rotavirus effect of Bifidobacterium longum and Chlorella sorokiniana, by reducing viral infectivity and improving IFN-type I response, has been previously reported. The present study aimed to study the effect of B. longum and/or C. sorokiniana on modulating the antiviral cellular immune response mediated by IFN-γ, IL-10, SOCS3, STAT1, and STAT2 genes in rotavirus-infected cells. To determine the mRNA relative expression of these genes, HT-29 cells were treated with B. longum and C. sorokiniana alone or in combination, followed by rotavirus infection. In addition, infected cells were treated with B. longum and/or C. sorokiniana. Cellular RNA was purified, used for cDNA synthesis, and amplified by qPCR. Our results demonstrated that the combination of B. longum and C. sorokiniana stimulates the antiviral cellular immune response by upregulating IFN-γ and may block pro-inflammatory cytokines by upregulating IL-10 and SOCS3. The results of our study indicated that B. longum, C. sorokiniana, or their combination improve antiviral cellular immune response and might modulate pro-inflammatory responses.


Subject(s)
Bifidobacterium longum , Chlorella , Interferon-gamma , Interleukin-10 , Probiotics , Rotavirus Infections , Rotavirus , Suppressor of Cytokine Signaling 3 Protein , Humans , Interleukin-10/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Interferon-gamma/metabolism , Probiotics/pharmacology , Rotavirus Infections/immunology , Rotavirus Infections/virology , Chlorella/virology , HT29 Cells , STAT1 Transcription Factor/metabolism
2.
J Virol ; 97(5): e0027523, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37133447

ABSTRACT

Viruses can have large effects on the ecological communities in which they occur. Much of this impact comes from the mortality of host cells, which simultaneously alters microbial community composition and causes the release of matter that can be used by other organisms. However, recent studies indicate that viruses may be even more deeply integrated into the functioning of ecological communities than their effect on nutrient cycling suggests. In particular, chloroviruses, which infect chlorella-like green algae that typically occur as endosymbionts, participate in three types of interactions with other species. Chlororviruses (i) can lure ciliates from a distance, using them as a vector; (ii) depend on predators for access to their hosts; and (iii) get consumed as a food source by, at least, a variety of protists. Therefore, chloroviruses both depend on and influence the spatial structures of communities as well as the flows of energy through those communities, driven by predator-prey interactions. The emergence of these interactions are an eco-evolutionary puzzle, given the interdependence of these species and the many costs and benefits that these interactions generate.


Subject(s)
Chlorella , Food Chain , Phycodnaviridae , Biological Evolution , Chlorella/virology
3.
J Virol ; 96(7): e0211421, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35262372

ABSTRACT

Virophages are a group of small double-stranded DNA viruses that infect protist hosts and parasitize the viral factory of host giant/large viruses to propagate. Here, we discover a novel cell-virus-virophage (CVv) tripartite interaction system by using unicellular micro-green algae (Chlorella sp.) as eukaryotic hosts for the first time. Viral particles, resembling known virophages and large alga viruses, are detected in culture supernatants and inside algal cells. Complete genomic sequences of the virophage (Chlorella virus virophage SW01 [CVv-SW01]; 24,744 bp) and large virus (Chlorella virus XW01 [CV-XW01]; 407,612 bp) are obtained from the cocultures. Both genomic and phylogenetic analyses show that CVv-SW01 is closely related to virophages previously found in Dishui Lake. CV-XW01 shares the greatest number of homologous genes (n = 82) with Cafeteria roenbergensis virus (CroV) and phylogenetically represents the closest relative to CroV. This is the first report of a large green alga virus being affiliated with a heterotrophic zooplankton-infecting Cafeteriavirus of the family Mimiviridae. Moreover, the codon usage preferences of CV-XW01 and CVv-SW01 are highly similar to those of CroV and its virophage Mavirus, respectively. The discovery of such a novel CVv system with the green alga Chlorella sp. as the single cellular eukaryotic host paves a way to further investigate the potential interaction mechanism of CVv and its significance in the ecology of green algae and the evolution of large/giant viruses and their parasitic viruses. IMPORTANCE Parasitic virophages are small unicellular eukaryotic dsDNA viruses that rely on the viral factories of coinfecting giant/large dsDNA viruses for propagation. Presently, the identified eukaryotic hosts of isolated virophages were restricted to a free-living amoeba, Acanthamoeba polyphaga, and a widespread marine heterotrophic flagellate, Cafeteria roenbergensis. In this study, we successfully discovered and identified a novel tripartite interaction system comprised of a micro-green alga (Chlorella sp.), Mimiviridae large green alga virus, and virophage at the coculture level, with Chlorella sp. as the eukaryotic host, based on combination analysis of infection, morphotype, genome, and phylogeny. The large green alga virus CV-XW01 represents the closest relative to the Mimiviridae giant virus Cafeteria roenbergensis virus, host virus of the virophage Mavirus, as well as a novel large virus of Mimiviridae that infects a non-protozoan protist host. The virophage CVv-SW01 highly resembles Mavirus in its codon usage frequency and preference, although they are phylogenetically distantly related. These findings give novel insights into the diversity of large/giant viruses and their virophages.


