Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 837
Filter
1.
Nature ; 615(7951): 349-357, 2023 03.
Article in English | MEDLINE | ID: mdl-36702157

ABSTRACT

Chloroplasts rely on the translocon complexes in the outer and inner envelope membranes (the TOC and TIC complexes, respectively) to import thousands of different nuclear-encoded proteins from the cytosol1-4. Although previous studies indicated that the TOC and TIC complexes may assemble into larger supercomplexes5-7, the overall architectures of the TOC-TIC supercomplexes and the mechanism of preprotein translocation are unclear. Here we report the cryo-electron microscopy structure of the TOC-TIC supercomplex from Chlamydomonas reinhardtii. The major subunits of the TOC complex (Toc75, Toc90 and Toc34) and TIC complex (Tic214, Tic20, Tic100 and Tic56), three chloroplast translocon-associated proteins (Ctap3, Ctap4 and Ctap5) and three newly identified small inner-membrane proteins (Simp1-3) have been located in the supercomplex. As the largest protein, Tic214 traverses the inner membrane, the intermembrane space and the outer membrane, connecting the TOC complex with the TIC proteins. An inositol hexaphosphate molecule is located at the Tic214-Toc90 interface and stabilizes their assembly. Four lipid molecules are located within or above an inner-membrane funnel formed by Tic214, Tic20, Simp1 and Ctap5. Multiple potential pathways found in the TOC-TIC supercomplex may support translocation of different substrate preproteins into chloroplasts.


Subject(s)
Chlamydomonas reinhardtii , Chloroplasts , Cryoelectron Microscopy , Multiprotein Complexes , Protein Transport , Chloroplasts/chemistry , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Chlamydomonas reinhardtii/chemistry , Chlamydomonas reinhardtii/ultrastructure , Protein Subunits/chemistry , Protein Subunits/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Phytic Acid/metabolism , Protein Stability , Substrate Specificity
2.
Biol Res ; 55(1): 32, 2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36274167

ABSTRACT

BACKGROUND: Designed mimetic molecules are attractive tools in biopharmaceuticals and synthetic biology. They require mass and functional production for the assessment of upcoming challenges in the near future. The DARPin family is considered a mimetic pharmaceutical peptide group with high affinity binding to specific targets. DARPin G3 is designed to bind to the HER2 (human epidermal growth factor receptor 2) tyrosine kinase receptor. Overexpression of HER2 is common in some cancers, including breast cancer, and can be used as a prognostic and predictive tool for cancer. The chloroplasts are cost-effective alternatives, equal to, and sometimes better than, bacterial, yeast, or mammalian expression systems. This research examined the possibility of the production of the first antibody mimetic, DARPin G3, in tobacco chloroplasts for HER2 imaging in oncology. RESULTS: The chloroplast specific DARPin G3 expression cassette was constructed and transformed into N. tabacum chloroplasts. PCR and Southern blot analysis confirmed integration of transgenes as well as chloroplastic and cellular homoplasmy. The Western blot analysis and ELISA confirmed the production of DARPin G3 at the commercial scale and high dose with the rate of 20.2% in leaf TSP and 33.7% in chloroplast TSP. The functional analysis by ELISA confirmed the binding of IMAC purified chloroplast-made DARPin G3 to the extracellular domain of the HER2 receptor with highly effective picomolar affinities. The carcinoma cellular studies by flow cytometry and immunofluorescence microscopy confirmed the correct functioning by the specific binding of the chloroplast-made DARPin G3 to the HER2 receptor on the surface of HER2-positive cancer cell lines. CONCLUSION: The efficient functional bioactive production of DARPin G3 in chloroplasts led us to introduce plant chloroplasts as the site of efficient production of the first antibody mimetic molecules. This report, as the first case of the cost-effective production of mimetic molecules, enables researchers in pharmaceuticals, synthetic biology, and bio-molecular engineering to develop tool boxes by producing new molecular substitutes for diverse purposes.


