Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 533
Filter
1.
Sci Total Environ ; 912: 168740, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38013102

ABSTRACT

In this work, a novel double-network composite hydrogel (SA/TA), composed of sodium alginate (SA) and tannic acid (TA), was designed and fabricated by a successive cross-linking method using Ti(IV) and Ca(II) as crosslinkers. SA/TA exhibited reinforced mechanical strength and anti-swelling properties because of the double-network structure. SA/TA was used as an adsorbent for removal of a popular antiviral drug, chloroquine phosphate (CQ), in water. The adsorption performance of SA/TA was systematically investigated, to study various effects including those of TA mass content, solution pH, adsorption time, and initial CQ concentration. Adsorption was also examined in presence of inorganic and organic coexisting substances commonly found in wastewater, and under different actual water samples. Batch experimental results indicated that SA/TA could maintain higher and more stable CQ uptakes within a wide solution pH range from 3.0 to 10.0, compared to its precursor, SA hydrogel, owing to the addition of TA-Ti(IV) coordination network. The maximum experimental CQ uptake exhibited by the 1:1 (by wt) SA/TA (SA/TA2) was as high as 0.699 mmol/g at the initial pH of 9.0. A high concentration of coexisting NaCl evidently reduced the CQ uptakes of SA/TA2 due to the electrostatic shielding effect, moreover, divalent cations including Ca(II) and Mg(II) also inhibited the adsorption of CQ due to competitive adsorption. However, humic acid had little effect on this adsorption. Considering the apparent adsorption performance, the aforementioned effects of various factors and the spectroscopic characterizations, multi-interactions are suggested for adsorption including chelation, electrostatic interactions, π-π electron donor-acceptor interaction and hydrogen bonding. SA/TA showed a slight loss in adsorption capacity toward CQ and sustained physicochemical structural stability, even after six adsorption-desorption cycles. In addition to CQ, SA/TA could be efficiently used for adsorption of two other antivirus drugs, namely, hydroxychloroquine sulfate and oseltamivir phosphate. This work provides an effective strategy for the design and fabrication of novel adsorbents that can effectively adsorb antiviral drugs over a wide pH range.


Subject(s)
Chloroquine/analogs & derivatives , Hydrogels , Polyphenols , Water Pollutants, Chemical , Hydrogels/chemistry , Adsorption , Alginates/chemistry , Water , Hydrogen-Ion Concentration , Kinetics , Water Pollutants, Chemical/analysis
2.
Int J Biol Macromol ; 258(Pt 1): 128776, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38114014

ABSTRACT

For the first time, the co-delivery of chloroquine phosphate and flavopiridol by intra-articular route was achieved to provide local joint targeting in Complete Freund's Adjuvant-induced arthritis rat model. The presence of paired-bean structure onto the dispersed oil droplets of o/w nanosized emulsions allows efficient entrapment of two drugs (85.86-96.22 %). The dual drug-loaded emulsions displayed a differential in vitro drug release behavior, near normal cell viability in MTT assay, better cell uptake (internalization) and better reducing effect of mean immunofluorescence intensity of inflammatory proteins such as NF-κB and iNOS at in vitro RAW264.7 macrophage cell line. The radiographical study, ELISA test, RT-PCR study and H & E staining also indicated a reduction in joint tissue swelling, IL-6 and TNF-α levels diminution, fold change diminution in the mRNA expressions for NF-κB, IL-1ß, IL-6 and PGE2 and maintenance of near normal histology at bone cartilage interface respectively. The results of metabolomic pathway analysis performed by LC-MS/MS method using the rat blood (plasma) collected from disease control and dual drug-loaded emulsions treatment groups revealed a new follow-up study to understand not only the disease progression but also the formulation therapeutic efficacy assessment.


Subject(s)
Arthritis, Experimental , Chitosan , Chloroquine/analogs & derivatives , Flavonoids , Piperidines , Rats , Animals , NF-kappa B/metabolism , Freund's Adjuvant/adverse effects , Chitosan/therapeutic use , Interleukin-6 , Chromatography, Liquid , Emulsions/adverse effects , Follow-Up Studies , Arthritis, Experimental/drug therapy , Tandem Mass Spectrometry , Anti-Inflammatory Agents/pharmacology
3.
Huan Jing Ke Xue ; 43(9): 4597-4607, 2022 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-36096600

