Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(20): 30256-30268, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38602639

ABSTRACT

There are many studies on the toxic effects of single nanoparticles on microalgae; however, many types of nanoparticles are present in the ocean, and more studies on the combined toxic effects of multiple nanoparticles on microalgae are needed. The single and combined toxic effects of nCu and nSiO2 on Dunaliella salina were investigated through changes in instantaneous fluorescence rate (Ft) and antioxidant parameters during 96-h growth inhibition tests. It was found that the toxic effect of nCu on D. salina was greater than that of nSiO2, and both showed time and were dose-dependent with the greatest growth inhibition at 96 h. A total of 0.5 mg/L nCu somewhat promoted the growth of microalgae, but 4.5 and 5.5 mg/L nCu showed negative growth effects on microalgae. The Ft of D. salina was also inhibited by increasing concentrations of nanoparticles and exposure time. nCu suppressed the synthesis of TP and elevated the MDA content of D. salina, which indicated the lipid peroxidation of algal cells. The activities of SOD and CAT showed a trend of increasing and then decreasing with the increase of nCu concentration, suggesting that the enzyme activity first increased and then decreased. The toxic effect of a high concentration of nCu was reduced after the addition of nSiO2. SEM and EDS images showed that nSiO2 could adsorb nCu in seawater. nSiO2 also adsorbed Cu2+ in the cultures, thus reducing the toxic effect of nCu on D. salina to a certain extent. TEM image was used to observe the morphology of algal cells exposed to nCu.


Subject(s)
Microalgae , Microalgae/drug effects , Chlorophyceae/drug effects , Nanoparticles/toxicity
2.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38533661

ABSTRACT

AIMS: This study explored the effects of slightly acidic electrolyzed water (SAEW) on algae to exploit technologies that effectively suppress algal growth in hydroponic systems and improve crop yield. METHODS AND RESULTS: The effects of SAEW on algal growth and the response mechanisms of algae to SAEW were investigated. Moreover, we studied whether the application of SAEW adversely affected tomato seedling growth. The results showed that SAEW significantly inhibited algal growth and destroyed the integrity of the algal cells. In addition, the intracellular oxidation-reduction system of algae was greatly influenced by SAEW. The H2O2, O2-, malondialdehyde (MDA), and reactive oxygen species (ROS) fluorescence signals were significantly induced by SAEW, and superoxide dismutase (SOD), peroxidase (POD), and glutathione reductase (GR) activities were greatly enhanced by a low SAEW concentration but significantly inhibited by SAEW with a high available chlorine concentration, which may contribute to heavy oxidative stress on algal growth and cell structure break down, eventually causing the death of algae and cell number decrease. We also found that regardless of the concentration of SAEW (from 10 to 40 mg L-1), there was no significant change in the germination index, length, or fresh weight of the hydroponic tomato seedlings. CONCLUSIONS: Our findings demonstrate that SAEW can be used in hydroponic systems to restrain algae with no negative impact on tomato plants.


Subject(s)
Hydrogen Peroxide , Hydroponics , Microalgae , Solanum lycopersicum , Water , Microalgae/growth & development , Microalgae/metabolism , Solanum lycopersicum/growth & development , Hydrogen Peroxide/metabolism , Water/metabolism , Malondialdehyde/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Electrolysis , Superoxide Dismutase/metabolism , Glutathione Reductase/metabolism , Seedlings/growth & development , Seedlings/drug effects , Seedlings/metabolism , Chlorophyceae/drug effects , Chlorophyceae/growth & development , Oxidation-Reduction
3.
Environ Toxicol Pharmacol ; 87: 103727, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34454063

ABSTRACT

The intensive use of the antihypertensive losartan potassium (LOS) has culminated in its high occurrence in aquatic environments. However, insufficient studies had investigated its effects in non-target organisms. In this study, ecotoxicity of LOS was assessed in aquatic organisms from distinct trophic levels (Desmodesmus subspicatus, Daphnia magna, and Astyanax altiparanae). Genotoxicity was assessed by the comet assay in D. magna and A. altiparanae, and biochemical biomarkers for the fish. LOS was more toxic to D. subspicatus (EC50(72h) = 27.93 mg L-1) than D. magna (EC50 = 303.69 mg L-1). Subsequently, this drug showed to induce more DNA damage in D. magna than A. altiparanae, when exposed to 2.5 mg L-1. No significant stress responses were observed by the fish biomarkers, suggesting that higher trophic levels organisms are more tolerant to LOS toxicity. LOS showed relatively low toxic potential for a short period of exposure, but with different patterns of toxicity for the organisms from distinct trophic levels, contributing to further risk assessment of LOS.