Subject(s)
Biological Products , Designed Ankyrin Repeat Proteins , Animals , Humans , Cell Line, Tumor , Receptor, ErbB-2 , Chloroplasts/chemistry , Chloroplasts/metabolism , Pharmaceutical Preparations/metabolism , Mammals/metabolism
3.
J Adv Res ; 42: 29-40, 2022 12.
Article in English | MEDLINE | ID: mdl-35907629

ABSTRACT

INTRODUCTION: Phosphoenolpyruvate/phosphate translocator (PPT) transports phosphoenolpyruvate from the cytosol into the plastid for fatty acid (FA) and other metabolites biosynthesis. OBJECTIVES: This study investigated PPTs' functions in plant growth and seed oil biosynthesis in oilseed crop Brassica napus. METHODS: We created over-expression and mutant material of BnaPPT1. The plant development, oil content, lipids, metabolites and ultrastructure of seeds were compared to evaluate the gene function. RESULTS: The plastid membrane localized BnaPPT1 was found to be required for normal growth of B. napus. The plants grew slower with yellowish leaves in BnaA08.PPT1 and BnaC08.PPT1 double mutant plants. The results of chloroplast ultrastructural observation and lipid analysis show that BnaPPT1 plays an essential role in membrane lipid synthesis and chloroplast development in leaves, thereby affecting photosynthesis. Moreover, the analysis of primary metabolites and lipids in developing seeds showed that BnaPPT1 could impact seed glycolytic metabolism and lipid level. Knockout of BnaA08.PPT1 and BnaC08.PPT1 resulted in decreasing of the seed oil content by 2.2 to 9.1%, while overexpression of BnaC08.PPT1 significantly promoted the seed oil content by 2.1 to 3.3%. CONCLUSION: Our results suggest that BnaPPT1 is necessary for plant chloroplast development, and it plays an important role in maintaining plant growth and promoting seed oil accumulation in B. napus.


Subject(s)
Brassica napus , Brassica napus/genetics , Brassica napus/metabolism , Gene Expression Regulation, Plant , Phosphoenolpyruvate/analysis , Phosphoenolpyruvate/metabolism , Plant Oils/analysis , Plant Oils/metabolism , Seeds/genetics , Chloroplasts/chemistry , Chloroplasts/metabolism
4.
Food Funct ; 13(9): 5365-5380, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35470837

ABSTRACT

An in vitro gastrointestinal human digestion model, with and without additional rapeseed oil, was used to measure the bioaccessibility of the major lipophilic nutrients enriched in chloroplasts: ß-carotene; lutein; α-tocopherol; and α-linolenic acid. Chloroplast-rich fraction (CRF) material for this work was prepared from post-harvest pea vine field residue (pea vine haulm, or PVH), an abundant source of freely available, underutilised green biomass. PVH was either steam sterilised (100 °C for 4 min) and then juiced (heat-treated PVH, or HPVH), or was juiced fresh and the juice heated (90 °C for 3 min) (heat-treated juice, or HJ); the CRF from all biomass treatments was recovered from the juice by centrifugation. The impact of postharvest heat treatment of the biomass (HPVH), or of heat treatment of the juice (HJ) derived from the biomass, on the retention and bioaccessibility of the target nutrients was determined. The results showed that both heat treatments increased the apparent retention of ß-carotene, lutein, α-tocopherol, and α-linolenic acid in the CRF material during digestion. The presence of edible oil during digestion did not dramatically affect the retention of these nutrients, but it did increase the bioaccessibility of ß-carotene, lutein, and α-tocopherol from CRF material derived from heated biomass or juice. The presence of oil also increased the bioaccessibility of ß-carotene, but not of lutein, α-tocopherol, or α-linolenic acid, from fresh CRF material.


Subject(s)
Lutein , beta Carotene , Biological Availability , Chloroplasts/chemistry , Digestion , Gastrointestinal Tract/metabolism , Humans , Lutein/analysis , Nutrients , alpha-Linolenic Acid/metabolism , alpha-Tocopherol/analysis , beta Carotene/metabolism
5.
Angew Chem Int Ed Engl ; 61(11): e202114842, 2022 03 07.
Article in English | MEDLINE | ID: mdl-34932847

ABSTRACT

During the light-dependent reaction of photosynthesis, green plants couple photoinduced cascades of redox reactions with transmembrane proton translocations to generate reducing equivalents and chemical energy in the form of NADPH (nicotinamide adenine dinucleotide phosphate) and ATP (adenosine triphosphate), respectively. We mimic these basic processes by combining molecular ruthenium polypyridine-based photocatalysts and inverted vesicles derived from Escherichia coli. Upon irradiation with visible light, the interplay of photocatalytic nicotinamide reduction and enzymatic membrane-located respiration leads to the simultaneous formation of two biologically active cofactors, NADH (nicotinamide adenine dinucleotide) and ATP, respectively. This inorganic-biologic hybrid system thus emulates the cofactor delivering function of an active chloroplast.