ABSTRACT

The degradation of chloroquine phosphate (CQP), an anti-COVID-19 drug, was investigated in a UV-activated persulfate system (UV/PS). The second-order rate constants of CQP with hydroxyl radicals (HO·) and sulfate radicals (SO4-·) were determined using a competition kinetics experiment, and the effects of persulfate concentration, pH, and inorganic anions on the degradation of CQP were also systematically studied. Furthermore, a kinetic model was established to predict the concentration of CQP and major free radicals to explore its mechanism of influence. The results showed that the degradation efficiency of CQP could reach 91.3% after 10 min under UV/PS, which was significantly higher than that under UV, sunlight, or PS alone. At pH=6.9, the second-order rate reaction constants of CQP with HO· and SO4-· were 8.9×109 L·(mol·s)-1and 1.4×1010 L·(mol·s)-1, respectively, and the main active species was SO4-·. The degradation rate of CQP increased with increasing concentrations of PS and decreased with the addition of HCO3- and Cl-. The removal efficiency of CQP was inhibited under stronger alkaline conditions. N-de-ethylation, cleavage of the C-N bond, and hydrogen abstraction were proposed as the principal pathways of CQP degradation based on LC-MS analysis. The mineralization rate of CQP could be improved by increasing PS concentration and pH values. This study could be helpful for the treatment of anti-COVID-19 pharmaceutical wastewater.


Subject(s)
Water Pollutants, Chemical , Chloroquine/analogs & derivatives , Hydroxyl Radical/analysis , Hydroxyl Radical/chemistry , Oxidation-Reduction , Wastewater/analysis , Water Pollutants, Chemical/analysis
4.
Sci Rep ; 12(1): 564, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35022455

ABSTRACT

With its strong effect on vector-borne diseases, and insecticidal effect on mosquito vectors of malaria, inhibition of sporogonic and blood-stage development of Plasmodium falciparum, as well as in vitro and in vivo impairment of the P. berghei development inside hepatocytes, ivermectin (IVM) continues to represent an antimalarial therapeutic worthy of investigation. The in vitro activity of the first-generation IVM hybrids synthesized by appending the IVM macrolide with heterocyclic and organometallic antimalarial pharmacophores, against the blood-stage and liver-stage infections by Plasmodium parasites prompted us to design second-generation molecular hybrids of IVM. Here, a structural modification of IVM to produce novel molecular hybrids by using sub-structures of 4- and 8-aminoquinolines, the time-tested antiplasmodial agents used for treating the blood and hepatic stage of Plasmodium infections, respectively, is presented. Successful isolation of regioisomers and epimers has been demonstrated, and the evaluation of their in vitro antiplasmodial activity against both the blood stages of P. falciparum and the hepatic stages of P. berghei have been undertaken. These compounds displayed structure-dependent antiplasmodial activity, in the nM range, which was more potent than that of IVM, its aglycon or primaquine, highlighting the superiority of this hybridization strategy in designing new antiplasmodial agents.


Subject(s)
Antimalarials/chemistry , Chloroquine/analogs & derivatives , Ivermectin/chemistry , Isomerism , Microbial Sensitivity Tests , Plasmodium berghei , Plasmodium falciparum
5.
Trials ; 22(1): 869, 2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34863267

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that was first identified in Wuhan, Hubei, China, in December 2019. It was recognized as a pandemic by the World Health Organization on 11 March 2020. Outbreak forecasting and mathematical modelling suggest that these numbers will continue to rise. Early identification of effective remedies that can shorten the duration and severity of illness is critical for Lagos State, which is the epi-centre of the disease in Nigeria. METHODS: This is a multi-centre, randomized, double-blind placebo-controlled superiority trial. The study investigates the efficacy of chloroquine phosphate, hydroxychloroquine sulphate and lopinavir/ritonavir added on to standard of care compared to standard of care only in patients with COVID-19 disease. The primary outcome is the clinical status of patients measured using a 7-point ordinal scale at day 15. Research participants and clinicians will be blinded to the allocated intervention. Outcome measures will be directly assessed by clinicians. Statistical analysis will be done by a team blinded to the identity and allocation of research participants. Data analysis will follow intention-to-treat methods, using R software. DISCUSSION: The current study is of strategic importance for Lagos State in potentially curbing the health, social and economic burden of COVID-19 disease. Should the current study demonstrate that either of the three intervention drugs is more efficacious than standard therapy alone, the State Ministry of Health will develop an evidence-based guideline for the management of COVID-19 in Lagos State. The findings will also be shared nationally and with other states which may lead to a standardized national guideline for the treatment of COVID-19 in Nigeria. TRIAL REGISTRATION: Pan African Clinical Trials Register PACTR202004801273802 . Registered prospectively on April 2, 2020.