Subject(s)
Antihypertensive Agents/toxicity , Losartan/toxicity , Water Pollutants, Chemical/toxicity , Acetylcholinesterase/metabolism , Animals , Aquatic Organisms/drug effects , Aquatic Organisms/genetics , Aquatic Organisms/growth & development , Aquatic Organisms/metabolism , Brain/drug effects , Brain/metabolism , Characidae/genetics , Characidae/metabolism , Chlorophyceae/drug effects , Chlorophyceae/growth & development , Comet Assay , Daphnia/drug effects , Daphnia/genetics , Food Chain , Glutathione/metabolism , Glutathione Transferase/metabolism , Muscles/drug effects , Muscles/metabolism
4.
Mar Drugs ; 19(6)2021 Jun 13.
Article in English | MEDLINE | ID: mdl-34199219

ABSTRACT

Natural astaxanthin helps reduce the negative effects caused by oxidative stress and other related factors, thereby minimizing oxidative damage. Therefore, it has considerable potential and broad application prospects in human health and animal nutrition. Haematococcus pluvialis is considered to be the most promising cell factory for the production of natural astaxanthin. Previous studies have confirmed that nonmotile cells of H. pluvialis are more tolerant to high intensity of light than motile cells. Cultivating nonmotile cells as the dominant cell type in the red stage can significantly increase the overall astaxanthin productivity. However, we know very little about how to induce nonmotile cell formation. In this work, we first investigated the effect of phosphorus deficiency on the formation of nonmotile cells of H. pluvialis, and then investigated the effect of NaCl on the formation of nonmotile cells under the conditions of phosphorus deficiency. The results showed that, after three days of treatment with 0.1% NaCl under phosphorus deficiency, more than 80% of motile cells had been transformed into nonmotile cells. The work provides the most efficient method for the cultivation of H. pluvialis nonmotile cells so far, and it significantly improves the production of H. pluvialis astaxanthin.


Subject(s)
Cell Culture Techniques/methods , Chlorophyceae/drug effects , Chlorophyceae/growth & development , Life Cycle Stages/physiology , Phosphorus/deficiency , Sodium Chloride/pharmacology , Biological Products/metabolism , Oxidative Stress/physiology , Sodium Chloride/metabolism , Xanthophylls/metabolism
5.
Molecules ; 26(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198752

ABSTRACT

In recent years, many studies have reported the frequent detection of antihypertensive agents such as sartans (olmesartan, valsartan, irbesartan and candesartan) in the influents and effluents of wastewater treatment plants (WWTPs) and in the superficial waters of rivers and lakes in both Europe and North America. In this paper, the degradation pathway for candesartan (CAN) was investigated by simulating the chlorination process that is normally used to reduce microbial contamination in a WWTP. Twelve isolated degradation byproducts (DPs), four of which were isolated for the first time, were separated on a C-18 column by employing a gradient HPLC method, and their structures were identified by combining nuclear magnetic resonance and mass spectrometry and comparing the results with commercial standards. On the basis of these results, a mechanism of formation starting from the parent drug is proposed. The ecotoxicity of CAN and its DPs was studied by conducting a battery of ecotoxicity tests; bioassays were performed using Aliivibrio fischeri (bacterium), Daphnia magna (planktonic crustacean) and Raphidocelis subcapitata (alga). The ecotoxicity results shed new light on the increased toxicity of DPs compared with the parent compound.


Subject(s)
Benzimidazoles/analysis , Biphenyl Compounds/analysis , Hypochlorous Acid/chemistry , Tetrazoles/analysis , Water Pollutants, Chemical/analysis , Aliivibrio fischeri/drug effects , Animals , Benzimidazoles/toxicity , Biphenyl Compounds/toxicity , Chlorophyceae/drug effects , Daphnia/drug effects , Europe , Lakes/chemistry , North America , Rivers/chemistry , Tetrazoles/toxicity , Wastewater/chemistry , Water Pollutants, Chemical/toxicity , Water Purification
6.
Aquat Toxicol ; 236: 105865, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34034204