Subject(s)
Chloroplasts/chemistry , Escherichia coli Proteins/chemistry , Photosensitizing Agents/chemistry , Pyridines/chemistry , Ruthenium/chemistry , Catalysis , Photochemical Processes
6.
Biol. Res ; 55: 32-32, 2022. ilus, graf
Article in English | LILACS | ID: biblio-1403570

ABSTRACT

BACKGROUND: Designed mimetic molecules are attractive tools in biopharmaceuticals and synthetic biology. They require mass and functional production for the assessment of upcoming challenges in the near future. The DARPin family is considered a mimetic pharmaceutical peptide group with high affinity binding to specific targets. DARPin G3 is designed to bind to the HER2 (human epidermal growth factor receptor 2) tyrosine kinase receptor. Overexpression of HER2 is common in some cancers, including breast cancer, and can be used as a prognostic and predictive tool for cancer. The chloroplasts are cost-effective alternatives, equal to, and sometimes better than, bacterial, yeast, or mammalian expression systems. This research examined the possibility of the production of the first antibody mimetic, DARPin G3, in tobacco chloroplasts for HER2 imaging in oncology. RESULTS: The chloroplast specific DARPin G3 expression cassette was constructed and transformed into N. tabacum chloroplasts. PCR and Southern blot analysis confirmed integration of transgenes as well as chloroplastic and cellular homoplasmy. The Western blot analysis and ELISA confirmed the production of DARPin G3 at the commercial scale and high dose with the rate of 20.2% in leaf TSP and 33.7% in chloroplast TSP. The functional analysis by ELISA confirmed the binding of IMAC purified chloroplast-made DARPin G3 to the extracellular domain of the HER2 receptor with highly effective picomolar affinities. The carcinoma cellular studies by flow cytometry and immunofluorescence microscopy confirmed the correct functioning by the specific binding of the chloroplast-made DARPin G3 to the HER2 receptor on the surface of HER2-positive cancer cell lines. CONCLUSION: The efficient functional bioactive production of DARPin G3 in chloroplasts led us to introduce plant chloroplasts as the site of efficient production of the first antibody mimetic molecules. This report, as the first case of the cost-effective production of mimetic molecules, enables researchers in pharmaceuticals, synthetic biology, and bio-molecular engineering to develop tool boxes by producing new molecular substitutes for diverse purposes.


Subject(s)
Humans , Animals , Biological Products , Designed Ankyrin Repeat Proteins , Pharmaceutical Preparations/metabolism , Chloroplasts/metabolism , Chloroplasts/chemistry , Receptor, ErbB-2 , Cell Line, Tumor , Mammals/metabolism
7.
BMC Plant Biol ; 21(1): 595, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34915842

ABSTRACT

Sweet potato (Ipomoea batatas (L.) Lam.) is a good source of carbohydrates, an excellent raw material for starch-based industries, and a strong candidate for biofuel production due to its high starch content. However, the molecular basis of starch biosynthesis and accumulation in sweet potato is still insufficiently understood. Glucose-6-phosphate/phosphate translocators (GPTs) mediate the import of glucose-6-phosphate (Glc6P) into plastids for starch synthesis. Here, we report the isolation of a GPT-encoding gene, IbG6PPT1, from sweet potato and the identification of two additional IbG6PPT1 gene copies in the sweet potato genome. IbG6PPT1 encodes a chloroplast membrane-localized GPT belonging to the GPT1 group and highly expressed in storage root of sweet potato. Heterologous expression of IbG6PPT1 resulted in increased starch content in the leaves, root tips, and seeds and soluble sugar in seeds of Arabidopsis thaliana, but a reduction in soluble sugar in the leaves. These findings suggested that IbG6PPT1 might play a critical role in the distribution of carbon sources in source and sink and the accumulation of carbohydrates in storage tissues and would be a good candidate gene for controlling critical starch properties in sweet potato.