Subject(s)
Mimiviridae , Phycodnaviridae , Virophages , Chlorella/virology , DNA Viruses/genetics , Genome, Viral , Giant Viruses/genetics , Mimiviridae/genetics , Mimiviridae/isolation & purification , Phycodnaviridae/genetics , Phycodnaviridae/isolation & purification , Phylogeny , Virophages/genetics , Virophages/isolation & purification
4.
J Virol ; 96(2): e0136721, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34669449

ABSTRACT

Chloroviruses (family Phycodnaviridae) are large double-stranded DNA (dsDNA) viruses that infect unicellular green algae present in inland waters. These viruses have been isolated using three main chlorella-like green algal host cells, traditionally called NC64A, SAG, and Pbi, revealing extensive genetic diversity. In this study, we performed a functional genomic analysis on 36 chloroviruses that infected the three different hosts. Phylogenetic reconstruction based on the DNA polymerase B family gene clustered the chloroviruses into three distinct clades. The viral pan-genome consists of 1,345 clusters of orthologous groups of genes (COGs), with 126 COGs conserved in all viruses. Totals of 368, 268, and 265 COGs are found exclusively in viruses that infect NC64A, SAG, and Pbi algal hosts, respectively. Two-thirds of the COGs have no known function, constituting the "dark pan-genome" of chloroviruses, and further studies focusing on these genes may identify important novelties. The proportions of functionally characterized COGs composing the pan-genome and the core-genome are similar, but those related to transcription and RNA processing, protein metabolism, and virion morphogenesis are at least 4-fold more represented in the core genome. Bipartite network construction evidencing the COG sharing among host-specific viruses identified 270 COGs shared by at least one virus from each of the different host groups. Finally, our results reveal an open pan-genome for chloroviruses and a well-established core genome, indicating that the isolation of new chloroviruses can be a valuable source of genetic discovery. IMPORTANCE Chloroviruses are large dsDNA viruses that infect unicellular green algae distributed worldwide in freshwater environments. They comprise a genetically diverse group of viruses; however, a comprehensive investigation of the genomic evolution of these viruses is still missing. Here, we performed a functional pan-genome analysis comprising 36 chloroviruses associated with three different algal hosts in the family Chlorellaceae, referred to as zoochlorellae because of their endosymbiotic lifestyle. We identified a set of 126 highly conserved genes, most of which are related to essential functions in the viral replicative cycle. Several genes are unique to distinct isolates, resulting in an open pan-genome for chloroviruses. This profile is associated with generalist organisms, and new insights into the evolution and ecology of chloroviruses are presented. Ultimately, our results highlight the potential for genetic diversity in new isolates.