ABSTRACT

Gold engineered nanoparticles (nAu) are increasingly detected in ecosystems, and this raises the need to establish their potential effects on aquatic organisms. Herein, cytotoxic and genotoxic effects of branched polyethylenimine (BPEI)- and citrate (cit)-coated nAu (5, 20, and 40 nm) on algae Pseudokirchneriella subcapitata were evaluated. The apical biological endpoints: growth inhibition and chlorophyll a (Chl a) content were investigated at 62.5-1000 µg/L over 168 h. In addition, the apurinic/apyrimidinic (AP) sites, randomly amplified polymorphic deoxyribonucleic acid (RAPD) profiles, and genomic template stability (GTS) were assessed to determine the genotoxic effects of nAu. The results show algal growth inhibition at 5 nm BPEI-nAu up to 96 h, and thereafter cell recovery except at the highest concentration of 1000 µg/L. Insignificant growth reduction for cit-nAu (all sizes), as well as 20 and 40 nm BPEI-nAu, was observed over 96 h, but growth promotion was apparent at all exposures thereafter except for 40 nm BPEI-nAu at 250 µg/L. A decrease in Chl a content following exposure to 5 nm BPEI-nAu at 1000 µg/L corresponded to significant algal growth reduction. In genotoxicity studies, a significant increase in AP sites content was observed relative to the control - an indication of nAu ability to induce genotoxic effects irrespective of their size and coating type. For 5 nm- and 20 nm-sized nAu for both coating types and exposure concentrations no differences in AP sites content were observed after 72 and 168 h. However, a significant reduction in AP sites was observed following algae exposure to 40 nm-sized nAu (irrespective of coating type and exposure concentration) at 168 h compared to 72 h. Thus, AP sites results at 40 nm-size suggest likely DNA damage recovery over a longer exposure period. The findings on AP sites content showed a good correlation with an increase in genome template stability and growth promotion observed after 168 h. In addition, RAPD profiles demonstrated that nAu can induce DNA damage and/or DNA mutation to P. subcapitata as evidenced by the appearance and/or disappearance of normal bands compared to the controls. Therefore, genotoxicity results revealed significant toxicity of nAu to algae at the molecular level although no apparent effects were detectable at the morphological level. Overall, findings herein indicate that long-term exposure of P. subcapitata to low concentrations of nAu may cause undesirable sub-lethal ecological effects.


Subject(s)
Chlorophyceae/physiology , Metal Nanoparticles/toxicity , Water Pollutants, Chemical/toxicity , Aquatic Organisms/drug effects , Chlorophyceae/drug effects , Chlorophyll A , DNA Damage , Ecosystem , Fresh Water , Gold , Random Amplified Polymorphic DNA Technique
7.
Lett Appl Microbiol ; 72(5): 619-625, 2021 May.
Article in English | MEDLINE | ID: mdl-33566365

ABSTRACT

Improving the growth and pigment accumulation of microalgae by electrochemical approaches was considered a novel and promising method. In this research, we investigated the effect of conductive polymer poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) dispersible in water on growth and pigment accumulation of Haematococcus lacustris and Euglena gracilis. The results revealed that effect of PEDOT:PSS was strongly cell-dependent and each cell type has its own peculiar response. For H. lacustris, the cell density in the 50 mg·l-1 treatment group increased by 50·27%, and the astaxanthin yield in the 10 mg·l-1 treatment group increased by 37·08%. However, under the high concentrations of PEDOT:PSS treatment, cell growth was significantly inhibited, and meanwhile, the smaller and more active zoospores were observed, which reflected the changes in cell life cycle and growth mode. Cell growth of E. gracilis in all the PEDOT:PSS treatment groups were notably inhibited. Chlorophyll a content in E. gracilis decreased while chlorophyll b content increased in response to the PEDOT:PSS treatment. The results laid a foundation for further development of electrochemical methods to promote microalgae growth and explore the interactions between conductive polymers and microalgae cells.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Proliferation/drug effects , Chlorophyceae/growth & development , Euglena gracilis/growth & development , Polymers/pharmacology , Polystyrenes/pharmacology , Thiophenes/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Chlorophyceae/drug effects , Chlorophyll/metabolism , Chlorophyll A/metabolism , Electric Conductivity , Electrochemical Techniques , Euglena gracilis/drug effects , Polymers/chemistry , Xanthophylls/metabolism
8.
Molecules ; 26(2)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33451084

ABSTRACT

The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium Vibrio fischeri, the freshwater microalga Pseudokirchneriella subcapitata, the freshwater crustacean Daphnia magna, and the duckweed Spirodela polyrhiza. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium.