Subject(s)
Antiporters/isolation & purification , Glucose-6-Phosphate/metabolism , Ipomoea batatas/chemistry , Monosaccharide Transport Proteins/isolation & purification , Plant Proteins/isolation & purification , Antiporters/chemistry , Antiporters/genetics , Antiporters/metabolism , Chloroplasts/chemistry , Cloning, Molecular , Genes, Plant , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Models, Molecular , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Protein Conformation , Starch/metabolism , Sugars/metabolism
8.
STAR Protoc ; 2(4): 100816, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34585156

ABSTRACT

We present a protocol for analyzing and evaluating the relocalization of proteins from the plasma membrane to chloroplasts. Some plant membrane-bound proteins carry dual targeting signals, e.g., a membrane-anchoring N-myristoylation motif and a chloroplast transit peptide. These proteins are predominantly targeted to membranes; upon certain cues, however, they can undergo detachment from membranes and relocalization to chloroplasts. This protocol combines imaging and biochemical analyses to track in a reliable and quantitative manner the relocalization of proteins between subcellular organelles. For complete details on the use and execution of this protocol, please refer to Medina-Puche et al. (2020).


Subject(s)
Chloroplast Proteins , Chloroplasts , Image Processing, Computer-Assisted/methods , Membrane Proteins , Molecular Imaging/methods , Cell Membrane/chemistry , Cell Membrane/metabolism , Chloroplast Proteins/analysis , Chloroplast Proteins/chemistry , Chloroplasts/chemistry , Chloroplasts/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Plant Proteins/analysis , Plant Proteins/chemistry , Nicotiana
9.
Cells ; 10(9)2021 09 08.
Article in English | MEDLINE | ID: mdl-34572003

ABSTRACT

Build-up of the energized state of thylakoid membranes and the synthesis of ATP are warranted by organizing their bulk lipids into a bilayer. However, the major lipid species of these membranes, monogalactosyldiacylglycerol, is a non-bilayer lipid. It has also been documented that fully functional thylakoid membranes, in addition to the bilayer, contain an inverted hexagonal (HII) phase and two isotropic phases. To shed light on the origin of these non-lamellar phases, we performed 31P-NMR spectroscopy experiments on sub-chloroplast particles of spinach: stacked, granum and unstacked, stroma thylakoid membranes. These membranes exhibited similar lipid polymorphism as the whole thylakoids. Saturation transfer experiments, applying saturating pulses at characteristic frequencies at 5 °C, provided evidence for distinct lipid phases-with component spectra very similar to those derived from mathematical deconvolution of the 31P-NMR spectra. Wheat-germ lipase treatment of samples selectively eliminated the phases exhibiting sharp isotropic peaks, suggesting easier accessibility of these lipids compared to the bilayer and the HII phases. Gradually increasing lipid exchanges were observed between the bilayer and the two isotropic phases upon gradually elevating the temperature from 5 to 35 °C, suggesting close connections between these lipid phases. Data concerning the identity and structural and functional roles of different lipid phases will be presented in the accompanying paper.


Subject(s)
Chloroplasts/chemistry , Membrane Lipids/chemistry , Thylakoids/chemistry , Galactolipids/chemistry , Magnetic Resonance Spectroscopy/methods , Temperature
10.
Methods Mol Biol ; 2295: 321-335, 2021.
Article in English | MEDLINE | ID: mdl-34047984

ABSTRACT

Plastoglobules are plastid compartments designed for the storage of neutral lipids. They share physical and structural characteristics with cytosolic lipid droplets. Hence, special care must be taken to avoid contamination by cytosolic lipid droplets during plastoglobule purification. We describe the isolation of pure plastoglobules from Arabidopsis thaliana leaves, and the methods we use to determine their lipid composition. After preparation of a crude chloroplast fraction, plastoglobules are isolated from plastid membranes by two steps of ultracentrifugation on discontinuous sucrose gradients. For lipid analyses, total lipids are then extracted by a standard chloroform-methanol protocol, and polar lipids are separated from neutral lipids by liquid-liquid extraction. While polar lipid classes are subsequently separated by thin-layer chromatography (TLC) with the classical Vitiello solvent mix, a double TLC development has to be performed for neutral lipids, to separate phytyl and steryl esters. Lipids are quantified by gas chromatography after conversion of the fatty acids into methyl esters.