Subject(s)
COVID-19 Drug Treatment , Hydroxychloroquine , Chloroquine/analogs & derivatives , Humans , Hydroxychloroquine/adverse effects , Lopinavir/adverse effects , Multicenter Studies as Topic , Nigeria , Randomized Controlled Trials as Topic , Ritonavir/adverse effects , SARS-CoV-2
6.
Sci Rep ; 11(1): 19998, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620963

ABSTRACT

Understanding the effects of metabolism on the rational design of novel and more effective drugs is still a considerable challenge. To the best of our knowledge, there are no entirely computational strategies that make it possible to predict these effects. From this perspective, the development of such methodologies could contribute to significantly reduce the side effects of medicines, leading to the emergence of more effective and safer drugs. Thereby, in this study, our strategy is based on simulating the electron ionization mass spectrometry (EI-MS) fragmentation of the drug molecules and combined with molecular docking and ADMET models in two different situations. In the first model, the drug is docked without considering the possible metabolic effects. In the second model, each of the intermediates from the EI-MS results is docked, and metabolism occurs before the drug accesses the biological target. As a proof of concept, in this work, we investigate the main antiviral drugs used in clinical research to treat COVID-19. As a result, our strategy made it possible to assess the biological activity and toxicity of all potential by-products. We believed that our findings provide new chemical insights that can benefit the rational development of novel drugs in the future.


Subject(s)
Antiviral Agents/metabolism , COVID-19 Drug Treatment , Drug Discovery , SARS-CoV-2/drug effects , Adenine/adverse effects , Adenine/analogs & derivatives , Adenine/metabolism , Adenine/pharmacology , Adenosine/adverse effects , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/pharmacology , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Alanine/adverse effects , Alanine/analogs & derivatives , Alanine/metabolism , Alanine/pharmacology , Amides/adverse effects , Amides/metabolism , Amides/pharmacology , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , COVID-19/metabolism , Chloroquine/adverse effects , Chloroquine/analogs & derivatives , Chloroquine/metabolism , Chloroquine/pharmacology , Drug Design , Humans , Metabolic Networks and Pathways , Molecular Docking Simulation , Nitro Compounds/adverse effects , Nitro Compounds/metabolism , Nitro Compounds/pharmacology , Pyrazines/adverse effects , Pyrazines/metabolism , Pyrazines/pharmacology , Pyrrolidines/adverse effects , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Ribavirin/adverse effects , Ribavirin/metabolism , Ribavirin/pharmacology , SARS-CoV-2/metabolism , Thiazoles/adverse effects , Thiazoles/metabolism , Thiazoles/pharmacology
7.
Theranostics ; 11(18): 8692-8705, 2021.
Article in English | MEDLINE | ID: mdl-34522207

ABSTRACT

Background: Metastasis is one of the main reasons for the high mortality associated with pancreatic ductal adenocarcinoma (PDAC), and autophagy regulates the metastatic migration of tumor cells, their invasion of tissues, and their formation of focal adhesions. Inhibiting autophagy may suppress tumor growth and metastasis, but the abundant extracellular matrix hinders the deep penetration of therapeutic agents. Methods: To enhance the penetration of drugs that can inhibit metastasis of pancreatic cancer, a pH-responsive drug delivery system was formulated. Gemcitabine (GEM), a first-line chemotherapeutic drug against PDAC, was loaded in 6PA-modified DGL (PDGL) nanoparticles to afford PDGL-GEM. Then PDGL-GEM was co-precipitated with the autophagy inhibitor chloroquine phosphate (CQ) and calcium phosphate to formulate PDGL-GEM@CAP/CQ. The size and morphology of the resulting "nanobomb" PDGL-GEM@CAP/CQ were characterized, and their uptake into cells, cytotoxicity and ability to inhibit autophagy were analyzed at pH 6.5 and 7.4. The anti-tumor and anti-metastasis effects of the nanobomb were explored on mice carrying Pan 02 pancreatic tumor xenografts or orthotopic tumors. Results: The pH-induced dissolution of calcium phosphate facilitated the release of CQ from the nanobomb and deep penetration of PDGL-GEM. The internalization of PDGL-GEM and subsequent intracellular release of GEM inhibited tumor growth, while CQ downregulated autophagy in tumor cells and fibroblasts. In fact, inhibition of xenograft and orthotopic tumor growth was greater with the complete PDGL-GEM@CAP/CQ than with subassemblies lacking GEM or CQ. More importantly, mechanistic studies in vitro and in vivo suggested that the nanobomb inhibits metastasis by downregulating MMP-2 and paxillin, as well as reducing fibrosis. Conclusion: The pH-sensitive PDGL-GEM@CAP/CQ shows potential for inhibiting proliferation and metastasis of pancreatic cancer through an autophagy-dependent pathway.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Drug Delivery Systems/methods , Nanoparticles/therapeutic use , Animals , Autophagy/drug effects , Autophagy/physiology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Chloroquine/analogs & derivatives , Chloroquine/chemistry , Chloroquine/pharmacology , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Extracellular Matrix/physiology , Hydrogen-Ion Concentration , Male , Mice , Mice, Inbred C57BL , Nanoparticle Drug Delivery System/chemistry , Nanoparticle Drug Delivery System/pharmacology , Nanoparticles/chemistry , Neoplasm Metastasis/prevention & control , Pancreas/pathology , Pancreatic Neoplasms/pathology , Xenograft Model Antitumor Assays , Gemcitabine
8.
J Clin Lab Anal ; 35(9): e23923, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34390043