Subject(s)
Hydroxides/toxicity , Iron/toxicity , Nanoparticles/toxicity , Zinc/toxicity , Aliivibrio fischeri/drug effects , Aliivibrio fischeri/metabolism , Animals , Araceae/drug effects , Araceae/metabolism , Chlorophyceae/drug effects , Chlorophyceae/metabolism , Daphnia/drug effects , Daphnia/metabolism , Hydroxides/chemistry , Iron/chemistry , Nanoparticles/chemistry , Oxidative Stress/drug effects , Particle Size , Reactive Oxygen Species/metabolism , Water/chemistry , Zinc/chemistry
9.
Sci Rep ; 11(1): 381, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431982

ABSTRACT

Bioprospecting for biodiesel potential in microalgae primarily involves a few model species of microalgae and rarely on non-model microalgae species. Therefore, the present study determined changes in physiology, oil accumulation, fatty acid composition and biodiesel properties of a non-model microalga Messastrum gracile SE-MC4 in response to 12 continuous days of nitrate-starve (NS) and nitrate-replete (NR) conditions respectively. Under NS, the highest oil content (57.9%) was achieved despite reductions in chlorophyll content, biomass productivity and lipid productivity. However, under both NS and NR, palmitic acid and oleic acid remained as dominant fatty acids thus suggesting high potential of M. gracile for biodiesel feedstock consideration. Biodiesel properties analysis returned high values of cetane number (CN 61.9-64.4) and degree of unsaturation (DU 45.3-57.4) in both treatments. The current findings show the possibility of a non-model microalga to inherit superior ability over model species in oil accumulation for biodiesel development.


Subject(s)
Chlorophyceae , Culture Media/pharmacology , Oleic Acid/metabolism , Palmitic Acid/metabolism , Biofuels , Biomass , Cell Culture Techniques , Chlorophyceae/cytology , Chlorophyceae/drug effects , Chlorophyceae/growth & development , Chlorophyceae/metabolism , Culture Media/chemistry , Fatty Acids/metabolism , Lipid Metabolism/drug effects , Microalgae/cytology , Microalgae/drug effects , Microalgae/growth & development , Microalgae/metabolism , Nitrogen/deficiency , Nitrogen/pharmacology , Starvation/metabolism
10.
Ecotoxicol Environ Saf ; 208: 111628, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396148

ABSTRACT

Metals may cause damage to the biota of contaminated environments. Moreover, using multiple endpoints in ecotoxicological studies is useful to better elucidate the mechanisms of toxicity of these compounds. Therefore, this study aimed to evaluate the effects of cadmium (Cd) and cobalt (Co) on growth, biochemical and photosynthetic parameters of the microalgae Raphidocelis subcapitata, through quantification of lipid classes composition, chlorophyll a (Chl a) content, maximum (ΦM) and effective (Φ'M) quantum yields and efficiency of the oxygen-evolving complex (OEC). Both metals affected the algal population growth, with an IC50-96h of 0.67 and 1.53 µM of Cd and Co, respectively. Moreover, the metals led to an increase in the total lipid content and reduced efficiency of OEC and ΦM. Cell density was the most sensitive endpoint to detect Cd toxicity after 96 h of treatment. Regarding Co, the photosynthetic parameters were the most affected and the total lipid content was the most sensitive endpoint as it was altered by the exposure to this metal in all concentrations. Cd led to increased contents of the lipid class wax esters (0.89 µM) and phospholipids (PL - at 0.89 and 1.11 µM) and decreased values of triglycerides (at 0.22 µM) and acetone-mobile polar lipids (AMPL - at 0.44 and 1.11 µM). The percentage of free fatty acids (FFA) and PL of microalgae exposed to Co increased, whereas AMPL decreased in all concentrations tested. We were able to detect differences between the toxicity mechanisms of each metal, especially how Co interferes in the microalgae at a biochemical level. Furthermore, to the best of our knowledge, this is the first study reporting Co effects in lipid classes of a freshwater Chlorophyceae. The damage caused by Cd and Co may reach higher trophic levels, causing potential damage to the aquatic communities as microalgae are primary producers and the base of the food chain.