Subject(s)
Lipids/isolation & purification , Plant Proteins/isolation & purification , Plastids/chemistry , Arabidopsis/metabolism , Arabidopsis Proteins/isolation & purification , Arabidopsis Proteins/metabolism , Chloroplasts/chemistry , Chromatography, Gas/methods , Chromatography, Thin Layer/methods , Esters , Fatty Acids/chemistry , Lipid Metabolism/physiology , Lipids/analysis , Plant Cells/metabolism , Plant Leaves , Plant Proteins/analysis , Plants/chemistry , Plants/metabolism , Plastids/metabolism , Thylakoids
11.
Int J Mol Sci ; 22(6)2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33799456

ABSTRACT

Plant prenyllipids, especially isoprenoid chromanols and quinols, are very efficient low-molecular-weight lipophilic antioxidants, protecting membranes and storage lipids from reactive oxygen species (ROS). ROS are byproducts of aerobic metabolism that can damage cell components, they are also known to play a role in signaling. Plants are particularly prone to oxidative damage because oxygenic photosynthesis results in O2 formation in their green tissues. In addition, the photosynthetic electron transfer chain is an important source of ROS. Therefore, chloroplasts are the main site of ROS generation in plant cells during the light reactions of photosynthesis, and plastidic antioxidants are crucial to prevent oxidative stress, which occurs when plants are exposed to various types of stress factors, both biotic and abiotic. The increase in antioxidant content during stress acclimation is a common phenomenon. In the present review, we describe the mechanisms of ROS (singlet oxygen, superoxide, hydrogen peroxide and hydroxyl radical) production in chloroplasts in general and during exposure to abiotic stress factors, such as high light, low temperature, drought and salinity. We highlight the dual role of their presence: negative (i.e., lipid peroxidation, pigment and protein oxidation) and positive (i.e., contribution in redox-based physiological processes). Then we provide a summary of current knowledge concerning plastidic prenyllipid antioxidants belonging to isoprenoid chromanols and quinols, as well as their structure, occurrence, biosynthesis and function both in ROS detoxification and signaling.


Subject(s)
Antioxidants/chemistry , Chloroplasts/chemistry , Quinones/chemistry , Terpenes/chemistry , Chloroplasts/genetics , Chromans/chemistry , Chromans/metabolism , Plastids/chemistry , Plastids/genetics , Quinones/metabolism , Reactive Oxygen Species/chemistry , Terpenes/metabolism
12.
Genes (Basel) ; 12(3)2021 03 21.
Article in English | MEDLINE | ID: mdl-33801035

ABSTRACT

Green chrysanthemums are difficult to breed but have high commercial value. The molecular basis for the green petal color in chrysanthemum is not fully understood. This was investigated in the present study by RNA sequencing analysis of white and green ray florets collected at three stages of flower development from the F1 progeny of the cross between Chrysanthemum × morifolium "Lüdingdang" with green-petaled flowers and Chrysanthemum vistitum with white-petaled flowers. The chlorophyll content was higher and chloroplast degradation was slower in green pools than in white pools at each developmental stage. Transcriptome analysis revealed that genes that were differentially expressed between the two pools were enriched in pathways related to chlorophyll metabolism and photosynthesis. We identified the transcription factor genes CmCOLa, CmCOLb, CmERF, and CmbHLH as regulators of the green flower color in chrysanthemum by differential expression analysis and weighted gene co-expression network analysis. These findings can guide future efforts to improve the color palette of chrysanthemum flowers through genetic engineering.


Subject(s)
Chlorophyll/metabolism , Chrysanthemum/growth & development , Gene Expression Profiling/methods , Transcription Factors/genetics , Chloroplasts/chemistry , Chrysanthemum/genetics , Chrysanthemum/metabolism , Gene Expression Regulation, Plant , Photosynthesis , Plant Breeding , Plant Proteins/genetics , Quantitative Trait Loci , Sequence Analysis, RNA
13.
J Biol Chem ; 296: 100217, 2021.
Article in English | MEDLINE | ID: mdl-33839679