ABSTRACT

BACKGROUND: The dynamic alteration and comparative study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA shedding pattern during treatment are limited. This study explores the potential risk factors influencing prolonged viral shedding in COVID-19. METHODS: A total of 126 COVID-19 patients were enrolled in this retrospective longitudinal study. A multivariate logistic regression analysis was carried out to estimate the potential risk factors. RESULTS: 38.1% (48/126) cases presented prolonged respiratory tract viral shedding, and 30 (23.8%) cases presented prolonged rectal swab viral shedding. Obesity (OR, 3.31; 95% CI, 1.08-10.09), positive rectal swab (OR, 3.43; 95% CI, 1.53-7.7), treatment by lopinavir/ritonavir with chloroquine phosphate (OR, 2.5; 95% CI, 1.04-6.03), the interval from onset to antiviral treatment more than 7 days (OR, 2.26; 95% CI, 1.04-4.93), lower CD4+ T cell (OR, 0.92; 95% CI, 0.86-0.99) and higher NK cells (OR, 1.11; 95% CI, 1.02-1.20) were significantly associated with prolonged respiratory tract viral shedding. CD3-CD56+ NK cells (OR, 0.87; 95% CI, 0.76-0.99) were related with prolonged fecal shedding. CONCLUSIONS: Obesity, delayed antiviral treatment, and positive SARS-CoV-2 for stool were independent risk factors for prolonged SARS-CoV-2 RNA shedding of the respiratory tract. A combination of LPV/r and abidol as the initial antiviral regimen was effective in shortening the duration of viral shedding compared with LPV/r combined with chloroquine phosphate. CD4+ T cell and NK cells were significantly associated with prolonged viral shedding, and further studies are to be warranted to determine the mechanism of immunomodulatory response in virus clearance.


Subject(s)
COVID-19/virology , Feces/virology , SARS-CoV-2/physiology , Virus Shedding/physiology , Adult , Animals , Antiviral Agents/administration & dosage , CD4 Lymphocyte Count , COVID-19/epidemiology , Chloroquine/administration & dosage , Chloroquine/adverse effects , Chloroquine/analogs & derivatives , Female , Humans , Killer Cells, Natural , Longitudinal Studies , Lopinavir/administration & dosage , Lynx , Male , Obesity/epidemiology , Respiratory System/virology , Retrospective Studies , Risk Factors , Ritonavir/administration & dosage , Time Factors , Virus Shedding/drug effects
9.
PLoS One ; 16(8): e0256035, 2021.
Article in English | MEDLINE | ID: mdl-34398893

ABSTRACT

BACKGROUND: Chloroquine was promoted as a COVID-19 therapeutic early in the pandemic. Most countries have since discontinued the use of chloroquine due to lack of evidence of any benefit and the risk of severe adverse events. The primary aim of this study was to examine if administering chloroquine during COVID-19 imposed an increased risk of ischemic heart injury or heart failure. METHODS: Medical records, laboratory findings, and electrocardiograms of patients with COVID-19 who were treated with 500 mg chloroquine phosphate daily and controls not treated with chloroquine were reviewed retrospectively. Controls were matched in age and severity of disease. RESULTS: We included 20 patients receiving chloroquine (500 mg twice daily) for an average of five days, and 40 controls. The groups were comparable regarding demographics and biochemical analyses including C-reactive protein, thrombocytes, and creatinine. There were no statistically significant differences in cardiac biomarkers or in electrocardiograms. Median troponin T was 10,8 ng/L in the study group and 17.9 ng/L in the control group, whereas median NT-proBNP was 399 ng/L in patients receiving chloroquine and 349 ng/L in the controls. CONCLUSIONS: We found no increased risk of ischemic heart injury or heart failure as a result of administering chloroquine. However, the use of chloroquine to treat COVID-19 outside of clinical trials is not recommended, considering the lack of evidence of its effectiveness, as well as the elevated risk of fatal arrythmias.