Subject(s)
Cadmium/toxicity , Chlorophyceae/physiology , Cobalt/toxicity , Water Pollutants, Chemical/toxicity , Chlorophyceae/drug effects , Chlorophyll A , Ecotoxicology , Fresh Water/chemistry , Metals/pharmacology , Microalgae/drug effects , Photosynthesis/drug effects , Photosystem II Protein Complex
11.
J Toxicol Environ Health A ; 84(6): 249-260, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33357043

ABSTRACT

In the aquatic environment, plastics may release several hazardous substances of severe ecotoxicological concern not covalently bound to the polymers. The aim of this study was to examine the adverse effects of leachates of different virgin polymers, polypropylene (PP), polyethylene (PE), and polystyrene (PS) on marine microalgae Dunaliella tertiolecta. The tests carried out on D. tertiolecta included: growth inhibition, oxidative stress (DCFH-DA), and DNA damage (COMET assay). Polypropylene and PS leachates produced growth inhibition at the lowest concentration (3.1% of leachate). In contrast, a hormesis phenomenon was observed with PE leachates. An algae inhibition growth ranking (PP>PS>PE) was noted, based upon EC50 values. Reactive oxygen species (ROS) generated were increased with leachates concentrations with PS exhibiting the highest ROS levels, while a marked genotoxic effect (30%) was found only with PP. All leachates were free from detectable quantities of organic compounds (GC/MS) but showed the presence of transition, post-transition and alkaline earth metals, metalloids, and nonmetals (

Subject(s)
Chlorophyceae/drug effects , Microalgae/drug effects , Polyethylene/toxicity , Polypropylenes/toxicity , Polystyrenes/toxicity , Water Pollutants, Chemical/toxicity , Aquatic Organisms/drug effects , DNA Damage , Oxidative Stress
12.
Ecotoxicol Environ Saf ; 207: 111264, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32911184

ABSTRACT

This study investigated the effect of the herbicide metolachlor (MET) on the redox homeostasis of the freshwater green alga Pseudokirchneriella subcapitata. At low MET concentrations (≤40 µg L-1), no effects on algal cells were detected. The exposure of P. subcapitata to 45-235 µg L-1 MET induced a significant increase of reactive oxygen species (ROS). The intracellular levels of ROS were particularly increased at high (115 and 235 µg L-1) but environmentally relevant MET concentrations. The exposure of algal cells to 115 and 235 µg L-1 MET originated a decrease in the levels of antioxidants molecules (reduced glutathione and carotenoids) as well as a reduction of the activity of scavenging enzymes (superoxide dismutase and catalase). These results suggest that antioxidant (non-enzymatic and enzymatic) defenses were affected by the excess of MET. As consequence of this imbalance (ROS overproduction and decline of the antioxidant system), ROS inflicted oxidative injury with lipid peroxidation and damage of cell membrane integrity. The results provide further insights about the toxic modes of action of MET on a non-target organism and emphasize the relevance of toxicological studies in the assessment of the impact of herbicides in freshwater environments.


Subject(s)
Acetamides/toxicity , Chlorophyceae/drug effects , Herbicides/toxicity , Water Pollutants, Chemical/toxicity , Antioxidants/metabolism , Catalase/metabolism , Chlorophyceae/physiology , Fresh Water , Glutathione/metabolism , Homeostasis/drug effects , Lipid Peroxidation/drug effects , Oxidation-Reduction , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
13.
Aquat Toxicol ; 230: 105706, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33302172

ABSTRACT

Triclosan, a widely used biocide broadly found in aquatic environments, is cause of concern due to its unknown effects on non-targets organisms. In this study, a multi biomarker approach was used in order to evaluate the 72 h-effect of triclosan on the freshwater alga Pseudokirchneriella subcapitata (Raphidocelis subcapitata). Triclosan, at environmental relevant concentrations (27 and 37 µg L-1), caused a decrease of proliferative capacity, which was accompanied by an increase of cell size and a profound alteration of algae shape. It was found that triclosan promoted the intracellular accumulation of reactive oxygen species, the depletion of non-enzymatic antioxidant defenses (reduced glutathione and carotenoids) and a decrease of cell metabolic activity. A reduction of photosynthetic pigments (chlorophyll a and b) was also observed. For the highest concentration tested (37 µg L-1), a decrease of photosynthetic efficiency was detected along with a diminution of the relative transport rate of electrons on the photosynthetic chain. In conclusion, triclosan presents a deep impact on the microalga P. subcapitata morphology and physiology translated by multiple target sites instead of a specific point (cellular membrane) observed in the target organism (bacteria). Additionally, this study contributes to clarify the toxicity mechanisms of triclosan, in green algae, showing the existence of distinct modes of action of the biocide depending on the microalga.