Subject(s)
Genome, Viral , Phycodnaviridae/genetics , Chlorella/classification , Chlorella/virology , DNA, Viral/genetics , Genetic Variation , Genome, Viral/genetics , Genomics , Host Specificity , Phycodnaviridae/classification , Phycodnaviridae/isolation & purification , Phylogeny , Viral Proteins/genetics
5.
PLoS One ; 16(10): e0252696, 2021.
Article in English | MEDLINE | ID: mdl-34673785

ABSTRACT

Genetic and molecular modifications of the large dsDNA chloroviruses, with genomes of 290 to 370 kb, would expedite studies to elucidate the functions of both identified and unidentified virus-encoded proteins. These plaque-forming viruses replicate in certain unicellular, eukaryotic chlorella-like green algae. However, to date, only a few of these algal species and virtually none of their viruses have been genetically manipulated due to lack of practical methods for genetic transformation and genome editing. Attempts at using Agrobacterium-mediated transfection of chlorovirus host Chlorella variabilis NC64A with a specially-designed binary vector resulted in successful transgenic cell selection based on expression of a hygromycin-resistance gene, initial expression of a green fluorescence gene and demonstration of integration of Agrobacterium T-DNA. However, expression of the integrated genes was soon lost. To develop gene editing tools for modifying specific chlorovirus CA-4B genes using preassembled Cas9 protein-sgRNA ribonucleoproteins (RNPs), we tested multiple methods for delivery of Cas9/sgRNA RNP complexes into infected cells including cell wall-degrading enzymes, electroporation, silicon carbide (SiC) whiskers, and cell-penetrating peptides (CPPs). In one experiment two independent virus mutants were isolated from macerozyme-treated NC64A cells incubated with Cas9/sgRNA RNPs targeting virus CA-4B-encoded gene 034r, which encodes a glycosyltransferase. Analysis of DNA sequences from the two mutant viruses showed highly targeted nucleotide sequence modifications in the 034r gene of each virus that were fully consistent with Cas9/RNP-directed gene editing. However, in ten subsequent experiments, we were unable to duplicate these results and therefore unable to achieve a reliable system to genetically edit chloroviruses. Nonetheless, these observations provide strong initial suggestions that Cas9/RNPs may function to promote editing of the chlorovirus genome, and that further experimentation is warranted and worthwhile.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/genetics , Phycodnaviridae/genetics , Transformation, Genetic/genetics , Agrobacterium/virology , Chlorella/virology , DNA Viruses/genetics , Electroporation/methods , Gene Editing/methods , Ribonucleoproteins/genetics , Viral Proteins/genetics
6.
Microscopy (Oxf) ; 70(6): 477-486, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34490462

ABSTRACT

High-resolution study of the giant viruses presents one of the latest challenges in cryo-electron microscopy (EM) of viruses. Too small for light microscopy but too large for easy study at high resolution by EM, they range in size from ∼0.2 to 2 µm from high-symmetry icosahedral viruses, such as Paramecium burseria Chlorella virus 1, to asymmetric forms like Tupanvirus or Pithovirus. To attain high resolution, two strategies exist to study these large viruses by cryo-EM: first, increasing the acceleration voltage of the electron microscope to improve sample penetration and overcome the limitations imposed by electro-optical physics at lower voltages, and, second, the method of 'block-based reconstruction' pioneered by Michael G. Rossmann and his collaborators, which resolves the latter limitation through an elegant leveraging of high symmetry but cannot overcome sample penetration limitations. In addition, more recent advances in both computational capacity and image processing also yield assistance in studying the giant viruses. Especially, the inclusion of Ewald sphere correction can provide large improvements in attainable resolutions for 300 kV electron microscopes. Despite this, the study of giant viruses remains a significant challenge.


Subject(s)
Chlorella , Cryoelectron Microscopy , Giant Viruses , Chlorella/virology , Giant Viruses/isolation & purification
7.
Viruses ; 13(5)2021 04 28.
Article in English | MEDLINE | ID: mdl-33924931