Subject(s)
Antiviral Agents/adverse effects , Biomarkers/analysis , Chloroquine/analogs & derivatives , Heart Failure/etiology , Heart Injuries/etiology , Aged , Antiviral Agents/therapeutic use , C-Reactive Protein/analysis , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Chloroquine/adverse effects , Chloroquine/therapeutic use , Creatinine/analysis , Electrocardiography , Female , Heart Failure/metabolism , Heart Injuries/metabolism , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/analysis , Peptide Fragments/analysis , Retrospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index , Troponin T/analysis , COVID-19 Drug Treatment
10.
J Pharmacol Exp Ther ; 379(1): 96-107, 2021 10.
Article in English | MEDLINE | ID: mdl-34253645

ABSTRACT

In the wake of the COVID-19 pandemic, drug repurposing has been highlighted for rapid introduction of therapeutics. Proposed drugs with activity against SARS-CoV-2 include compounds with positive charges at physiologic pH, making them potential targets for the organic cation secretory transporters of kidney and liver, i.e., the basolateral organic cation transporters, OCT1 and OCT2; and the apical multidrug and toxin extruders, MATE1 and MATE2-K. We selected several compounds proposed to have in vitro activity against SARS-CoV-2 (chloroquine, hydroxychloroquine, quinacrine, tilorone, pyronaridine, cetylpyridinium, and miramistin) to test their interaction with OCT and MATE transporters. We used Bayesian machine learning models to generate predictions for each molecule with each transporter and also experimentally determined IC50 values for each compound against labeled substrate transport into CHO cells that stably expressed OCT2, MATE1, or MATE2-K using three structurally distinct substrates (atenolol, metformin and 1-methyl-4-phenylpyridinium) to assess the impact of substrate structure on inhibitory efficacy. For the OCTs substrate identity influenced IC50 values, although the effect was larger and more systematic for OCT2. In contrast, inhibition of MATE1-mediated transport was largely insensitive to substrate identity. Unlike MATE1, inhibition of MATE2-K was influenced, albeit modestly, by substrate identity. Maximum unbound plasma concentration/IC50 ratios were used to identify potential clinical DDI recommendations; all the compounds interacted with the OCT/MATE secretory pathway, most with sufficient avidity to represent potential DDI issues for secretion of cationic drugs. This should be considered when proposing cationic agents as repurposed antivirals. SIGNIFICANCE STATEMENT: Drugs proposed as potential COVID-19 therapeutics based on in vitro activity data against SARS-CoV-2 include compounds with positive charges at physiological pH, making them potential interactors with the OCT/MATE renal secretory pathway. We tested seven such molecules as inhibitors of OCT1/2 and MATE1/2-K. All the compounds blocked transport activity regardless of substrate used to monitor activity. Suggesting that plasma concentrations achieved by normal clinical application of the test agents could be expected to influence the pharmacokinetics of selected cationic drugs.


Subject(s)
Antiviral Agents/pharmacology , Organic Cation Transport Proteins/metabolism , SARS-CoV-2/drug effects , Animals , Benzalkonium Compounds/pharmacology , CHO Cells , Cetylpyridinium/pharmacology , Chloroquine/analogs & derivatives , Chloroquine/pharmacology , Cricetinae , Cricetulus , Naphthyridines/pharmacology , Organic Cation Transport Proteins/drug effects , Quinacrine/pharmacology , Tilorone/pharmacology
11.
J Chromatogr A ; 1651: 462273, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34087718

ABSTRACT

This study presents an accurate and precise analytical strategy for the determination of chloroquine phosphate at trace levels in human body fluids (urine, serum, and saliva). Simultaneous derivatization-spraying based fine droplet formation-liquid phase microextraction (SD-SFDF-LPME) method was used to derivatize and preconcentrate the analyte prior to gas chromatography-mass spectrometry (GC-MS) measurements. Acetic anhydride was employed as derivatizing agent in this study. After optimizing the SD-SFDF-LPME method, the limit of detection (LOD) and limit of quantitation (LOQ) were found to be 0.16 and 0.53 mg/kg, respectively. Quadruple isotope dilution (ID4) was coupled to the SD-SFDF-LPME method in order to alleviate matrix effects and promote accuracy/precision of the method. Chloroquine acetamide-d3 was firstly synthesized in our research laboratory and used as the isotopic analogue of the analyte in the ID4 experiments. Superior percent recovery results (99.4% - 101.0%) with low standard deviation values were obtained for the spiked samples. This validated the developed SD-SFDF-LPME-ID4-GC-MS method as highly accurate and precise for the determination of chloroquine phosphate at trace levels. In addition, the isotopic analogue of the analyte was obtained via the acetamide derivative of the analyte, which is an alternative to obtain isotopic analogues of organic compounds that are not accessible or commercially available.