ABSTRACT

Heme oxygenase (HO) converts heme to carbon monoxide, biliverdin, and free iron, products that are essential in cellular redox signaling and iron recycling. In higher plants, HO is also involved in the biosynthesis of photoreceptor pigment precursors. Despite many common enzymatic reactions, the amino acid sequence identity between plant-type and other HOs is exceptionally low (∼19.5%), and amino acids that are catalytically important in mammalian HO are not conserved in plant-type HOs. Structural characterization of plant-type HO is limited to spectroscopic characterization by electron spin resonance, and it remains unclear how the structure of plant-type HO differs from that of other HOs. Here, we have solved the crystal structure of Glycine max (soybean) HO-1 (GmHO-1) at a resolution of 1.06 Å and carried out the isothermal titration calorimetry measurements and NMR spectroscopic studies of its interaction with ferredoxin, the plant-specific electron donor. The high-resolution X-ray structure of GmHO-1 reveals several novel structural components: an additional irregularly structured region, a new water tunnel from the active site to the surface, and a hydrogen-bonding network unique to plant-type HOs. Structurally important features in other HOs, such as His ligation to the bound heme, are conserved in GmHO-1. Based on combined data from X-ray crystallography, isothermal titration calorimetry, and NMR measurements, we propose the evolutionary fine-tuning of plant-type HOs for ferredoxin dependency in order to allow adaptation to dynamic pH changes on the stroma side of the thylakoid membrane in chloroplast without losing enzymatic activity under conditions of fluctuating light.


Subject(s)
Ferredoxins/chemistry , Glycine max/chemistry , Heme Oxygenase-1/chemistry , Heme/chemistry , Iron/chemistry , Plant Proteins/chemistry , Amino Acid Sequence , Biliverdine/chemistry , Biliverdine/metabolism , Carbon Monoxide/chemistry , Carbon Monoxide/metabolism , Catalytic Domain , Chloroplasts/chemistry , Chloroplasts/enzymology , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Ferredoxins/genetics , Ferredoxins/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Heme/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Hydrogen Bonding , Iron/metabolism , Molecular Docking Simulation , Nuclear Magnetic Resonance, Biomolecular , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Glycine max/enzymology , Glycine max/genetics , Thylakoids/chemistry , Thylakoids/enzymology
14.
Sci Rep ; 11(1): 7210, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33785827

ABSTRACT

The aim of the present study was to evaluate the effect of post-flowering chilling of sweet cherry (Prunus avium L.) on the content of biochemical parameters in the leaf (chloroplast pigments, sugars and phenolics). The effect of chilling was investigated in two experiments. Potted 2-year-old trees of cv. 'Grace Star' and 'Schneiders' were exposed to one, two or three consecutive overnight chillings at an average air temperature of 4.7 °C (Experiment I), but in the following year only trees of 'Grace Star' were chilled at 2.2 °C (Experiment II), 3 to 7 weeks after flowering. The analysis of the biochemical parameters was performed by high performance liquid chromatography combined with electrospray ionization mass spectrometry. Chilling at 4.7 °C caused little or no stress, while 2.2 °C induced more intense stress with increased zeaxanthin, sugar and phenolic content in leaves, while exposure of trees to higher temperatures and closer to flowering showed no changes. Two or three consecutive overnight chilling periods increased the phenolic content and enhanced the accumulation of zeaxanthin in the leaves. Sucrose, sorbitol, fructose, total sugar, and total flavonoid content in leaves increased within 48 h after chilling. Zeaxanthin epoxidized within 24 h after one and 48 h after one and two consecutive overnight chillings.


Subject(s)
Chloroplasts/metabolism , Cold-Shock Response , Phenols/metabolism , Prunus avium/physiology , Sugars/metabolism , Acclimatization , Chloroplasts/chemistry , Phenols/analysis , Pigments, Biological/analysis , Pigments, Biological/metabolism , Plant Leaves/chemistry , Plant Leaves/physiology , Prunus avium/chemistry , Sugars/analysis
15.
Molecules ; 26(5)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652855

ABSTRACT

Head group-acylated chloroplast lipids were discovered in the 1960s, but interest was renewed about 15 years ago with the discovery of Arabidopsides E and G, acylated monogalactosyldiacylglycerols with oxidized fatty acyl chains originally identified in Arabidopsis thaliana. Since then, plant biologists have applied the power of mass spectrometry to identify additional oxidized and non-oxidized chloroplast lipids and quantify their levels in response to biotic and abiotic stresses. The enzyme responsible for the head-group acylation of chloroplast lipids was identified as a cytosolic protein closely associated with the chloroplast outer membrane and christened acylated galactolipid-associated phospholipase 1 (AGAP1). Despite many advances, critical questions remain about the biological functions of AGAP1 and its head group-acylated products.