ABSTRACT

Chloroviruses are unusual among viruses infecting eukaryotic organisms in that they must, like bacteriophages, penetrate a rigid cell wall to initiate infection. Chlorovirus PBCV-1 infects its host, Chlorella variabilis NC64A by specifically binding to and degrading the cell wall of the host at the point of contact by a virus-packaged enzyme(s). However, PBCV-1 does not use any of the five previously characterized virus-encoded polysaccharide degrading enzymes to digest the Chlorella host cell wall during virus entry because none of the enzymes are packaged in the virion. A search for another PBCV-1-encoded and virion-associated protein identified protein A561L. The fourth domain of A561L is a 242 amino acid C-terminal domain, named A561LD4, with cell wall degrading activity. An A561LD4 homolog was present in all 52 genomically sequenced chloroviruses, infecting four different algal hosts. A561LD4 degraded the cell walls of all four chlorovirus hosts, as well as several non-host Chlorella spp. Thus, A561LD4 was not cell-type specific. Finally, we discovered that exposure of highly purified PBCV-1 virions to A561LD4 increased the specific infectivity of PBCV-1 from about 25-30% of the particles forming plaques to almost 50%. We attribute this increase to removal of residual host receptor that attached to newly replicated viruses in the cell lysates.


Subject(s)
Cell Wall/metabolism , Chlorella/metabolism , Chlorella/virology , DNA Ligases/metabolism , Host-Pathogen Interactions , Phycodnaviridae/physiology , Viral Proteins/metabolism , Amino Acid Sequence , Chlorophyll/metabolism , DNA Ligases/chemistry , DNA Ligases/genetics , Enzyme Activation , Phycodnaviridae/classification , Phycodnaviridae/genetics , Phycodnaviridae/ultrastructure , Phylogeny , Species Specificity , Viral Proteins/chemistry , Viral Proteins/genetics , Virion , Virus Attachment
8.
Curr Opin Virol ; 47: 79-85, 2021 04.
Article in English | MEDLINE | ID: mdl-33647556

ABSTRACT

The virosphere is fascinatingly vast and diverse, but as mandatory intracellular parasites, viral particles must reach the intracellular space to guarantee their species' permanence on the planet. While most known viruses that infect animals explore the endocytic pathway to enter the host cell, a diverse group of ancient viruses that make up the phylum Nucleocytoviricota appear to have evolved to explore new access' routes to the cell's cytoplasm. Giant viruses of amoeba take advantage of the phagocytosis process that these organisms exploit a lot, while phycodnavirus must actively break through a algal cellulose cell wall. The mechanisms of entry into the cell and the viruses themselves are diverse, varying in the steps of adhesion, entry, and uncoating. These are clues left by evolution about how these organisms shaped and were shaped by convoluting with eukaryotes.


Subject(s)
Giant Viruses/physiology , Virus Internalization , Amoeba/virology , Animals , Biological Coevolution , Chlorella/virology , Giant Viruses/classification , Virus Attachment , Virus Uncoating
9.
Viral Immunol ; 34(1): 41-48, 2021.
Article in English | MEDLINE | ID: mdl-33074779

ABSTRACT

Nucleocytoplasmic large DNA viruses (NCLDVs) are a group of large viruses that infect a wide range of hosts, from animals to protists. These viruses are grouped together in NCLDV based on genomic sequence analyses. They share a set of essential genes for virion morphogenesis and replication. Most NCLDVs generally have large physical sizes while their morphologies vary in different families, such as icosahedral, brick, or oval shape, raising the question of the possible regulatory factor on their morphogenesis. The capsids of icosahedral NCLDVs are assembled from small building blocks, named capsomers, which are the trimeric form of the major capsid proteins. Note that the capsids of immature poxvirus are spherical even though they are assembled from capsomers that share high structural conservation with those icosahedral NCLDVs. The recently published high resolution structure of NCLDVs, Paramecium bursaria Chlorella virus 1 and African swine fever virus, described the intensive network of minor capsid proteins that are located underneath the capsomers. Among these minor proteins is the elongated tape measure protein (TmP) that spans from one icosahedral fivefold vertex to another. In this study, we focused on the critical roles that TmP plays in the assembly of icosahedral NCLDV capsids, answering a question raised in a previously proposed spiral mechanism. Interestingly, basic local alignment search on the TmPs showed no significant hits in poxviruses, which might be the factor that differentiates poxviruses and icosahedral NCLDVs in their morphogenesis.