Subject(s)
Chloroquine/analogs & derivatives , Gas Chromatography-Mass Spectrometry/methods , Liquid Phase Microextraction/methods , Body Fluids/chemistry , Chloroquine/analysis , Chloroquine/blood , Chloroquine/isolation & purification , Chloroquine/urine , Humans , Isotopes , Limit of Detection , Saliva/chemistry
12.
PLoS One ; 16(3): e0247356, 2021.
Article in English | MEDLINE | ID: mdl-33667247

ABSTRACT

BACKGROUND: Hydroxychloroquine (HCQ) and azithromycin (AZM) are antimalarial drugs recently reported to be active against severe acute respiratory syndrome coronavirus- 2 (SARS-CoV-2), which is causing the global COVID-19 pandemic. In an emergency response to the pandemic, we aimed to develop a quantitation method for HCQ, its metabolites desethylhydroxychloroquine (DHCQ) and bisdesethylchloroquine (BDCQ), and AZM in human plasma. METHODS: Liquid chromatography tandem mass spectrometry was used to develop the method. Samples (20 µL) are extracted by solid-phase extraction and injected onto the LC-MS/MS system equipped with a PFP column (2.0 × 50 mm, 3 µm). ESI+ and MRM are used for detection. Ion pairs m/z 336.1→247.1 for HCQ, 308.1→179.1 for DHCQ, 264.1→179.1 for BDCQ, and 749.6→591.6 for AZM are selected for quantification. The ion pairs m/z 342.1→253.1, 314.1→181.1, 270.1→181.1, and 754.6→596.6 are selected for the corresponding deuterated internal standards (IS) HCQ-d4, DHCQ-d4, BDCQ-d4, and AZM-d5. The less abundant IS ions from 37Cl were used to overcome the interference from the analytes. RESULTS: Under optimized conditions, retention times are 0.78 min for BDCQ, 0.79 min for DHCQ, 0.92 min for HCQ and 1.87 min for AZM. Total run time is 3.5 min per sample. The calibration ranges are 2-1000 ng/mL for HCQ and AZM, 1-500 ng/mL for DHCQ and 0.5-250 ng/mL for BDCQ; samples above the range are validated for up to 10-fold dilution. Recoveries of the method ranged from 88.9-94.4% for HCQ, 88.6-92.9% for DHCQ, 88.7-90.9% for BDCQ, and 98.6%-102% for AZM. The IS normalized matrix effect were within (100±10) % for all 4 analytes. Blood samples are stable for at least 6 hr at room temperature. Plasma samples are stable for at least 66 hr at room temperature, 38 days at -70°C, and 4 freeze-thaw cycles. CONCLUSIONS: An LC-MS/MS method for simultaneous quantitation of HCQ, DHCQ, BDCQ, and AZM in human plasma was developed and validated for clinical studies requiring fast turnaround time and small samples volume.


Subject(s)
Anti-Bacterial Agents/blood , Antimalarials/blood , Azithromycin/blood , Chloroquine/analogs & derivatives , Hydroxychloroquine/analogs & derivatives , Hydroxychloroquine/blood , Blood Specimen Collection/methods , Chloroquine/blood , Chromatography, High Pressure Liquid/methods , Drug Monitoring/methods , Edetic Acid/blood , Humans , Limit of Detection , Tandem Mass Spectrometry/methods
14.
BMC Complement Med Ther ; 21(1): 71, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33607987

ABSTRACT

BACKGROUND: In previous studies, Cassia spectabilis DC leaf has shown a good antiplasmodial activity. Therefore, this study is a follow-up study of the extract of leaf of C. spectabilis DC on its in vitro and in vivo antiplasmodial activity and mechanism as an antimalarial. METHODS: The extract was fractionated, sub-fractionated and isolated to obtain the purified compound. In vitro antiplasmodial activity test against Plasmodium falciparum to find out the active compound. In vivo test against P. berghei ANKA-infected mice was conducted to determine prophylactic activity and antiplasmodial activity either alone or in combination with artesunate. The inhibition of heme detoxification test as one of the antimalarial mechanisms was carried out using the Basilico method. RESULTS: The results showed that active antimalarial compound isolated from C. spectabilis DC leaf had a structural pattern that was identical to (-)-7-hydroxycassine. Prophylactic test of 90% ethanolic extract of C. spectabilis DC leaf alone against P. berghei ANKA-infected mice obtained the highest percentage inhibition was 68.61%, while positive control (doxycycline 13 mg/kg) was 73.54%. In combination with artesunate, 150 mg/kg three times a day of C. spectabilis DC (D0-D2) + artesunate (D2) was better than the standard combination of amodiaquine + artesunate where the inhibition percentages were 99.18 and 92.88%, respectively. The IC50 of the extract for the inhibitory activity of heme detoxification was 0.375 mg/ml which was better than chloroquine diphosphate (0.682 mg/ml). CONCLUSION: C. spectabilis DC leaf possessed potent antiplasmodial activity and may offer a potential agent for effective and affordable antimalarial phytomedicine.