Subject(s)
Chlorophyceae/drug effects , Chlorophyta/drug effects , Disinfectants/toxicity , Triclosan/toxicity , Water Pollutants, Chemical/toxicity , Antioxidants/metabolism , Chlorophyceae/metabolism , Chlorophyll A/metabolism , Chlorophyta/metabolism , Disinfectants/metabolism , Fresh Water/chemistry , Glutathione/metabolism , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism , Triclosan/metabolism , Water Pollutants, Chemical/metabolism
14.
Environ Toxicol Pharmacol ; 82: 103550, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33227413

ABSTRACT

Persistent organic and inorganic contaminants generated by industrial effluent wastes poses a threat to the maintenance of aquatic ecosystems and public health. The Khniss and Hamdoun rivers, located in the central-east of Tunisia, receive regularly domestic and textile wastewater load. The present study aimed to survey the water quality of these rivers using physicochemical, analytical and toxicological approaches. In the physicochemical analysis, the recorded levels of COD and TSS in both samples exceed the Tunisian standards. Using the analytical approach, several metals and some textile dyes were detected. Indeed, 17 metals were detected in both samples in varying concentrations, which do not exceed the Tunisian standards. The sources of metals pollution can be of natural and anthropogenic origin. Three textile disperse dyes were detected with high levels compared to other studies: the disperse orange 37 was detected in the Khniss river with a concentration of 6.438 µg/L and the disperse red 1 and the disperse yellow 3 were detected in the Hamdoun river with concentrations of 3.873 µg/L and 1895 µg/L, respectively. Textile activities were the major sources of disperse dyes. For both samples, acute and chronic ecotoxicity was observed in all the studied organisms, however, no genotoxic activity was detected. The presence of metals and textile disperse dyes could be associated with the ecotoxicological effects observed in the river waters, in particular due to the industrial activity, a fact that could deteriorate the ecosystem and therefore threaten the human health of the population living in the study areas. Combining chemical and biological approaches, allowed the detection of water ecotoxicity in testing organisms and the identification of possible contributors to the toxicity observed in these multi-stressed water reservoirs.


Subject(s)
Water Pollutants, Chemical/toxicity , Aliivibrio fischeri/drug effects , Aliivibrio fischeri/metabolism , Animals , Arsenic/analysis , Arsenic/toxicity , Chlorophyceae/drug effects , Chlorophyceae/growth & development , Coloring Agents/analysis , Coloring Agents/toxicity , Daphnia , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Environmental Monitoring , Industrial Waste , Lepidium sativum/drug effects , Lepidium sativum/growth & development , Metals/analysis , Metals/toxicity , Parabens/analysis , Parabens/toxicity , Pesticides/analysis , Pesticides/toxicity , Phenols/analysis , Phenols/toxicity , Rivers , Toxicity Tests , Tunisia , Wastewater , Water Pollutants, Chemical/analysis
15.
Article in English | MEDLINE | ID: mdl-33255235

ABSTRACT

The photodegradation process of seven glucocorticoids (GCs), cortisone (CORT), hydrocortisone (HCORT), betamethasone (BETA), dexamethasone (DEXA), prednisone (PRED), prednisolone (PREDLO) and triamcinolone (TRIAM) was studied in tap and river water at a concentration close to the environmental ones. All drugs underwent sunlight degradation according to a pseudo-first-order decay. The kinetic constants ranged from 0.00082 min-1 for CORT to 0.024 min-1 for PRED and PREDLO. The photo-generated products were identified by high-pressure liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The main steps of the degradation pathways were the oxidative cleavage of the chain 17 for CORT, HCORT and the rearrangement of the cyclohexadiene moiety for the other GCs. The acute and chronic toxicity of GCs and of their photoproducts was assessed by the V. fischeri and P.subcapitata inhibition assays. The bioassays revealed no significant differences in toxicity between the parent compounds and their photoproducts, but the two organisms showed different responses. All samples produced a moderate acute toxic effect on V. fisheri and no one in the chronic tests. On the contrary, evident hormesis or eutrophic effect was produced on the algae, especially for long-term contact.