Subject(s)
Capsid Proteins/metabolism , Capsid/chemistry , Capsid/metabolism , DNA Viruses/chemistry , DNA Viruses/metabolism , Virus Assembly , African Swine Fever Virus/chemistry , African Swine Fever Virus/metabolism , Animals , Chlorella/virology , Swine
10.
Org Lett ; 22(19): 7645-7649, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32940477

ABSTRACT

Chloroviruses produce a capsid protein containing N-linked glycans differing in structure from those found in all other organisms. These species feature a core "hyper-branched" fucose residue in which every hydroxyl group is glycosylated. We describe the synthesis of a nonasaccharide from Paramecium bursaria chlorella virus 1, one of most complex chlorovirus N-glycans reported, using a "counterclockwise" strategy involving the sequential addition of trisaccharide, disaccharide, and monosaccharide motifs to a trisaccharide containing the core fucose residue.


Subject(s)
Capsid Proteins/metabolism , Chlorella/virology , Fucose/chemistry , Monosaccharides/chemistry , Phycodnaviridae/chemistry , Polysaccharides/chemistry , Capsid Proteins/chemistry , Chlorella/metabolism , Glycosylation , Molecular Structure
11.
Viruses ; 12(6)2020 06 23.
Article in English | MEDLINE | ID: mdl-32585987

ABSTRACT

Chloroviruses are large, plaque-forming, dsDNA viruses that infect chlorella-like green algae that live in a symbiotic relationship with protists. Chloroviruses have genomes from 290 to 370 kb, and they encode as many as 400 proteins. One interesting feature of chloroviruses is that they encode a potassium ion (K+) channel protein named Kcv. The Kcv protein encoded by SAG chlorovirus ATCV-1 is one of the smallest known functional K+ channel proteins consisting of 82 amino acids. The KcvATCV-1 protein has similarities to the family of two transmembrane domain K+ channel proteins; it consists of two transmembrane α-helixes with a pore region in the middle, making it an ideal model for studying K+ channels. To assess their genetic diversity, kcv genes were sequenced from 103 geographically distinct SAG chlorovirus isolates. Of the 103 kcv genes, there were 42 unique DNA sequences that translated into 26 new Kcv channels. The new predicted Kcv proteins differed from KcvATCV-1 by 1 to 55 amino acids. The most conserved region of the Kcv protein was the filter, the turret and the pore helix were fairly well conserved, and the outer and the inner transmembrane domains of the protein were the most variable. Two of the new predicted channels were shown to be functional K+ channels.


Subject(s)
Chlorella/virology , Genome, Viral/genetics , Phycodnaviridae/genetics , Potassium Channels/genetics , Viral Proteins/genetics , Amino Acid Sequence/genetics , Base Sequence , DNA, Viral/genetics , Genetic Variation/genetics , Phycodnaviridae/metabolism , Protein Domains/genetics , Sequence Analysis, DNA
12.
Viruses ; 12(1)2019 12 23.
Article in English | MEDLINE | ID: mdl-31878033

ABSTRACT

Chloroviruses are large dsDNA, plaque-forming viruses that infect certain chlorella-like green algae; the algae are normally mutualistic endosymbionts of protists and metazoans and are often referred to as zoochlorellae. The viruses are ubiquitous in inland aqueous environments throughout the world and occasionally single types reach titers of thousands of plaque-forming units per ml of native water. The viruses are icosahedral in shape with a spike structure located at one of the vertices. They contain an internal membrane that is required for infectivity. The viral genomes are 290 to 370 kb in size, which encode up to 16 tRNAs and 330 to ~415 proteins, including many not previously seen in viruses. Examples include genes encoding DNA restriction and modification enzymes, hyaluronan and chitin biosynthetic enzymes, polyamine biosynthetic enzymes, ion channel and transport proteins, and enzymes involved in the glycan synthesis of the virus major capsid glycoproteins. The proteins encoded by many of these viruses are often the smallest or among the smallest proteins of their class. Consequently, some of the viral proteins are the subject of intensive biochemical and structural investigation.