Subject(s)
Antimalarials/pharmacology , Cassia/chemistry , Heme/metabolism , Malaria/parasitology , Plant Extracts/pharmacology , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Animals , Antimalarials/isolation & purification , Antimalarials/therapeutic use , Artesunate/therapeutic use , Chloroquine/analogs & derivatives , Chloroquine/pharmacology , Ketones , Malaria/drug therapy , Male , Mice, Inbred BALB C , Phytotherapy , Piperidines , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Plasmodium berghei/metabolism , Plasmodium falciparum/metabolism
15.
Int J Mol Med ; 47(4)2021 04.
Article in English | MEDLINE | ID: mdl-33576441

ABSTRACT

Coronavirus disease 2019 (COVID­19) is an acute infectious pneumonia caused by a novel type of coronavirus infection. There are currently no clinically available specific drugs for the treatment of this virus. The process of host invasion is the key to viral infection, and it is a mechanism that needs to be considered when exploring antiviral drugs. At present, studies have confirmed that angiotensin­converting enzyme II (ACE2) is the main functional receptor through which severe acute respiratory syndrome coronavirus (SARS­CoV­2) invades host cells. Therefore, a number of studies have focused on this field. However, as ACE2 may play a dual role in mediating susceptibility and immunity to SARS­CoV­2 infection, the role of ACE2 in viral infection is controversial. Beginning with the physiological function of ACE2, the present review article summarizes the influence of the ACE2 content on the susceptibility to the virus and acute lung injury. Drug mechanisms were taken as the starting point, combined with the results of clinical trials, specifically elaborating upon and analyzing the efficacy of several ACE2­centered therapeutic drugs and their potential effects. In addition, the current status of ACE2 as a targeted therapy for COVID­19 is discussed in order to provide new insight into the clinical prevention and treatment of COVID­19.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , Antiviral Agents/pharmacology , COVID-19/prevention & control , COVID-19/therapy , Host-Pathogen Interactions/physiology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/pharmacology , COVID-19/virology , Cardiovascular Diseases/etiology , Chloroquine/analogs & derivatives , Chloroquine/pharmacology , Host-Pathogen Interactions/drug effects , Humans , Indoles/pharmacology , Molecular Targeted Therapy , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
17.
J Pharmacol Toxicol Methods ; 108: 106949, 2021.
Article in English | MEDLINE | ID: mdl-33503487

ABSTRACT

A vortex assisted spraying based fine droplet formation liquid phase microextraction (VA-SFDF-LPME) method was developed to determine chloroquine phosphate at trace levels in human serum, urine and saliva samples by gas chromatography-mass spectrometry (GC-MS) with single quadrupole mass analyzer. In the first part, several liquid phase microextraction (LPME) and magnetic solid phase extraction (MSPE) methods were compared to each other in order to observe their extraction ability for the analyte. VA-SFDF-LPME method was selected as an efficient and easy extraction method due to its higher extraction efficiency. Optimization studies were carried out for the parameters such as extraction solvent type, sodium hydroxide volume/concentration, sample volume, spraying number and mixing type/period. Tukey's method based on post hoc test was applied to all experimental data for the selection of optimum values. Optimum extraction parameters were found to be 12 mL initial sample volume, two sprays of dichloromethane, 0.75 mL of 60 g/kg sodium hydroxide and 15 s vortex. Under the optimum conditions, limit of detection and quantification (LOD and LOQ) were calculated as 2.8 and 9.2 µg/kg, respectively. Detection power of the GC-MS system was increased by approximately 317 folds with the developed extraction/preconcentration method. The applicability and accuracy of the proposed method was evaluated by spiking experiments and percent recovery results for human urine, serum and saliva samples were found in the range of 90.9% and 114.0% with low standard deviation values (1.9-9.4).


Subject(s)
Chloroquine , Liquid Phase Microextraction , Chloroquine/analogs & derivatives , Gas Chromatography-Mass Spectrometry , Humans , Limit of Detection , Saliva
18.
Recent Pat Anticancer Drug Discov ; 16(2): 204-221, 2021.
Article in English | MEDLINE | ID: mdl-33413069

ABSTRACT

BACKGROUND: Drug repurposing is emerging as an attractive strategy with lower attrition rate, lower cost and shorter timeframe than traditional drug discovery methods. Chloroquine (CQ) and its analogs are old drugs originally indicated for malaria treatment. Serendipitous discovery in early years revealed its anti-inflammatory properties, thus allowing its repositioned use in autoimmune diseases. Recent evidence also suggested its potential therapeutic use for anticancer therapy. OBJECTIVE: This article reviews the molecular mechanisms, clinical evaluation and recent patents of CQ analogs in cancer therapy. METHODS: Literature and patent searches were conducted using PubMed database and Google Patent/ USPTO Patent Search database, respectively. The keywords including "chloroquine", "hydroxychloroquine", "chloroquine analogs", "chloroquine derivatives", "repurposing", "autophagy", and "cancer" were used. RESULTS: CQ analogs have been reported to elicit their anticancer effects by modulating autophagy, inducing apoptosis, eliminating cancer stem cells, normalizing tumor vasculature and modulating antitumor immunity. As documented by recent patents and clinical trials, CQ analogs have been repurposed as an adjuvant therapy and combined with other anticancer agents for synergistic enhancement of treatment efficacy. However, most clinical trials on CQ only demonstrated modest improvement in anti-cancer efficacy. CONCLUSION: Given that CQ loses its anticancer activity in acidic and hypoxic environment within a tumor, novel CQ analogs and/or their formulations are under active investigation to improve their physicochemical properties and biological activity. On the other hand, identification of new biomarkers for better patient selection has been advocated in future trials in order to realize the repurposing of CQ analogs for cancer treatment in a personalized manner.