Subject(s)
Fresh Water , Glucocorticoids , Sunlight , Aliivibrio fischeri/drug effects , Chlorophyceae/drug effects , Chromatography, High Pressure Liquid , Fresh Water/chemistry , Glucocorticoids/analysis , Glucocorticoids/chemistry , Glucocorticoids/radiation effects , Glucocorticoids/toxicity , Photolysis/radiation effects , Tandem Mass Spectrometry
16.
PLoS One ; 15(11): e0241889, 2020.
Article in English | MEDLINE | ID: mdl-33166324

ABSTRACT

Raphidocelis subcapitata is one of the most frequently used species for algal growth inhibition tests. Accordingly, many microalgal culture collections worldwide maintain R. subcapitata for distribution to users. All R. subcapitata strains maintained in these collections are derived from the same cultured strain, NIVA-CHL1. However, considering that 61 years have passed since this strain was isolated, we suspected that NIVA-CHL1 in culture collections might have acquired various mutations. In this study, we compared the genome sequences among NIVA-CHL1 from 8 microalgal culture collections and one laboratory in Japan to evaluate the presence of mutations. We found single-nucleotide polymorphisms or indels at 19,576 to 28,212 sites per strain in comparison with the genome sequence of R. subcapitata NIES-35, maintained at the National Institute for Environmental Studies, Tsukuba, Japan. These mutations were detected not only in non-coding but also in coding regions; some of the latter mutations may affect protein function. In growth inhibition test with 3,5-dichlorophenol, EC50 values varied 2.6-fold among the 9 strains. In the ATCC 22662-2 and CCAP 278/4 strains, we also detected a mutation in the gene encoding small-conductance mechanosensitive ion channel, which may lead to protein truncation and loss of function. Growth inhibition test with sodium chloride suggested that osmotic regulation has changed in ATCC 22662-2 and CCAP 278/4 in comparison with NIES-35.


Subject(s)
Algal Proteins/genetics , Chlorophyceae/growth & development , Chlorophyceae/genetics , Polymorphism, Single Nucleotide , Sodium Chloride/pharmacology , Whole Genome Sequencing/methods , Algal Proteins/drug effects , Chlorophyceae/drug effects , Culture Media/chemistry , Gene Expression Regulation/drug effects , Japan
17.
Aquat Toxicol ; 228: 105646, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33011648

ABSTRACT

2,4-dinitrophenol (2,4-DNP) is a phenolic compound used as a wood preservative or pesticide. The chemical is hazardous to freshwater organisms. Although 2,4-DNP poses ecological risks, only a few of its aquatic environmental risks have been investigated and very limited guidelines for freshwater aquatic ecosystems have been established by governments. This study addresses the paucity of 2,4-DNP toxicity data for freshwater ecosystems and the current lack of highly reliable trigger values for this highly toxic compound. We conducted acute bioassays using 12 species from nine taxonomic groups and chronic assays using five species from four taxonomic groups to improve the quality of the dataset and enable the estimation of protective concentrations based on species sensitivity distributions. The acute and hazardous concentrations of 2,4-DNP in 5% of freshwater aquatic species (HC5) were determined to be 0.91 (0.32-2.65) mg/L and 0.22 (0.11-0.42) mg/L, respectively. To the best of our knowledge, this is the first report of a suggested chronic HC5 for 2,4-DNP and it provides the much-needed fundamental data for the risk assessment and management of freshwater ecosystems.


Subject(s)
2,4-Dinitrophenol/analysis , Ecosystem , Environmental Monitoring , Fresh Water/chemistry , Pesticides/toxicity , Water Pollutants, Chemical/analysis , Animals , Aquatic Organisms/drug effects , Bacteria/drug effects , Chlamydomonas/drug effects , Chlorophyceae/drug effects , Embryo, Nonmammalian/drug effects , Euglena/drug effects , Oryzias , Plant Leaves/drug effects , Plant Leaves/growth & development , Species Specificity , Toxicity Tests, Acute , Toxicity Tests, Chronic , Water Quality
18.
Ecotoxicol Environ Saf ; 205: 111291, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32956865