Subject(s)
Chlorella/virology , Phycodnaviridae/physiology , Virus Physiological Phenomena , Biotechnology , Gene Expression Regulation, Viral , Genome, Viral , Genomics/methods , Life Cycle Stages , Phycodnaviridae/ultrastructure , Structure-Activity Relationship , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
13.
Channels (Austin) ; 13(1): 124-135, 2019 12.
Article in English | MEDLINE | ID: mdl-31010373

ABSTRACT

Some algal viruses have coding sequences for proteins with structural and functional characteristics of pore modules of complex K+ channels. Here we exploit the structural diversity among these channel orthologs to discover new basic principles of structure/function correlates in K+ channels. The analysis of three similar K+ channels with ≤ 86 amino acids (AA) shows that one channel (Kmpv1) generates an ohmic conductance in HEK293 cells while the other two (KmpvSP1, KmpvPL1) exhibit typical features of canonical Kir channels. Like Kir channels, the rectification of the viral channels is a function of the K+ driving force. Reconstitution of KmpvSP1 and KmpvPL1 in planar lipid bilayers showed rapid channel fluctuations only at voltages negative of the K+ reversal voltage. This rectification was maintained in KCl buffer with 1 mM EDTA, which excludes blocking cations as the source of rectification. This means that rectification of the viral channels must be an inherent property of the channel. The structural basis for rectification was investigated by a chimera between rectifying and non-rectifying channels as well as point mutations making the rectifier similar to the ohmic conducting channel. The results of these experiments exclude the pore with pore helix and selectivity filter as playing a role in rectification. The insensitivity of the rectifier to point mutations suggests that tertiary or quaternary structural interactions between the transmembrane domains are responsible for this type of gating.


Subject(s)
Plant Viruses/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Viral Proteins/metabolism , Amino Acid Sequence , Chlorella/virology , HEK293 Cells , Humans , Plant Viruses/chemistry , Plant Viruses/genetics , Potassium/metabolism , Potassium Channels, Inwardly Rectifying/chemistry , Potassium Channels, Inwardly Rectifying/genetics , Sequence Alignment , Viral Proteins/chemistry , Viral Proteins/genetics
14.
J Biol Chem ; 294(14): 5688-5699, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30737276

ABSTRACT

The chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) is a large dsDNA virus that infects the microalga Chlorella variabilis NC64A. Unlike most other viruses, PBCV-1 encodes most, if not all, of the machinery required to glycosylate its major capsid protein (MCP). The structures of the four N-linked glycans from the PBCV-1 MCP consist of nonasaccharides, and similar glycans are not found elsewhere in the three domains of life. Here, we identified the roles of three virus-encoded glycosyltransferases (GTs) that have four distinct GT activities in glycan synthesis. Two of the three GTs were previously annotated as GTs, but the third GT was identified in this study. We determined the GT functions by comparing the WT glycan structures from PBCV-1 with those from a set of PBCV-1 spontaneous GT gene mutants resulting in antigenic variants having truncated glycan structures. According to our working model, the virus gene a064r encodes a GT with three domains: domain 1 has a ß-l-rhamnosyltransferase activity, domain 2 has an α-l-rhamnosyltransferase activity, and domain 3 is a methyltransferase that decorates two positions in the terminal α-l-rhamnose (Rha) unit. The a075l gene encodes a ß-xylosyltransferase that attaches the distal d-xylose (Xyl) unit to the l-fucose (Fuc) that is part of the conserved N-glycan core region. Last, gene a071r encodes a GT that is involved in the attachment of a semiconserved element, α-d-Rha, to the same l-Fuc in the core region. Our results uncover GT activities that assemble four of the nine residues of the PBCV-1 MCP N-glycans.