Subject(s)
Antineoplastic Agents/pharmacology , Chloroquine/pharmacology , Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Autophagy/drug effects , Chemotherapy, Adjuvant , Chloroquine/analogs & derivatives , Drug Repositioning , Humans , Hydroxychloroquine/pharmacology , Patents as Topic
19.
J Biomol Struct Dyn ; 39(10): 3747-3759, 2021 07.
Article in English | MEDLINE | ID: mdl-32448039

ABSTRACT

The global health emergency of novel COVID-19 is due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Currently there are no approved drugs for the treatment of coronaviral disease (COVID-19), although some of the drugs have been tried. Chloroquine is being widely used in treatment of SARS-CoV-2 infection. Hydroxychloroquine, the derivative of Chloroquine shows better inhibition than Chloroquine and has in vitro activity against SARS-CoV-2 also used to treat COVID-19. To study the interactions of Chloroquine and derivatives of Chloroquine with SARS-CoV-2, series of computational approaches like pharmacophore model, molecular docking, MM_GBSA study and ADME property analysis are explored. The pharmacophore model and molecular docking study are used to explore the structural properties of the compounds and the ligand-receptor (PDB_ID: 6LU7) interactions respectively. MM_GBSA study gives the binding free energy of the protein-ligand complex and ADME property analysis explains the pharmacological property of the compounds. The resultant best molecule (CQD15) further subjected to molecular dynamics (MD) simulation study which explains the protein stability (RMSD), ligand properties as well as protein-ligand contacts. Outcomes of the present study conclude with the molecule CQD15 which shows better interactions for the inhibition of SARS-CoV-2 in comparison to Chloroquine and Hydroxychloroquine.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents/pharmacology , Chloroquine , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Chloroquine/analogs & derivatives , Chloroquine/pharmacology , Humans , Molecular Docking Simulation , COVID-19 Drug Treatment
20.
Eur J Clin Pharmacol ; 77(4): 583-593, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33188451

ABSTRACT

AIMS: Chloroquine (CQ) has been repurposed to treat coronavirus disease 2019 (COVID-19). Understanding the pharmacokinetics (PK) in COVID-19 patients is essential to study its exposure-efficacy/safety relationship and provide a basis for a possible dosing regimen optimization. SUBJECT AND METHODS: In this study, we used a population-based meta-analysis approach to develop a population PK model to characterize the CQ PK in COVID-19 patients. An open-label, single-center study (ethical review approval number: PJ-NBEY-KY-2020-063-01) was conducted to assess the safety, efficacy, and pharmacokinetics of CQ in patients with COVID-19. The sparse PK data from 50 COVID-19 patients, receiving 500 mg CQ phosphate twice daily for 7 days, were combined with additional CQ PK data from 18 publications. RESULTS: A two-compartment model with first-order oral absorption and first-order elimination and an absorption lag best described the data. Absorption rate (ka) was estimated to be 0.559 h-1, and a lag time of absorption (ALAG) was estimated to be 0.149 h. Apparent clearance (CL/F) and apparent central volume of distribution (V2/F) was 33.3 l/h and 3630 l. Apparent distribution clearance (Q/F) and volume of distribution of peripheral compartment (Q3/F) were 58.7 l/h and 5120 l. The simulated CQ concentration under five dosing regimens of CQ phosphate were within the safety margin (400 ng/ml). CONCLUSION: Model-based simulation using PK parameters from the COVID-19 patients shows that the concentrations under the currently recommended dosing regimen are below the safety margin for side-effects, which suggests that these dosing regimens are generally safe. The derived population PK model should allow for the assessment of pharmacokinetics-pharmacodynamics (PK-PD) relationships for CQ when given alone or in combination with other agents to treat COVID-19.


Subject(s)
COVID-19 Drug Treatment , Chloroquine/analogs & derivatives , Drug Repositioning , Models, Biological , Administration, Oral , Adult , Aged , COVID-19/virology , Chloroquine/administration & dosage , Chloroquine/adverse effects , Chloroquine/pharmacokinetics , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Gastrointestinal Absorption , Humans , Male , Metabolic Clearance Rate , Middle Aged , SARS-CoV-2/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...