Subject(s)
Arabidopsis Proteins/metabolism , Chloroplasts/chemistry , Galactolipids/chemistry , Membrane Lipids/chemistry , Acylation , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/blood , Arabidopsis Proteins/genetics , Chloroplasts/metabolism , Galactolipids/genetics , Galactolipids/metabolism , Membrane Lipids/metabolism , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/metabolism , Stress, Physiological/genetics
16.
Environ Sci Technol ; 55(4): 2276-2284, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33497189

ABSTRACT

Arsenic (As) contamination in soils is of great concerns due to its toxicity to plants. As an analogue, phosphorus plays an important role in protecting plants from As toxicity. In this study, we identified a new phosphate transporter 2 (PHT2), PvPht2;1, from As-hyperaccumulator Pteris vittata and analyzed its functions in As and P transport in a yeast mutant, and model plant Arabidopsis thalian. PvPht2;1 contained 12 transmembrane domains, sharing high identity with PHT2 genes in diverse plants. Further, independent of external P or As levels, PvPht2;1 was mainly expressed in P. vittata fronds with the expression being 3-4 folds higher than that in the roots and rhizomes. Localized to the chloroplasts based on GFP-fused PvPht2;1 in model plant tobacco, PvPht2;1 functioned as a low-affinity P transporter. Under As exposure, PvPht2;1 yeast transformants showed comparable growth with the control while high-affinity P transporter PvPht1;3 transformants showed better growth, suggesting that PvPht2;1 transported P but slower than PvPht1;3 transporter. Expressing PvPht2;1 in A. thaliana increased its shoot P concentration without influencing its As accumulation. Further, the chloroplasts' P content in transgenic A. thaliana increased by 37-59% than wild-type (WT) plants. Under As exposure, the photosynthesis of PvPht2;1-expressing A. thaliana remained stable but that of WT plants decreased. The data indicate that, under As stress, expressing PvPht2;1 in A. thaliana enhanced its P transport to the chloroplasts and protected its photosynthesis. In short, highly expressed in the fronds and not impacted by As exposure, chloroplast-located PvPht2;1 may have protected As-hyperaccumulator P. vittata from As toxicity by efficiently transporting only P to its chloroplasts.


Subject(s)
Arabidopsis , Arsenic , Pteris , Soil Pollutants , Arabidopsis/genetics , Arabidopsis/metabolism , Arsenic/analysis , Chloroplasts/chemistry , Chloroplasts/metabolism , Phosphate Transport Proteins/genetics , Plant Roots/metabolism , Pteris/metabolism , Soil Pollutants/analysis
17.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33431680

ABSTRACT

The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healing when exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics.


Subject(s)
Cellulose/biosynthesis , Chemical Engineering/methods , Chloroplasts/radiation effects , Glucose/biosynthesis , Printing, Three-Dimensional/instrumentation , Cellulose/chemistry , Chloroplasts/chemistry , Chloroplasts/physiology , Cross-Linking Reagents/chemistry , Elastic Modulus , Glucose/chemistry , Humans , Isocyanates/chemistry , Light , Photosynthesis/radiation effects , Plant Leaves/chemistry , Plant Leaves/radiation effects , Robotics/methods , Spinacia oleracea/chemistry , Spinacia oleracea/radiation effects
18.
Mol Microbiol ; 115(3): 425-435, 2021 03.
Article in English | MEDLINE | ID: mdl-33314350

ABSTRACT

Gram-negative bacteria, mitochondria, and chloroplasts all possess an outer membrane populated with a host of ß-barrel outer-membrane proteins (ßOMPs). These ßOMPs play crucial roles in maintaining viability of their hosts, and therefore, it is essential to understand the biogenesis of this class of membrane proteins. In recent years, significant structural and functional advancements have been made toward elucidating this process, which is mediated by the ß-barrel assembly machinery (BAM) in Gram-negative bacteria, and by the sorting and assembly machinery (SAM) in mitochondria. Structures of both BAM and SAM have now been reported, allowing a comparison and dissection of the two machineries, with other studies reporting on functional aspects of each. Together, these new insights provide compelling support for the proposed budding mechanism, where each nascent ßOMP forms a hybrid-barrel intermediate with BAM/SAM in route to its biogenesis into the membrane. Here, we will review these recent studies and highlight their contributions toward understanding ßOMP biogenesis in Gram-negative bacteria and in mitochondria. We will also weigh the evidence supporting each of the two leading mechanistic models for how BAM/SAM function, and offer an outlook on future studies within the field.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Chloroplasts/metabolism , Gram-Negative Bacteria/metabolism , Mitochondria/metabolism , Protein Folding , Amino Acid Motifs , Chloroplasts/chemistry , Mitochondria/chemistry , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/metabolism , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Conformation
19.
FEBS J ; 288(1): 175-189, 2021 01.
Article in English | MEDLINE | ID: mdl-32866986