Subject(s)
Antigens, Viral/metabolism , Capsid Proteins/metabolism , Chlorella/metabolism , Glycosyltransferases/metabolism , Phycodnaviridae/enzymology , Polysaccharides/metabolism , Antigens, Viral/genetics , Antigens, Viral/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Chlorella/genetics , Chlorella/virology , Glycosyltransferases/genetics , Glycosyltransferases/immunology , Phycodnaviridae/genetics , Phycodnaviridae/immunology , Polysaccharides/genetics , Polysaccharides/immunology
15.
Adv Exp Med Biol ; 1104: 237-257, 2018.
Article in English | MEDLINE | ID: mdl-30484252

ABSTRACT

The capsid of Paramecium bursaria chlorella virus (PBCV-1) contains a heavily glycosylated major capsid protein, Vp54. The capsid protein contains four glycans, each N-linked to Asn. The glycan structures are unusual in many aspects: (1) they are attached by a ß-glucose linkage, which is rare in nature; (2) they are highly branched and consist of 8-10 neutral monosaccharides; (3) all four glycoforms contain a dimethylated rhamnose as the capping residue of the main chain, a hyper-branched fucose residue and two rhamnose residues ''with opposite absolute configurations; (4) the four glycoforms differ by the nonstoichiometric presence of two monosaccharides, L-arabinose and D-mannose ; (5) the N-glycans from all of the chloroviruses have a strictly conserved core structure; and (6) these glycans do not resemble any structures previously reported in the three domains of life.The structures of these N-glycoforms remained elusive for years because initial attempts to solve their structures used tools developed for eukaryotic-like systems, which we now know are not suitable for this noncanonical glycosylation pattern. This chapter summarizes the methods used to solve the chlorovirus complex glycan structures with the hope that these methodologies can be used by scientists facing similar problems.


Subject(s)
Capsid Proteins/chemistry , Chlorella/virology , Glycosylation , Phycodnaviridae/chemistry , Polysaccharides/chemistry
16.
Viruses ; 10(8)2018 08 19.
Article in English | MEDLINE | ID: mdl-30126254

ABSTRACT

The motivation for focusing on a specific virus is often its importance in terms of impact on human interests. The chlorella viruses are a notable exception and 40 years of research has made them the undisputed model system for large icosahedral dsDNA viruses infecting eukaryotes. Their status has changed from inconspicuous and rather odd with no ecological relevance to being the Phycodnaviridae type strain possibly affecting humans and human cognitive functioning in ways that remain to be understood. The Van Etten legacy is the backbone for research on Phycodnaviridae. After highlighting some of the peculiarities of chlorella viruses, we point to some issues and questions related to the viruses we choose for our research, our prejudices, what we are still missing, and what we should be looking for.


Subject(s)
Chlorella/virology , Paramecium/physiology , Phycodnaviridae/genetics , Phycodnaviridae/classification , Phycodnaviridae/isolation & purification , Phylogeny , Seawater , Symbiosis , Terminology as Topic
17.
Nat Commun ; 9(1): 1706, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29703896

ABSTRACT

Predicting the repeatability of evolution remains elusive. Theory and empirical studies suggest that strong selection and large population sizes increase the probability for parallel evolution at the phenotypic and genotypic levels. However, selection and population sizes are not constant, but rather change continuously and directly affect each other even on short time scales. Here, we examine the degree of parallel evolution shaped through eco-evolutionary dynamics in an algal host population coevolving with a virus. We find high degrees of parallelism at the level of population size changes (ecology) and at the phenotypic level between replicated populations. At the genomic level, we find evidence for parallelism, as the same large genomic region was duplicated in all replicated populations, but also substantial novel sequence divergence between replicates. These patterns of genome evolution can be explained by considering population size changes as an important driver of rapid evolution.


Subject(s)
Biological Coevolution/physiology , Chlorella/physiology , Host-Pathogen Interactions/physiology , Phycodnaviridae/physiology , Selection, Genetic/physiology , Adaptation, Physiological , Chlorella/virology , Genetic Variation , Phenotype
18.
Microb Ecol ; 75(4): 847-853, 2018 May.
Article in English | MEDLINE | ID: mdl-29119315

ABSTRACT

Many chloroviruses replicate in endosymbiotic zoochlorellae that are protected from infection by their symbiotic host. To reach the high virus concentrations that often occur in natural systems, a mechanism is needed to release zoochlorellae from their hosts. We demonstrate that the ciliate predator Didinium nasutum foraging on zoochlorellae-bearing Paramecium bursaria can release live zoochlorellae from the ruptured prey cell that can then be infected by chloroviruses. The catalysis process is very effective, yielding roughly 95% of the theoretical infectious virus yield as determined by sonication of P. bursaria. Chlorovirus activation is more effective with smaller Didinia, as larger Didinia typically consume entire P. bursaria cells without rupturing them, precluding the release of zoochlorellae. We also show that the timing of Chlorovirus growth is tightly linked to the predator-prey cycle between Didinium and Paramecium, with the most rapid increase in chloroviruses temporally linked to the peak foraging rate of Didinium, supporting the idea that predator-prey cycles can drive cycles of Chlorovirus abundance.