ABSTRACT

The purpose of this study was to determine the acute toxicity in aquatic organisms of one biocidal active substance and six metabolites derived from biocidal active substances and to assess the suitability of available QSAR models to predict the obtained values. We have reported the acute toxicity in sewage treatment plant (STP) microorganisms, in the freshwater microalgae Pseudokirchneriella subcapitata and in Daphnia magna following OECD test methods. We have also identified in silico models for acute toxicity of these trophic levels currently available in widely recognized platforms such as VEGA and the OECD QSAR ToolBox. A total of six, four and two models have been selected for Daphnia, algae and microorganisms, respectively. Finally, we have compared the in silico and in vivo data for the seven compounds plus two previously assayed biocidal substances. None of the compounds tested were toxic for Daphnia and STP microorganisms. For microalgae, CGA71019 (1,2,4 triazole) presented an ErC50 value of 38.3 mg/L. The selected in silico models have provided lower EC50 values and are therefore more conservative. Models from the OECD QSAR ToolBox predicted values for 7 out of 9 and for 4 out of 9 chemicals for Daphnia and P. subcapitata, respectively. No predictive models were identified in such platform for STP microorganism's acute effects. In terms of models's specificity, biocide-specific models, developed from curated datasets integrated by biocidal active substances and implemented in VEGA, perform better in the case of microalgae but for Daphnia an alternative, non biocide-specific has revealed a better performance. For STP microorganisms only biocide-specific models have been identified.


Subject(s)
Aquatic Organisms/drug effects , Disinfectants/toxicity , Models, Biological , Water Pollutants, Chemical/toxicity , Animals , Chlorophyceae/drug effects , Computer Simulation , Daphnia/drug effects , Disinfectants/chemistry , Disinfectants/metabolism , Fresh Water/chemistry , Microalgae/drug effects , Quantitative Structure-Activity Relationship , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
19.
Ecotoxicol Environ Saf ; 201: 110737, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32505758

ABSTRACT

Macrolide antibiotics are common contaminants in the aquatic environment. They are toxic to a wide range of primary producers, inhibiting the algal growth and further hindering the delivery of several ecosystem services. Yet the molecular mechanisms of macrolides in algae remain undetermined. The objectives of this study were therefore to: 1. evaluate whether macrolides at the environmentally relevant level inhibit the growth of algae; and 2. test the hypothesis that macrolides bind to ribosome and inhibit protein translocation in algae, as it does in bacteria. In this study, transcriptomic analysis was applied to elucidate the toxicological mechanism in a model green alga Raphidocelis subcapitata treated with 5 and 90 µg L-1 of a typical macrolide roxithromycin (ROX). While exposure to ROX at 5 µg L-1 for 7 days did not affect algal growth and the transciptome, ROX at 90 µg L-1 resulted in 45% growth inhibition and 2306 (983 up- and 1323 down-regulated) DEGs, which were primarily enriched in the metabolism of energy, lipid, vitamins, and DNA replication and repair pathways. Nevertheless, genes involved in pathways in relation to translation and protein translocation and processing were dysregulated. Surprisingly, we found that genes involved in the base excision repair process were mostly repressed, suggesting that ROX may be genotoxic and cause DNA damage in R. subcapitata. Taken together, ROX was unlikely to pose a threat to green algae in the environment and the mode of action of macrolides in bacteria may not be directly extrapolated to green algae.


Subject(s)
Anti-Bacterial Agents/toxicity , Chlorophyceae/drug effects , DNA Repair/drug effects , Roxithromycin/toxicity , Water Pollutants, Chemical/toxicity , Chlorophyceae/genetics , Chlorophyceae/growth & development , DNA Damage/genetics , DNA Repair/genetics , Gene Expression Regulation, Plant/drug effects , Transcriptome/drug effects
20.
Aquat Toxicol ; 224: 105496, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32408003

ABSTRACT

Predicting the toxicity of organic toxicants to aquatic life through chemometric approach is challenging area. In this paper, a six-descriptor quantitative structure-activity/toxicity relationship (QSAR/QSTR) model was successfully developed for the toxicity pEC10 of organic chemicals against Pseudokirchneriella subcapitata, by applying support vector machine (SVM) together with genetic algorithm. A sufficiently large data set consisting of 334 organic chemicals was randomly divided into a training set (167 compounds) and a test set (167 compounds) with a ratio of 1:1. The optimal SVM model possesses coefficient of determination R2 of 0.76 and mean absolute error (MAE) of 0.60 for the training set and R2 of 0.75 and MAE of 0.61 for the test set. Compared with other models reported in the literature, our SVM model for the toxicity pEC10 shows significant statistical quality and satisfactory predictive ability, although it has fewer molecular descriptors and more samples in the test set. A QSTR model for pEC50 of organic chemicals against Pseudokirchneriella subcapitata was also developed with the same subsets and molecular descriptors.


Subject(s)
Chlorophyceae/drug effects , Ecotoxicology/methods , Organic Chemicals , Water Pollutants, Chemical , Organic Chemicals/chemistry , Organic Chemicals/toxicity , Quantitative Structure-Activity Relationship , Support Vector Machine , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...