ABSTRACT

Protochlorophyllide oxidoreductase (POR) catalyses reduction of protochlorophyllide (Pchlide) to chlorophyllide, a light-dependent reaction of chlorophyll biosynthesis. POR is also important in plant development as it is the main constituent of prolamellar bodies in etioplast membranes. Prolamellar bodies are highly organised, paracrystalline structures comprising aggregated oligomeric structures of POR-Pchlide-NADPH complexes. How these oligomeric structures are formed and the role of Pchlide in oligomerisation remains unclear. POR crystal structures highlight two peptide regions that form a 'lid' to the active site, and undergo conformational change on binding Pchlide. Here, we show that Pchlide binding triggers formation of large oligomers of POR using size exclusion chromatography. A POR 'octamer' has been isolated and its structure investigated by cryo-electron microscopy at 7.7 Å resolution. This structure shows that oligomer formation is most likely driven by the interaction of amino acid residues in the highly conserved lid regions. Computational modelling indicates that Pchlide binding stabilises exposure of hydrophobic surfaces formed by the lid regions, which supports POR dimerisation and ultimately oligomer formation. Studies with variant PORs demonstrate that lid residues are involved in substrate binding and photocatalysis. These highly conserved lid regions therefore have a dual function. The lid residues position Pchlide optimally to enable photocatalysis. Following Pchlide binding, they also enable POR oligomerisation - a process that is reversed through subsequent photocatalysis in the early stages of chloroplast development.


Subject(s)
Chlorophyll/chemistry , Chlorophyllides/chemistry , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Photosynthesis/genetics , Protochlorophyllide/chemistry , Amino Acid Sequence , Catalytic Domain , Chlorophyll/biosynthesis , Chlorophyllides/biosynthesis , Chloroplasts/chemistry , Chloroplasts/genetics , Chloroplasts/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hydrophobic and Hydrophilic Interactions , Kinetics , Models, Molecular , NADP/chemistry , NADP/metabolism , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Plants/enzymology , Plants/genetics , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Tertiary , Protochlorophyllide/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Thermosynechococcus/enzymology , Thermosynechococcus/genetics
20.
Plant Physiol Biochem ; 158: 265-274, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33262014

ABSTRACT

The chloroplastic lipocalin (LCNP) is induced in response to various abiotic stresses including high light, dehydration and low temperature. It contributes to protection against oxidative damage promoted by adverse conditions by preventing accumulation of fatty acid hydroperoxides and lipid peroxidation. In contrast to animal lipocalins, LCNP is poorly characterized and the molecular mechanism by which it exerts protective effects during oxidative stress is largely unknown. LCNP is considered the ortholog of human apolipoprotein D (APOD), a protein whose lipid antioxidant function has been characterized. Here, we investigated whether APOD could functionally replace LCNP in Arabidopsis thaliana. We introduced APOD cDNA fused to a chloroplast transit peptide encoding sequence in an Arabidopsis LCNP KO mutant line and challenged the transgenic plants with different abiotic stresses. We demonstrated that expression of human APOD in Arabidopsis can partially compensate for the lack of the plastid lipocalin. The results are consistent with a conserved function of APOD and LCNP under stressful conditions. However, if the results obtained with the drought and oxidative stresses point to the protective effect of constitutive expression of APOD in plants lacking LCNP, this effect is not as effective as that conferred by LCNP overexpression. Moreover, when investigating APOD function in thylakoids after high light stress at low temperature, it appeared that APOD could not contribute to qH, a slowly reversible form of non-photochemical chlorophyll fluorescence quenching, as described for LCNP. This work provides a base of understanding the molecular mechanism underlying LCNP protective function.


Subject(s)
Apolipoproteins D/biosynthesis , Arabidopsis/metabolism , Dehydration , Lipocalins/chemistry , Oxidative Stress , Arabidopsis/genetics , Chloroplasts/chemistry , Droughts , Ectopic Gene Expression , Humans , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL
...