Subject(s)
Ciliophora/physiology , Host-Pathogen Interactions/physiology , Paramecium/virology , Phycodnaviridae/physiology , Predatory Behavior , Symbiosis , Animals , Catalysis , Chlorella/virology , DNA Viruses , Food Chain , Phycodnaviridae/growth & development , Population Dynamics
19.
J Biosci Bioeng ; 125(3): 311-315, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29100685

ABSTRACT

Chlorella viruses or chloroviruses contain a gene that encodes an enzyme that catalyzes chitin synthesis. This gene is expressed early in viral infections to produce chitin on the outside of the Chlorella cell wall. Interestingly, chitin synthesis by microalgal Chlorella cells in combination with chloroviruses represents a unique eco-friendly process for converting solar energy and CO2 into useful materials. However, during the final viral infection stage, the host cells are completely lysed, so chitin should be harvested before cells lyse. To increase chitin yields, slow-growing chlorovirus isolates were adopted and the viral replication process was modified with an inhibitor of DNA synthesis. The accumulation of chitin on the surface of Chlorella cells infected with one of nine chlorovirus isolates carrying the chitin synthase gene was compared with that of CVK2 (a standard virus)-infected cells. Chlorella cells infected with CVNF-1 (a slow-growing virus) accumulated chitin over the entire cell surface within 15 min post-infection (p.i.), and chitin continued to accumulate for up to 8 h p.i. before cells lysed. This was 2-fold longer than the chitin-accumulation period for cells infected with CVK2. The addition of aphidicolin delayed the progression of the virus replication cycle and extended the chitin-accumulation period of CVNF-1-infected cells to 12 h p.i. before cells lysed. Additionally, chitin production in the aphidicolin-treated CVNF-1-infected cells was approximately 6-fold higher than in CVK2-infected cells not treated with aphidicolin. Thus, chitin synthesis in a Chlorella-virus system may be prolonged by using slow-growing viral isolates treated with aphidicolin.


Subject(s)
Aphidicolin/pharmacology , Chitin/metabolism , Chlorella/metabolism , Chlorella/virology , Phycodnaviridae/physiology , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Wall/drug effects , Cell Wall/metabolism , Chlorella/drug effects , Phycodnaviridae/drug effects , Phycodnaviridae/growth & development , Virus Replication/drug effects , Virus Replication/physiology
20.
Math Biosci Eng ; 16(1): 234-264, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30674119

ABSTRACT

Human activities alter elemental nutrient cycling, which can have profound impacts on agriculture, grasslands, lakes, and other systems. It is becoming increasingly clear that enhanced nitrogen and phosphorus levels can affect disease dynamics across a range of taxa. However, there are few mathematical models that explicitly incorporate nutrients into host-pathogen interactions. Using viral load and plant mass data from an experiment with cereal yellow dwarf virus and its host plant, Avena sativa, we propose and compare two models describing the overall infection dynamics. However, the first model considers nutrient-limited virus production while the other considers a nutrient-induced viral production delay. A virus reproduction number is derived for this nutrient model, which depends on environmental and physiological attributes. Results suggest that including nutrient mediated viral production mechanisms can give rise to robust models that can be used to untangle how nutrients impact pathogen dynamics.


Subject(s)
Chlorella/virology , Nutrients , Phycodnaviridae , Plant Diseases/virology , Carbon/chemistry , Ecology , Host-Pathogen Interactions , Models, Theoretical , Nitrogen/chemistry , Phloem , Phosphorus/chemistry , Poaceae , Virion
SELECTION OF CITATIONS
SEARCH DETAIL
...